| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright (C) 2012 Google Inc. All rights reserved. | |
| 3 * | |
| 4 * Redistribution and use in source and binary forms, with or without | |
| 5 * modification, are permitted provided that the following conditions | |
| 6 * are met: | |
| 7 * | |
| 8 * 1. Redistributions of source code must retain the above copyright | |
| 9 * notice, this list of conditions and the following disclaimer. | |
| 10 * 2. Redistributions in binary form must reproduce the above copyright | |
| 11 * notice, this list of conditions and the following disclaimer in the | |
| 12 * documentation and/or other materials provided with the distribution. | |
| 13 * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of | |
| 14 * its contributors may be used to endorse or promote products derived | |
| 15 * from this software without specific prior written permission. | |
| 16 * | |
| 17 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY | |
| 18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
| 19 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
| 20 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY | |
| 21 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
| 22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
| 23 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
| 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
| 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | |
| 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 27 */ | |
| 28 | |
| 29 #include "config.h" | |
| 30 | |
| 31 #if ENABLE(WEB_AUDIO) | |
| 32 | |
| 33 #include "modules/webaudio/WaveTable.h" | |
| 34 | |
| 35 #include "core/platform/audio/FFTFrame.h" | |
| 36 #include "core/platform/audio/VectorMath.h" | |
| 37 #include "modules/webaudio/OscillatorNode.h" | |
| 38 #include <algorithm> | |
| 39 #include "wtf/OwnPtr.h" | |
| 40 | |
| 41 const unsigned WaveTableSize = 4096; // This must be a power of two. | |
| 42 const unsigned NumberOfRanges = 36; // There should be 3 * log2(WaveTableSize) 1
/3 octave ranges. | |
| 43 const float CentsPerRange = 1200 / 3; // 1/3 Octave. | |
| 44 | |
| 45 namespace WebCore { | |
| 46 | |
| 47 using namespace VectorMath; | |
| 48 | |
| 49 PassRefPtr<WaveTable> WaveTable::create(float sampleRate, Float32Array* real, Fl
oat32Array* imag) | |
| 50 { | |
| 51 bool isGood = real && imag && real->length() == imag->length(); | |
| 52 ASSERT(isGood); | |
| 53 if (isGood) { | |
| 54 RefPtr<WaveTable> waveTable = adoptRef(new WaveTable(sampleRate)); | |
| 55 size_t numberOfComponents = real->length(); | |
| 56 waveTable->createBandLimitedTables(real->data(), imag->data(), numberOfC
omponents); | |
| 57 return waveTable; | |
| 58 } | |
| 59 return 0; | |
| 60 } | |
| 61 | |
| 62 PassRefPtr<WaveTable> WaveTable::createSine(float sampleRate) | |
| 63 { | |
| 64 RefPtr<WaveTable> waveTable = adoptRef(new WaveTable(sampleRate)); | |
| 65 waveTable->generateBasicWaveform(OscillatorNode::SINE); | |
| 66 return waveTable; | |
| 67 } | |
| 68 | |
| 69 PassRefPtr<WaveTable> WaveTable::createSquare(float sampleRate) | |
| 70 { | |
| 71 RefPtr<WaveTable> waveTable = adoptRef(new WaveTable(sampleRate)); | |
| 72 waveTable->generateBasicWaveform(OscillatorNode::SQUARE); | |
| 73 return waveTable; | |
| 74 } | |
| 75 | |
| 76 PassRefPtr<WaveTable> WaveTable::createSawtooth(float sampleRate) | |
| 77 { | |
| 78 RefPtr<WaveTable> waveTable = adoptRef(new WaveTable(sampleRate)); | |
| 79 waveTable->generateBasicWaveform(OscillatorNode::SAWTOOTH); | |
| 80 return waveTable; | |
| 81 } | |
| 82 | |
| 83 PassRefPtr<WaveTable> WaveTable::createTriangle(float sampleRate) | |
| 84 { | |
| 85 RefPtr<WaveTable> waveTable = adoptRef(new WaveTable(sampleRate)); | |
| 86 waveTable->generateBasicWaveform(OscillatorNode::TRIANGLE); | |
| 87 return waveTable; | |
| 88 } | |
| 89 | |
| 90 WaveTable::WaveTable(float sampleRate) | |
| 91 : m_sampleRate(sampleRate) | |
| 92 , m_waveTableSize(WaveTableSize) | |
| 93 , m_numberOfRanges(NumberOfRanges) | |
| 94 , m_centsPerRange(CentsPerRange) | |
| 95 { | |
| 96 ScriptWrappable::init(this); | |
| 97 float nyquist = 0.5 * m_sampleRate; | |
| 98 m_lowestFundamentalFrequency = nyquist / maxNumberOfPartials(); | |
| 99 m_rateScale = m_waveTableSize / m_sampleRate; | |
| 100 } | |
| 101 | |
| 102 void WaveTable::waveDataForFundamentalFrequency(float fundamentalFrequency, floa
t* &lowerWaveData, float* &higherWaveData, float& tableInterpolationFactor) | |
| 103 { | |
| 104 // Negative frequencies are allowed, in which case we alias to the positive
frequency. | |
| 105 fundamentalFrequency = fabsf(fundamentalFrequency); | |
| 106 | |
| 107 // Calculate the pitch range. | |
| 108 float ratio = fundamentalFrequency > 0 ? fundamentalFrequency / m_lowestFund
amentalFrequency : 0.5; | |
| 109 float centsAboveLowestFrequency = log2f(ratio) * 1200; | |
| 110 | |
| 111 // Add one to round-up to the next range just in time to truncate partials b
efore aliasing occurs. | |
| 112 float pitchRange = 1 + centsAboveLowestFrequency / m_centsPerRange; | |
| 113 | |
| 114 pitchRange = std::max(pitchRange, 0.0f); | |
| 115 pitchRange = std::min(pitchRange, static_cast<float>(m_numberOfRanges - 1)); | |
| 116 | |
| 117 // The words "lower" and "higher" refer to the table data having the lower a
nd higher numbers of partials. | |
| 118 // It's a little confusing since the range index gets larger the more partia
ls we cull out. | |
| 119 // So the lower table data will have a larger range index. | |
| 120 unsigned rangeIndex1 = static_cast<unsigned>(pitchRange); | |
| 121 unsigned rangeIndex2 = rangeIndex1 < m_numberOfRanges - 1 ? rangeIndex1 + 1
: rangeIndex1; | |
| 122 | |
| 123 lowerWaveData = m_bandLimitedTables[rangeIndex2]->data(); | |
| 124 higherWaveData = m_bandLimitedTables[rangeIndex1]->data(); | |
| 125 | |
| 126 // Ranges from 0 -> 1 to interpolate between lower -> higher. | |
| 127 tableInterpolationFactor = pitchRange - rangeIndex1; | |
| 128 } | |
| 129 | |
| 130 unsigned WaveTable::maxNumberOfPartials() const | |
| 131 { | |
| 132 return m_waveTableSize / 2; | |
| 133 } | |
| 134 | |
| 135 unsigned WaveTable::numberOfPartialsForRange(unsigned rangeIndex) const | |
| 136 { | |
| 137 // Number of cents below nyquist where we cull partials. | |
| 138 float centsToCull = rangeIndex * m_centsPerRange; | |
| 139 | |
| 140 // A value from 0 -> 1 representing what fraction of the partials to keep. | |
| 141 float cullingScale = pow(2, -centsToCull / 1200); | |
| 142 | |
| 143 // The very top range will have all the partials culled. | |
| 144 unsigned numberOfPartials = cullingScale * maxNumberOfPartials(); | |
| 145 | |
| 146 return numberOfPartials; | |
| 147 } | |
| 148 | |
| 149 // Convert into time-domain wave tables. | |
| 150 // One table is created for each range for non-aliasing playback at different pl
ayback rates. | |
| 151 // Thus, higher ranges have more high-frequency partials culled out. | |
| 152 void WaveTable::createBandLimitedTables(const float* realData, const float* imag
Data, unsigned numberOfComponents) | |
| 153 { | |
| 154 float normalizationScale = 1; | |
| 155 | |
| 156 unsigned fftSize = m_waveTableSize; | |
| 157 unsigned halfSize = fftSize / 2; | |
| 158 unsigned i; | |
| 159 | |
| 160 numberOfComponents = std::min(numberOfComponents, halfSize); | |
| 161 | |
| 162 m_bandLimitedTables.reserveCapacity(m_numberOfRanges); | |
| 163 | |
| 164 for (unsigned rangeIndex = 0; rangeIndex < m_numberOfRanges; ++rangeIndex) { | |
| 165 // This FFTFrame is used to cull partials (represented by frequency bins
). | |
| 166 FFTFrame frame(fftSize); | |
| 167 float* realP = frame.realData(); | |
| 168 float* imagP = frame.imagData(); | |
| 169 | |
| 170 // Copy from loaded frequency data and scale. | |
| 171 float scale = fftSize; | |
| 172 vsmul(realData, 1, &scale, realP, 1, numberOfComponents); | |
| 173 vsmul(imagData, 1, &scale, imagP, 1, numberOfComponents); | |
| 174 | |
| 175 // If fewer components were provided than 1/2 FFT size, then clear the r
emaining bins. | |
| 176 for (i = numberOfComponents; i < halfSize; ++i) { | |
| 177 realP[i] = 0; | |
| 178 imagP[i] = 0; | |
| 179 } | |
| 180 | |
| 181 // Generate complex conjugate because of the way the inverse FFT is defi
ned. | |
| 182 float minusOne = -1; | |
| 183 vsmul(imagP, 1, &minusOne, imagP, 1, halfSize); | |
| 184 | |
| 185 // Find the starting bin where we should start culling. | |
| 186 // We need to clear out the highest frequencies to band-limit the wavefo
rm. | |
| 187 unsigned numberOfPartials = numberOfPartialsForRange(rangeIndex); | |
| 188 | |
| 189 // Cull the aliasing partials for this pitch range. | |
| 190 for (i = numberOfPartials + 1; i < halfSize; ++i) { | |
| 191 realP[i] = 0; | |
| 192 imagP[i] = 0; | |
| 193 } | |
| 194 // Clear packed-nyquist if necessary. | |
| 195 if (numberOfPartials < halfSize) | |
| 196 imagP[0] = 0; | |
| 197 | |
| 198 // Clear any DC-offset. | |
| 199 realP[0] = 0; | |
| 200 | |
| 201 // Create the band-limited table. | |
| 202 OwnPtr<AudioFloatArray> table = adoptPtr(new AudioFloatArray(m_waveTable
Size)); | |
| 203 m_bandLimitedTables.append(table.release()); | |
| 204 | |
| 205 // Apply an inverse FFT to generate the time-domain table data. | |
| 206 float* data = m_bandLimitedTables[rangeIndex]->data(); | |
| 207 frame.doInverseFFT(data); | |
| 208 | |
| 209 // For the first range (which has the highest power), calculate its peak
value then compute normalization scale. | |
| 210 if (!rangeIndex) { | |
| 211 float maxValue; | |
| 212 vmaxmgv(data, 1, &maxValue, m_waveTableSize); | |
| 213 | |
| 214 if (maxValue) | |
| 215 normalizationScale = 1.0f / maxValue; | |
| 216 } | |
| 217 | |
| 218 // Apply normalization scale. | |
| 219 vsmul(data, 1, &normalizationScale, data, 1, m_waveTableSize); | |
| 220 } | |
| 221 } | |
| 222 | |
| 223 void WaveTable::generateBasicWaveform(int shape) | |
| 224 { | |
| 225 unsigned fftSize = waveTableSize(); | |
| 226 unsigned halfSize = fftSize / 2; | |
| 227 | |
| 228 AudioFloatArray real(halfSize); | |
| 229 AudioFloatArray imag(halfSize); | |
| 230 float* realP = real.data(); | |
| 231 float* imagP = imag.data(); | |
| 232 | |
| 233 // Clear DC and Nyquist. | |
| 234 realP[0] = 0; | |
| 235 imagP[0] = 0; | |
| 236 | |
| 237 for (unsigned n = 1; n < halfSize; ++n) { | |
| 238 float omega = 2 * piFloat * n; | |
| 239 float invOmega = 1 / omega; | |
| 240 | |
| 241 // Fourier coefficients according to standard definition. | |
| 242 float a; // Coefficient for cos(). | |
| 243 float b; // Coefficient for sin(). | |
| 244 | |
| 245 // Calculate Fourier coefficients depending on the shape. | |
| 246 // Note that the overall scaling (magnitude) of the waveforms is normali
zed in createBandLimitedTables(). | |
| 247 switch (shape) { | |
| 248 case OscillatorNode::SINE: | |
| 249 // Standard sine wave function. | |
| 250 a = 0; | |
| 251 b = (n == 1) ? 1 : 0; | |
| 252 break; | |
| 253 case OscillatorNode::SQUARE: | |
| 254 // Square-shaped waveform with the first half its maximum value and
the second half its minimum value. | |
| 255 a = 0; | |
| 256 b = invOmega * ((n & 1) ? 2 : 0); | |
| 257 break; | |
| 258 case OscillatorNode::SAWTOOTH: | |
| 259 // Sawtooth-shaped waveform with the first half ramping from zero to
maximum and the second half from minimum to zero. | |
| 260 a = 0; | |
| 261 b = -invOmega * cos(0.5 * omega); | |
| 262 break; | |
| 263 case OscillatorNode::TRIANGLE: | |
| 264 // Triangle-shaped waveform going from its maximum value to its mini
mum value then back to the maximum value. | |
| 265 a = (4 - 4 * cos(0.5 * omega)) / (n * n * piFloat * piFloat); | |
| 266 b = 0; | |
| 267 break; | |
| 268 default: | |
| 269 ASSERT_NOT_REACHED(); | |
| 270 a = 0; | |
| 271 b = 0; | |
| 272 break; | |
| 273 } | |
| 274 | |
| 275 realP[n] = a; | |
| 276 imagP[n] = b; | |
| 277 } | |
| 278 | |
| 279 createBandLimitedTables(realP, imagP, halfSize); | |
| 280 } | |
| 281 | |
| 282 } // namespace WebCore | |
| 283 | |
| 284 #endif // ENABLE(WEB_AUDIO) | |
| OLD | NEW |