Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(86)

Side by Side Diff: Source/modules/webaudio/WaveTable.cpp

Issue 18182009: WaveTable name has changed to PeriodicWave (Closed) Base URL: svn://svn.chromium.org/blink/trunk
Patch Set: fix global constructors test Created 7 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « Source/modules/webaudio/WaveTable.h ('k') | Source/modules/webaudio/WaveTable.idl » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 * Copyright (C) 2012 Google Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
14 * its contributors may be used to endorse or promote products derived
15 * from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
20 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
21 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
23 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include "config.h"
30
31 #if ENABLE(WEB_AUDIO)
32
33 #include "modules/webaudio/WaveTable.h"
34
35 #include "core/platform/audio/FFTFrame.h"
36 #include "core/platform/audio/VectorMath.h"
37 #include "modules/webaudio/OscillatorNode.h"
38 #include <algorithm>
39 #include "wtf/OwnPtr.h"
40
41 const unsigned WaveTableSize = 4096; // This must be a power of two.
42 const unsigned NumberOfRanges = 36; // There should be 3 * log2(WaveTableSize) 1 /3 octave ranges.
43 const float CentsPerRange = 1200 / 3; // 1/3 Octave.
44
45 namespace WebCore {
46
47 using namespace VectorMath;
48
49 PassRefPtr<WaveTable> WaveTable::create(float sampleRate, Float32Array* real, Fl oat32Array* imag)
50 {
51 bool isGood = real && imag && real->length() == imag->length();
52 ASSERT(isGood);
53 if (isGood) {
54 RefPtr<WaveTable> waveTable = adoptRef(new WaveTable(sampleRate));
55 size_t numberOfComponents = real->length();
56 waveTable->createBandLimitedTables(real->data(), imag->data(), numberOfC omponents);
57 return waveTable;
58 }
59 return 0;
60 }
61
62 PassRefPtr<WaveTable> WaveTable::createSine(float sampleRate)
63 {
64 RefPtr<WaveTable> waveTable = adoptRef(new WaveTable(sampleRate));
65 waveTable->generateBasicWaveform(OscillatorNode::SINE);
66 return waveTable;
67 }
68
69 PassRefPtr<WaveTable> WaveTable::createSquare(float sampleRate)
70 {
71 RefPtr<WaveTable> waveTable = adoptRef(new WaveTable(sampleRate));
72 waveTable->generateBasicWaveform(OscillatorNode::SQUARE);
73 return waveTable;
74 }
75
76 PassRefPtr<WaveTable> WaveTable::createSawtooth(float sampleRate)
77 {
78 RefPtr<WaveTable> waveTable = adoptRef(new WaveTable(sampleRate));
79 waveTable->generateBasicWaveform(OscillatorNode::SAWTOOTH);
80 return waveTable;
81 }
82
83 PassRefPtr<WaveTable> WaveTable::createTriangle(float sampleRate)
84 {
85 RefPtr<WaveTable> waveTable = adoptRef(new WaveTable(sampleRate));
86 waveTable->generateBasicWaveform(OscillatorNode::TRIANGLE);
87 return waveTable;
88 }
89
90 WaveTable::WaveTable(float sampleRate)
91 : m_sampleRate(sampleRate)
92 , m_waveTableSize(WaveTableSize)
93 , m_numberOfRanges(NumberOfRanges)
94 , m_centsPerRange(CentsPerRange)
95 {
96 ScriptWrappable::init(this);
97 float nyquist = 0.5 * m_sampleRate;
98 m_lowestFundamentalFrequency = nyquist / maxNumberOfPartials();
99 m_rateScale = m_waveTableSize / m_sampleRate;
100 }
101
102 void WaveTable::waveDataForFundamentalFrequency(float fundamentalFrequency, floa t* &lowerWaveData, float* &higherWaveData, float& tableInterpolationFactor)
103 {
104 // Negative frequencies are allowed, in which case we alias to the positive frequency.
105 fundamentalFrequency = fabsf(fundamentalFrequency);
106
107 // Calculate the pitch range.
108 float ratio = fundamentalFrequency > 0 ? fundamentalFrequency / m_lowestFund amentalFrequency : 0.5;
109 float centsAboveLowestFrequency = log2f(ratio) * 1200;
110
111 // Add one to round-up to the next range just in time to truncate partials b efore aliasing occurs.
112 float pitchRange = 1 + centsAboveLowestFrequency / m_centsPerRange;
113
114 pitchRange = std::max(pitchRange, 0.0f);
115 pitchRange = std::min(pitchRange, static_cast<float>(m_numberOfRanges - 1));
116
117 // The words "lower" and "higher" refer to the table data having the lower a nd higher numbers of partials.
118 // It's a little confusing since the range index gets larger the more partia ls we cull out.
119 // So the lower table data will have a larger range index.
120 unsigned rangeIndex1 = static_cast<unsigned>(pitchRange);
121 unsigned rangeIndex2 = rangeIndex1 < m_numberOfRanges - 1 ? rangeIndex1 + 1 : rangeIndex1;
122
123 lowerWaveData = m_bandLimitedTables[rangeIndex2]->data();
124 higherWaveData = m_bandLimitedTables[rangeIndex1]->data();
125
126 // Ranges from 0 -> 1 to interpolate between lower -> higher.
127 tableInterpolationFactor = pitchRange - rangeIndex1;
128 }
129
130 unsigned WaveTable::maxNumberOfPartials() const
131 {
132 return m_waveTableSize / 2;
133 }
134
135 unsigned WaveTable::numberOfPartialsForRange(unsigned rangeIndex) const
136 {
137 // Number of cents below nyquist where we cull partials.
138 float centsToCull = rangeIndex * m_centsPerRange;
139
140 // A value from 0 -> 1 representing what fraction of the partials to keep.
141 float cullingScale = pow(2, -centsToCull / 1200);
142
143 // The very top range will have all the partials culled.
144 unsigned numberOfPartials = cullingScale * maxNumberOfPartials();
145
146 return numberOfPartials;
147 }
148
149 // Convert into time-domain wave tables.
150 // One table is created for each range for non-aliasing playback at different pl ayback rates.
151 // Thus, higher ranges have more high-frequency partials culled out.
152 void WaveTable::createBandLimitedTables(const float* realData, const float* imag Data, unsigned numberOfComponents)
153 {
154 float normalizationScale = 1;
155
156 unsigned fftSize = m_waveTableSize;
157 unsigned halfSize = fftSize / 2;
158 unsigned i;
159
160 numberOfComponents = std::min(numberOfComponents, halfSize);
161
162 m_bandLimitedTables.reserveCapacity(m_numberOfRanges);
163
164 for (unsigned rangeIndex = 0; rangeIndex < m_numberOfRanges; ++rangeIndex) {
165 // This FFTFrame is used to cull partials (represented by frequency bins ).
166 FFTFrame frame(fftSize);
167 float* realP = frame.realData();
168 float* imagP = frame.imagData();
169
170 // Copy from loaded frequency data and scale.
171 float scale = fftSize;
172 vsmul(realData, 1, &scale, realP, 1, numberOfComponents);
173 vsmul(imagData, 1, &scale, imagP, 1, numberOfComponents);
174
175 // If fewer components were provided than 1/2 FFT size, then clear the r emaining bins.
176 for (i = numberOfComponents; i < halfSize; ++i) {
177 realP[i] = 0;
178 imagP[i] = 0;
179 }
180
181 // Generate complex conjugate because of the way the inverse FFT is defi ned.
182 float minusOne = -1;
183 vsmul(imagP, 1, &minusOne, imagP, 1, halfSize);
184
185 // Find the starting bin where we should start culling.
186 // We need to clear out the highest frequencies to band-limit the wavefo rm.
187 unsigned numberOfPartials = numberOfPartialsForRange(rangeIndex);
188
189 // Cull the aliasing partials for this pitch range.
190 for (i = numberOfPartials + 1; i < halfSize; ++i) {
191 realP[i] = 0;
192 imagP[i] = 0;
193 }
194 // Clear packed-nyquist if necessary.
195 if (numberOfPartials < halfSize)
196 imagP[0] = 0;
197
198 // Clear any DC-offset.
199 realP[0] = 0;
200
201 // Create the band-limited table.
202 OwnPtr<AudioFloatArray> table = adoptPtr(new AudioFloatArray(m_waveTable Size));
203 m_bandLimitedTables.append(table.release());
204
205 // Apply an inverse FFT to generate the time-domain table data.
206 float* data = m_bandLimitedTables[rangeIndex]->data();
207 frame.doInverseFFT(data);
208
209 // For the first range (which has the highest power), calculate its peak value then compute normalization scale.
210 if (!rangeIndex) {
211 float maxValue;
212 vmaxmgv(data, 1, &maxValue, m_waveTableSize);
213
214 if (maxValue)
215 normalizationScale = 1.0f / maxValue;
216 }
217
218 // Apply normalization scale.
219 vsmul(data, 1, &normalizationScale, data, 1, m_waveTableSize);
220 }
221 }
222
223 void WaveTable::generateBasicWaveform(int shape)
224 {
225 unsigned fftSize = waveTableSize();
226 unsigned halfSize = fftSize / 2;
227
228 AudioFloatArray real(halfSize);
229 AudioFloatArray imag(halfSize);
230 float* realP = real.data();
231 float* imagP = imag.data();
232
233 // Clear DC and Nyquist.
234 realP[0] = 0;
235 imagP[0] = 0;
236
237 for (unsigned n = 1; n < halfSize; ++n) {
238 float omega = 2 * piFloat * n;
239 float invOmega = 1 / omega;
240
241 // Fourier coefficients according to standard definition.
242 float a; // Coefficient for cos().
243 float b; // Coefficient for sin().
244
245 // Calculate Fourier coefficients depending on the shape.
246 // Note that the overall scaling (magnitude) of the waveforms is normali zed in createBandLimitedTables().
247 switch (shape) {
248 case OscillatorNode::SINE:
249 // Standard sine wave function.
250 a = 0;
251 b = (n == 1) ? 1 : 0;
252 break;
253 case OscillatorNode::SQUARE:
254 // Square-shaped waveform with the first half its maximum value and the second half its minimum value.
255 a = 0;
256 b = invOmega * ((n & 1) ? 2 : 0);
257 break;
258 case OscillatorNode::SAWTOOTH:
259 // Sawtooth-shaped waveform with the first half ramping from zero to maximum and the second half from minimum to zero.
260 a = 0;
261 b = -invOmega * cos(0.5 * omega);
262 break;
263 case OscillatorNode::TRIANGLE:
264 // Triangle-shaped waveform going from its maximum value to its mini mum value then back to the maximum value.
265 a = (4 - 4 * cos(0.5 * omega)) / (n * n * piFloat * piFloat);
266 b = 0;
267 break;
268 default:
269 ASSERT_NOT_REACHED();
270 a = 0;
271 b = 0;
272 break;
273 }
274
275 realP[n] = a;
276 imagP[n] = b;
277 }
278
279 createBandLimitedTables(realP, imagP, halfSize);
280 }
281
282 } // namespace WebCore
283
284 #endif // ENABLE(WEB_AUDIO)
OLDNEW
« no previous file with comments | « Source/modules/webaudio/WaveTable.h ('k') | Source/modules/webaudio/WaveTable.idl » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698