| Index: cc/animation/timing_function.cc
|
| diff --git a/cc/animation/timing_function.cc b/cc/animation/timing_function.cc
|
| index 769e9f060aa3561b61dfdc6600bf7c45143467a7..f5a4f9fb82d39ba33067c97fd9fe0c596b766e96 100644
|
| --- a/cc/animation/timing_function.cc
|
| +++ b/cc/animation/timing_function.cc
|
| @@ -2,84 +2,66 @@
|
| // Use of this source code is governed by a BSD-style license that can be
|
| // found in the LICENSE file.
|
|
|
| +#include <algorithm>
|
| +
|
| +#include "base/logging.h"
|
| #include "cc/animation/timing_function.h"
|
|
|
| -#include "third_party/skia/include/core/SkMath.h"
|
| +namespace cc {
|
|
|
| -// TODO(danakj) These methods come from SkInterpolator.cpp. When such a method
|
| -// is available in the public Skia API, we should switch to using that.
|
| -// http://crbug.com/159735
|
| namespace {
|
|
|
| -// Dot14 has 14 bits for decimal places, and the remainder for whole numbers.
|
| -typedef int Dot14;
|
| -#define DOT14_ONE (1 << 14)
|
| -#define DOT14_HALF (1 << 13)
|
| +static const double BEZIER_EPSILON = 1e-7;
|
| +static const int MAX_STEPS = 30;
|
|
|
| -static inline Dot14 Dot14Mul(Dot14 a, Dot14 b) {
|
| - return (a * b + DOT14_HALF) >> 14;
|
| +static double eval_bezier(double x1, double x2, double t) {
|
| + const double x1_times_3 = 3.0 * x1;
|
| + const double x2_times_3 = 3.0 * x2;
|
| + const double h3 = x1_times_3;
|
| + const double h1 = x1_times_3 - x2_times_3 + 1.0;
|
| + const double h2 = x2_times_3 - 6.0 * x1;
|
| + return t * (t * (t * h1 + h2) + h3);
|
| }
|
|
|
| -static inline Dot14 EvalCubic(Dot14 t, Dot14 A, Dot14 B, Dot14 C) {
|
| - return Dot14Mul(Dot14Mul(Dot14Mul(C, t) + B, t) + A, t);
|
| -}
|
| -
|
| -static inline Dot14 PinAndConvert(SkScalar x) {
|
| - if (x <= 0)
|
| - return 0;
|
| - if (x >= SK_Scalar1)
|
| - return DOT14_ONE;
|
| - return SkScalarToFixed(x) >> 2;
|
| -}
|
| -
|
| -SkScalar SkUnitCubicInterp(SkScalar bx,
|
| - SkScalar by,
|
| - SkScalar cx,
|
| - SkScalar cy,
|
| - SkScalar value) {
|
| - Dot14 x = PinAndConvert(value);
|
| -
|
| - if (x == 0)
|
| - return 0;
|
| - if (x == DOT14_ONE)
|
| - return SK_Scalar1;
|
| -
|
| - Dot14 b = PinAndConvert(bx);
|
| - Dot14 c = PinAndConvert(cx);
|
| -
|
| - // Now compute our coefficients from the control points.
|
| - // t -> 3b
|
| - // t^2 -> 3c - 6b
|
| - // t^3 -> 3b - 3c + 1
|
| - Dot14 A = 3 * b;
|
| - Dot14 B = 3 * (c - 2 * b);
|
| - Dot14 C = 3 * (b - c) + DOT14_ONE;
|
| -
|
| - // Now search for a t value given x.
|
| - Dot14 t = DOT14_HALF;
|
| - Dot14 dt = DOT14_HALF;
|
| - for (int i = 0; i < 13; i++) {
|
| - dt >>= 1;
|
| - Dot14 guess = EvalCubic(t, A, B, C);
|
| - if (x < guess)
|
| - t -= dt;
|
| - else
|
| - t += dt;
|
| +static double bezier_interp(double x1,
|
| + double y1,
|
| + double x2,
|
| + double y2,
|
| + double x) {
|
| + DCHECK_GE(1.0, x1);
|
| + DCHECK_LE(0.0, x1);
|
| + DCHECK_GE(1.0, x2);
|
| + DCHECK_LE(0.0, x2);
|
| +
|
| + x1 = std::min(std::max(x1, 0.0), 1.0);
|
| + x2 = std::min(std::max(x2, 0.0), 1.0);
|
| + x = std::min(std::max(x, 0.0), 1.0);
|
| +
|
| + // Step 1. Find the t corresponding to the given x. I.e., we want t such that
|
| + // eval_bezier(x1, x2, t) = x. There is a unique solution if x1 and x2 lie
|
| + // within (0, 1).
|
| + //
|
| + // We're just going to do bisection for now (for simplicity), but we could
|
| + // easily do some newton steps if this turns out to be a bottleneck.
|
| + double t = 0.0;
|
| + double step = 1.0;
|
| + for (int i = 0; i < MAX_STEPS; ++i, step *= 0.5) {
|
| + const double error = eval_bezier(x1, x2, t) - x;
|
| + if (fabs(error) < BEZIER_EPSILON)
|
| + break;
|
| + t += error > 0.0 ? -step : step;
|
| }
|
|
|
| - // Now we have t, so compute the coefficient for Y and evaluate.
|
| - b = PinAndConvert(by);
|
| - c = PinAndConvert(cy);
|
| - A = 3 * b;
|
| - B = 3 * (c - 2 * b);
|
| - C = 3 * (b - c) + DOT14_ONE;
|
| - return SkFixedToScalar(EvalCubic(t, A, B, C) << 2);
|
| + // We should have terminated the above loop because we got close to x, not
|
| + // because we exceeded MAX_STEPS. Do a DCHECK here to confirm.
|
| + DCHECK_GT(BEZIER_EPSILON, fabs(eval_bezier(x1, x2, t) - x));
|
| +
|
| + // Step 2. Return the interpolated y values at the t we computed above.
|
| + return eval_bezier(y1, y2, t);
|
| }
|
|
|
| } // namespace
|
|
|
| -namespace cc {
|
| -
|
| TimingFunction::TimingFunction() {}
|
|
|
| TimingFunction::~TimingFunction() {}
|
| @@ -89,10 +71,7 @@ double TimingFunction::Duration() const {
|
| }
|
|
|
| scoped_ptr<CubicBezierTimingFunction> CubicBezierTimingFunction::Create(
|
| - double x1,
|
| - double y1,
|
| - double x2,
|
| - double y2) {
|
| + double x1, double y1, double x2, double y2) {
|
| return make_scoped_ptr(new CubicBezierTimingFunction(x1, y1, x2, y2));
|
| }
|
|
|
| @@ -100,16 +79,12 @@ CubicBezierTimingFunction::CubicBezierTimingFunction(double x1,
|
| double y1,
|
| double x2,
|
| double y2)
|
| - : x1_(SkDoubleToScalar(x1)),
|
| - y1_(SkDoubleToScalar(y1)),
|
| - x2_(SkDoubleToScalar(x2)),
|
| - y2_(SkDoubleToScalar(y2)) {}
|
| + : x1_(x1), y1_(y1), x2_(x2), y2_(y2) {}
|
|
|
| CubicBezierTimingFunction::~CubicBezierTimingFunction() {}
|
|
|
| float CubicBezierTimingFunction::GetValue(double x) const {
|
| - SkScalar value = SkUnitCubicInterp(x1_, y1_, x2_, y2_, x);
|
| - return SkScalarToFloat(value);
|
| + return static_cast<float>(bezier_interp(x1_, y1_, x2_, y2_, x));
|
| }
|
|
|
| scoped_ptr<AnimationCurve> CubicBezierTimingFunction::Clone() const {
|
|
|