Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(2653)

Unified Diff: cc/animation/timing_function.cc

Issue 16112002: Do not clamp y values on internal knots of timing function bezier curves (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: . Created 7 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « cc/animation/timing_function.h ('k') | cc/animation/timing_function_unittest.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: cc/animation/timing_function.cc
diff --git a/cc/animation/timing_function.cc b/cc/animation/timing_function.cc
index 769e9f060aa3561b61dfdc6600bf7c45143467a7..f5a4f9fb82d39ba33067c97fd9fe0c596b766e96 100644
--- a/cc/animation/timing_function.cc
+++ b/cc/animation/timing_function.cc
@@ -2,84 +2,66 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
+#include <algorithm>
+
+#include "base/logging.h"
#include "cc/animation/timing_function.h"
-#include "third_party/skia/include/core/SkMath.h"
+namespace cc {
-// TODO(danakj) These methods come from SkInterpolator.cpp. When such a method
-// is available in the public Skia API, we should switch to using that.
-// http://crbug.com/159735
namespace {
-// Dot14 has 14 bits for decimal places, and the remainder for whole numbers.
-typedef int Dot14;
-#define DOT14_ONE (1 << 14)
-#define DOT14_HALF (1 << 13)
+static const double BEZIER_EPSILON = 1e-7;
+static const int MAX_STEPS = 30;
-static inline Dot14 Dot14Mul(Dot14 a, Dot14 b) {
- return (a * b + DOT14_HALF) >> 14;
+static double eval_bezier(double x1, double x2, double t) {
+ const double x1_times_3 = 3.0 * x1;
+ const double x2_times_3 = 3.0 * x2;
+ const double h3 = x1_times_3;
+ const double h1 = x1_times_3 - x2_times_3 + 1.0;
+ const double h2 = x2_times_3 - 6.0 * x1;
+ return t * (t * (t * h1 + h2) + h3);
}
-static inline Dot14 EvalCubic(Dot14 t, Dot14 A, Dot14 B, Dot14 C) {
- return Dot14Mul(Dot14Mul(Dot14Mul(C, t) + B, t) + A, t);
-}
-
-static inline Dot14 PinAndConvert(SkScalar x) {
- if (x <= 0)
- return 0;
- if (x >= SK_Scalar1)
- return DOT14_ONE;
- return SkScalarToFixed(x) >> 2;
-}
-
-SkScalar SkUnitCubicInterp(SkScalar bx,
- SkScalar by,
- SkScalar cx,
- SkScalar cy,
- SkScalar value) {
- Dot14 x = PinAndConvert(value);
-
- if (x == 0)
- return 0;
- if (x == DOT14_ONE)
- return SK_Scalar1;
-
- Dot14 b = PinAndConvert(bx);
- Dot14 c = PinAndConvert(cx);
-
- // Now compute our coefficients from the control points.
- // t -> 3b
- // t^2 -> 3c - 6b
- // t^3 -> 3b - 3c + 1
- Dot14 A = 3 * b;
- Dot14 B = 3 * (c - 2 * b);
- Dot14 C = 3 * (b - c) + DOT14_ONE;
-
- // Now search for a t value given x.
- Dot14 t = DOT14_HALF;
- Dot14 dt = DOT14_HALF;
- for (int i = 0; i < 13; i++) {
- dt >>= 1;
- Dot14 guess = EvalCubic(t, A, B, C);
- if (x < guess)
- t -= dt;
- else
- t += dt;
+static double bezier_interp(double x1,
+ double y1,
+ double x2,
+ double y2,
+ double x) {
+ DCHECK_GE(1.0, x1);
+ DCHECK_LE(0.0, x1);
+ DCHECK_GE(1.0, x2);
+ DCHECK_LE(0.0, x2);
+
+ x1 = std::min(std::max(x1, 0.0), 1.0);
+ x2 = std::min(std::max(x2, 0.0), 1.0);
+ x = std::min(std::max(x, 0.0), 1.0);
+
+ // Step 1. Find the t corresponding to the given x. I.e., we want t such that
+ // eval_bezier(x1, x2, t) = x. There is a unique solution if x1 and x2 lie
+ // within (0, 1).
+ //
+ // We're just going to do bisection for now (for simplicity), but we could
+ // easily do some newton steps if this turns out to be a bottleneck.
+ double t = 0.0;
+ double step = 1.0;
+ for (int i = 0; i < MAX_STEPS; ++i, step *= 0.5) {
+ const double error = eval_bezier(x1, x2, t) - x;
+ if (fabs(error) < BEZIER_EPSILON)
+ break;
+ t += error > 0.0 ? -step : step;
}
- // Now we have t, so compute the coefficient for Y and evaluate.
- b = PinAndConvert(by);
- c = PinAndConvert(cy);
- A = 3 * b;
- B = 3 * (c - 2 * b);
- C = 3 * (b - c) + DOT14_ONE;
- return SkFixedToScalar(EvalCubic(t, A, B, C) << 2);
+ // We should have terminated the above loop because we got close to x, not
+ // because we exceeded MAX_STEPS. Do a DCHECK here to confirm.
+ DCHECK_GT(BEZIER_EPSILON, fabs(eval_bezier(x1, x2, t) - x));
+
+ // Step 2. Return the interpolated y values at the t we computed above.
+ return eval_bezier(y1, y2, t);
}
} // namespace
-namespace cc {
-
TimingFunction::TimingFunction() {}
TimingFunction::~TimingFunction() {}
@@ -89,10 +71,7 @@ double TimingFunction::Duration() const {
}
scoped_ptr<CubicBezierTimingFunction> CubicBezierTimingFunction::Create(
- double x1,
- double y1,
- double x2,
- double y2) {
+ double x1, double y1, double x2, double y2) {
return make_scoped_ptr(new CubicBezierTimingFunction(x1, y1, x2, y2));
}
@@ -100,16 +79,12 @@ CubicBezierTimingFunction::CubicBezierTimingFunction(double x1,
double y1,
double x2,
double y2)
- : x1_(SkDoubleToScalar(x1)),
- y1_(SkDoubleToScalar(y1)),
- x2_(SkDoubleToScalar(x2)),
- y2_(SkDoubleToScalar(y2)) {}
+ : x1_(x1), y1_(y1), x2_(x2), y2_(y2) {}
CubicBezierTimingFunction::~CubicBezierTimingFunction() {}
float CubicBezierTimingFunction::GetValue(double x) const {
- SkScalar value = SkUnitCubicInterp(x1_, y1_, x2_, y2_, x);
- return SkScalarToFloat(value);
+ return static_cast<float>(bezier_interp(x1_, y1_, x2_, y2_, x));
}
scoped_ptr<AnimationCurve> CubicBezierTimingFunction::Clone() const {
« no previous file with comments | « cc/animation/timing_function.h ('k') | cc/animation/timing_function_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698