Index: skia/ext/convolver_SSE2.cc |
diff --git a/skia/ext/convolver.cc b/skia/ext/convolver_SSE2.cc |
similarity index 51% |
copy from skia/ext/convolver.cc |
copy to skia/ext/convolver_SSE2.cc |
index 47e3711fac4883c361e880b9cfce9241d52410c2..a823edcb519291d89ed79c448efa98f9569bb788 100644 |
--- a/skia/ext/convolver.cc |
+++ b/skia/ext/convolver_SSE2.cc |
@@ -5,231 +5,18 @@ |
#include <algorithm> |
#include "skia/ext/convolver.h" |
+#include "skia/ext/convolver_SSE2.h" |
#include "third_party/skia/include/core/SkTypes.h" |
-#if defined(SIMD_SSE2) |
#include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h |
-#endif |
namespace skia { |
-namespace { |
- |
-// Converts the argument to an 8-bit unsigned value by clamping to the range |
-// 0-255. |
-inline unsigned char ClampTo8(int a) { |
- if (static_cast<unsigned>(a) < 256) |
- return a; // Avoid the extra check in the common case. |
- if (a < 0) |
- return 0; |
- return 255; |
-} |
- |
-// Stores a list of rows in a circular buffer. The usage is you write into it |
-// by calling AdvanceRow. It will keep track of which row in the buffer it |
-// should use next, and the total number of rows added. |
-class CircularRowBuffer { |
- public: |
- // The number of pixels in each row is given in |source_row_pixel_width|. |
- // The maximum number of rows needed in the buffer is |max_y_filter_size| |
- // (we only need to store enough rows for the biggest filter). |
- // |
- // We use the |first_input_row| to compute the coordinates of all of the |
- // following rows returned by Advance(). |
- CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size, |
- int first_input_row) |
- : row_byte_width_(dest_row_pixel_width * 4), |
- num_rows_(max_y_filter_size), |
- next_row_(0), |
- next_row_coordinate_(first_input_row) { |
- buffer_.resize(row_byte_width_ * max_y_filter_size); |
- row_addresses_.resize(num_rows_); |
- } |
- |
- // Moves to the next row in the buffer, returning a pointer to the beginning |
- // of it. |
- unsigned char* AdvanceRow() { |
- unsigned char* row = &buffer_[next_row_ * row_byte_width_]; |
- next_row_coordinate_++; |
- |
- // Set the pointer to the next row to use, wrapping around if necessary. |
- next_row_++; |
- if (next_row_ == num_rows_) |
- next_row_ = 0; |
- return row; |
- } |
- |
- // Returns a pointer to an "unrolled" array of rows. These rows will start |
- // at the y coordinate placed into |*first_row_index| and will continue in |
- // order for the maximum number of rows in this circular buffer. |
- // |
- // The |first_row_index_| may be negative. This means the circular buffer |
- // starts before the top of the image (it hasn't been filled yet). |
- unsigned char* const* GetRowAddresses(int* first_row_index) { |
- // Example for a 4-element circular buffer holding coords 6-9. |
- // Row 0 Coord 8 |
- // Row 1 Coord 9 |
- // Row 2 Coord 6 <- next_row_ = 2, next_row_coordinate_ = 10. |
- // Row 3 Coord 7 |
- // |
- // The "next" row is also the first (lowest) coordinate. This computation |
- // may yield a negative value, but that's OK, the math will work out |
- // since the user of this buffer will compute the offset relative |
- // to the first_row_index and the negative rows will never be used. |
- *first_row_index = next_row_coordinate_ - num_rows_; |
- |
- int cur_row = next_row_; |
- for (int i = 0; i < num_rows_; i++) { |
- row_addresses_[i] = &buffer_[cur_row * row_byte_width_]; |
- |
- // Advance to the next row, wrapping if necessary. |
- cur_row++; |
- if (cur_row == num_rows_) |
- cur_row = 0; |
- } |
- return &row_addresses_[0]; |
- } |
- |
- private: |
- // The buffer storing the rows. They are packed, each one row_byte_width_. |
- std::vector<unsigned char> buffer_; |
- |
- // Number of bytes per row in the |buffer_|. |
- int row_byte_width_; |
- |
- // The number of rows available in the buffer. |
- int num_rows_; |
- |
- // The next row index we should write into. This wraps around as the |
- // circular buffer is used. |
- int next_row_; |
- |
- // The y coordinate of the |next_row_|. This is incremented each time a |
- // new row is appended and does not wrap. |
- int next_row_coordinate_; |
- |
- // Buffer used by GetRowAddresses(). |
- std::vector<unsigned char*> row_addresses_; |
-}; |
- |
-// Convolves horizontally along a single row. The row data is given in |
-// |src_data| and continues for the num_values() of the filter. |
-template<bool has_alpha> |
-void ConvolveHorizontally(const unsigned char* src_data, |
- const ConvolutionFilter1D& filter, |
- unsigned char* out_row) { |
- // Loop over each pixel on this row in the output image. |
- int num_values = filter.num_values(); |
- for (int out_x = 0; out_x < num_values; out_x++) { |
- // Get the filter that determines the current output pixel. |
- int filter_offset, filter_length; |
- const ConvolutionFilter1D::Fixed* filter_values = |
- filter.FilterForValue(out_x, &filter_offset, &filter_length); |
- |
- // Compute the first pixel in this row that the filter affects. It will |
- // touch |filter_length| pixels (4 bytes each) after this. |
- const unsigned char* row_to_filter = &src_data[filter_offset * 4]; |
- |
- // Apply the filter to the row to get the destination pixel in |accum|. |
- int accum[4] = {0}; |
- for (int filter_x = 0; filter_x < filter_length; filter_x++) { |
- ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_x]; |
- accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0]; |
- accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1]; |
- accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2]; |
- if (has_alpha) |
- accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3]; |
- } |
- |
- // Bring this value back in range. All of the filter scaling factors |
- // are in fixed point with kShiftBits bits of fractional part. |
- accum[0] >>= ConvolutionFilter1D::kShiftBits; |
- accum[1] >>= ConvolutionFilter1D::kShiftBits; |
- accum[2] >>= ConvolutionFilter1D::kShiftBits; |
- if (has_alpha) |
- accum[3] >>= ConvolutionFilter1D::kShiftBits; |
- |
- // Store the new pixel. |
- out_row[out_x * 4 + 0] = ClampTo8(accum[0]); |
- out_row[out_x * 4 + 1] = ClampTo8(accum[1]); |
- out_row[out_x * 4 + 2] = ClampTo8(accum[2]); |
- if (has_alpha) |
- out_row[out_x * 4 + 3] = ClampTo8(accum[3]); |
- } |
-} |
- |
-// Does vertical convolution to produce one output row. The filter values and |
-// length are given in the first two parameters. These are applied to each |
-// of the rows pointed to in the |source_data_rows| array, with each row |
-// being |pixel_width| wide. |
-// |
-// The output must have room for |pixel_width * 4| bytes. |
-template<bool has_alpha> |
-void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values, |
- int filter_length, |
- unsigned char* const* source_data_rows, |
- int pixel_width, |
- unsigned char* out_row) { |
- // We go through each column in the output and do a vertical convolution, |
- // generating one output pixel each time. |
- for (int out_x = 0; out_x < pixel_width; out_x++) { |
- // Compute the number of bytes over in each row that the current column |
- // we're convolving starts at. The pixel will cover the next 4 bytes. |
- int byte_offset = out_x * 4; |
- |
- // Apply the filter to one column of pixels. |
- int accum[4] = {0}; |
- for (int filter_y = 0; filter_y < filter_length; filter_y++) { |
- ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_y]; |
- accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0]; |
- accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1]; |
- accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2]; |
- if (has_alpha) |
- accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3]; |
- } |
- |
- // Bring this value back in range. All of the filter scaling factors |
- // are in fixed point with kShiftBits bits of precision. |
- accum[0] >>= ConvolutionFilter1D::kShiftBits; |
- accum[1] >>= ConvolutionFilter1D::kShiftBits; |
- accum[2] >>= ConvolutionFilter1D::kShiftBits; |
- if (has_alpha) |
- accum[3] >>= ConvolutionFilter1D::kShiftBits; |
- |
- // Store the new pixel. |
- out_row[byte_offset + 0] = ClampTo8(accum[0]); |
- out_row[byte_offset + 1] = ClampTo8(accum[1]); |
- out_row[byte_offset + 2] = ClampTo8(accum[2]); |
- if (has_alpha) { |
- unsigned char alpha = ClampTo8(accum[3]); |
- |
- // Make sure the alpha channel doesn't come out smaller than any of the |
- // color channels. We use premultipled alpha channels, so this should |
- // never happen, but rounding errors will cause this from time to time. |
- // These "impossible" colors will cause overflows (and hence random pixel |
- // values) when the resulting bitmap is drawn to the screen. |
- // |
- // We only need to do this when generating the final output row (here). |
- int max_color_channel = std::max(out_row[byte_offset + 0], |
- std::max(out_row[byte_offset + 1], out_row[byte_offset + 2])); |
- if (alpha < max_color_channel) |
- out_row[byte_offset + 3] = max_color_channel; |
- else |
- out_row[byte_offset + 3] = alpha; |
- } else { |
- // No alpha channel, the image is opaque. |
- out_row[byte_offset + 3] = 0xff; |
- } |
- } |
-} |
- |
- |
// Convolves horizontally along a single row. The row data is given in |
// |src_data| and continues for the num_values() of the filter. |
void ConvolveHorizontally_SSE2(const unsigned char* src_data, |
const ConvolutionFilter1D& filter, |
unsigned char* out_row) { |
-#if defined(SIMD_SSE2) |
int num_values = filter.num_values(); |
int filter_offset, filter_length; |
@@ -350,17 +137,15 @@ void ConvolveHorizontally_SSE2(const unsigned char* src_data, |
*(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum); |
out_row += 4; |
} |
-#endif |
} |
// Convolves horizontally along four rows. The row data is given in |
// |src_data| and continues for the num_values() of the filter. |
// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please |
// refer to that function for detailed comments. |
-void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4], |
- const ConvolutionFilter1D& filter, |
- unsigned char* out_row[4]) { |
-#if defined(SIMD_SSE2) |
+void Convolve4RowsHorizontally_SSE2(const unsigned char* src_data[4], |
+ const ConvolutionFilter1D& filter, |
+ unsigned char* out_row[4]) { |
int num_values = filter.num_values(); |
int filter_offset, filter_length; |
@@ -471,7 +256,6 @@ void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4], |
out_row[2] += 4; |
out_row[3] += 4; |
} |
-#endif |
} |
// Does vertical convolution to produce one output row. The filter values and |
@@ -486,7 +270,6 @@ void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values, |
unsigned char* const* source_data_rows, |
int pixel_width, |
unsigned char* out_row) { |
-#if defined(SIMD_SSE2) |
int width = pixel_width & ~3; |
__m128i zero = _mm_setzero_si128(); |
@@ -647,226 +430,26 @@ void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values, |
out_row += 4; |
} |
} |
-#endif |
} |
-} // namespace |
- |
-// ConvolutionFilter1D --------------------------------------------------------- |
- |
-ConvolutionFilter1D::ConvolutionFilter1D() |
- : max_filter_(0) { |
-} |
- |
-ConvolutionFilter1D::~ConvolutionFilter1D() { |
-} |
- |
-void ConvolutionFilter1D::AddFilter(int filter_offset, |
- const float* filter_values, |
- int filter_length) { |
- SkASSERT(filter_length > 0); |
- |
- std::vector<Fixed> fixed_values; |
- fixed_values.reserve(filter_length); |
- |
- for (int i = 0; i < filter_length; ++i) |
- fixed_values.push_back(FloatToFixed(filter_values[i])); |
- |
- AddFilter(filter_offset, &fixed_values[0], filter_length); |
-} |
- |
-void ConvolutionFilter1D::AddFilter(int filter_offset, |
- const Fixed* filter_values, |
- int filter_length) { |
- // It is common for leading/trailing filter values to be zeros. In such |
- // cases it is beneficial to only store the central factors. |
- // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on |
- // a 1080p image this optimization gives a ~10% speed improvement. |
- int first_non_zero = 0; |
- while (first_non_zero < filter_length && filter_values[first_non_zero] == 0) |
- first_non_zero++; |
- |
- if (first_non_zero < filter_length) { |
- // Here we have at least one non-zero factor. |
- int last_non_zero = filter_length - 1; |
- while (last_non_zero >= 0 && filter_values[last_non_zero] == 0) |
- last_non_zero--; |
- |
- filter_offset += first_non_zero; |
- filter_length = last_non_zero + 1 - first_non_zero; |
- SkASSERT(filter_length > 0); |
- |
- for (int i = first_non_zero; i <= last_non_zero; i++) |
- filter_values_.push_back(filter_values[i]); |
+void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values, |
+ int filter_length, |
+ unsigned char* const* source_data_rows, |
+ int pixel_width, |
+ unsigned char* out_row, |
+ bool has_alpha) { |
+ if (has_alpha) { |
+ ConvolveVertically_SSE2<true>(filter_values, |
+ filter_length, |
+ source_data_rows, |
+ pixel_width, |
+ out_row); |
} else { |
- // Here all the factors were zeroes. |
- filter_length = 0; |
- } |
- |
- FilterInstance instance; |
- |
- // We pushed filter_length elements onto filter_values_ |
- instance.data_location = (static_cast<int>(filter_values_.size()) - |
- filter_length); |
- instance.offset = filter_offset; |
- instance.length = filter_length; |
- filters_.push_back(instance); |
- |
- max_filter_ = std::max(max_filter_, filter_length); |
-} |
- |
-void BGRAConvolve2D(const unsigned char* source_data, |
- int source_byte_row_stride, |
- bool source_has_alpha, |
- const ConvolutionFilter1D& filter_x, |
- const ConvolutionFilter1D& filter_y, |
- int output_byte_row_stride, |
- unsigned char* output, |
- bool use_sse2) { |
-#if !defined(SIMD_SSE2) |
- // Even we have runtime support for SSE2 instructions, since the binary |
- // was not built with SSE2 support, we had to fallback to C version. |
- use_sse2 = false; |
-#endif |
- |
- int max_y_filter_size = filter_y.max_filter(); |
- |
- // The next row in the input that we will generate a horizontally |
- // convolved row for. If the filter doesn't start at the beginning of the |
- // image (this is the case when we are only resizing a subset), then we |
- // don't want to generate any output rows before that. Compute the starting |
- // row for convolution as the first pixel for the first vertical filter. |
- int filter_offset, filter_length; |
- const ConvolutionFilter1D::Fixed* filter_values = |
- filter_y.FilterForValue(0, &filter_offset, &filter_length); |
- int next_x_row = filter_offset; |
- |
- // We loop over each row in the input doing a horizontal convolution. This |
- // will result in a horizontally convolved image. We write the results into |
- // a circular buffer of convolved rows and do vertical convolution as rows |
- // are available. This prevents us from having to store the entire |
- // intermediate image and helps cache coherency. |
- // We will need four extra rows to allow horizontal convolution could be done |
- // simultaneously. We also padding each row in row buffer to be aligned-up to |
- // 16 bytes. |
- // TODO(jiesun): We do not use aligned load from row buffer in vertical |
- // convolution pass yet. Somehow Windows does not like it. |
- int row_buffer_width = (filter_x.num_values() + 15) & ~0xF; |
- int row_buffer_height = max_y_filter_size + (use_sse2 ? 4 : 0); |
- CircularRowBuffer row_buffer(row_buffer_width, |
- row_buffer_height, |
- filter_offset); |
- |
- // Loop over every possible output row, processing just enough horizontal |
- // convolutions to run each subsequent vertical convolution. |
- SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4); |
- int num_output_rows = filter_y.num_values(); |
- |
- // We need to check which is the last line to convolve before we advance 4 |
- // lines in one iteration. |
- int last_filter_offset, last_filter_length; |
- |
- // SSE2 can access up to 3 extra pixels past the end of the |
- // buffer. At the bottom of the image, we have to be careful |
- // not to access data past the end of the buffer. Normally |
- // we fall back to the C++ implementation for the last row. |
- // If the last row is less than 3 pixels wide, we may have to fall |
- // back to the C++ version for more rows. Compute how many |
- // rows we need to avoid the SSE implementation for here. |
- filter_x.FilterForValue(filter_x.num_values() - 1, &last_filter_offset, |
- &last_filter_length); |
- int avoid_sse_rows = 1 + 3/(last_filter_offset + last_filter_length); |
- |
- filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset, |
- &last_filter_length); |
- |
- for (int out_y = 0; out_y < num_output_rows; out_y++) { |
- filter_values = filter_y.FilterForValue(out_y, |
- &filter_offset, &filter_length); |
- |
- // Generate output rows until we have enough to run the current filter. |
- if (use_sse2) { |
- while (next_x_row < filter_offset + filter_length) { |
- if (next_x_row + 3 < last_filter_offset + last_filter_length - |
- avoid_sse_rows) { |
- const unsigned char* src[4]; |
- unsigned char* out_row[4]; |
- for (int i = 0; i < 4; ++i) { |
- src[i] = &source_data[(next_x_row + i) * source_byte_row_stride]; |
- out_row[i] = row_buffer.AdvanceRow(); |
- } |
- ConvolveHorizontally4_SSE2(src, filter_x, out_row); |
- next_x_row += 4; |
- } else { |
- // Check if we need to avoid SSE2 for this row. |
- if (next_x_row >= last_filter_offset + last_filter_length - |
- avoid_sse_rows) { |
- if (source_has_alpha) { |
- ConvolveHorizontally<true>( |
- &source_data[next_x_row * source_byte_row_stride], |
- filter_x, row_buffer.AdvanceRow()); |
- } else { |
- ConvolveHorizontally<false>( |
- &source_data[next_x_row * source_byte_row_stride], |
- filter_x, row_buffer.AdvanceRow()); |
- } |
- } else { |
- ConvolveHorizontally_SSE2( |
- &source_data[next_x_row * source_byte_row_stride], |
- filter_x, row_buffer.AdvanceRow()); |
- } |
- next_x_row++; |
- } |
- } |
- } else { |
- while (next_x_row < filter_offset + filter_length) { |
- if (source_has_alpha) { |
- ConvolveHorizontally<true>( |
- &source_data[next_x_row * source_byte_row_stride], |
- filter_x, row_buffer.AdvanceRow()); |
- } else { |
- ConvolveHorizontally<false>( |
- &source_data[next_x_row * source_byte_row_stride], |
- filter_x, row_buffer.AdvanceRow()); |
- } |
- next_x_row++; |
- } |
- } |
- |
- // Compute where in the output image this row of final data will go. |
- unsigned char* cur_output_row = &output[out_y * output_byte_row_stride]; |
- |
- // Get the list of rows that the circular buffer has, in order. |
- int first_row_in_circular_buffer; |
- unsigned char* const* rows_to_convolve = |
- row_buffer.GetRowAddresses(&first_row_in_circular_buffer); |
- |
- // Now compute the start of the subset of those rows that the filter |
- // needs. |
- unsigned char* const* first_row_for_filter = |
- &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; |
- |
- if (source_has_alpha) { |
- if (use_sse2) { |
- ConvolveVertically_SSE2<true>(filter_values, filter_length, |
- first_row_for_filter, |
- filter_x.num_values(), cur_output_row); |
- } else { |
- ConvolveVertically<true>(filter_values, filter_length, |
- first_row_for_filter, |
- filter_x.num_values(), cur_output_row); |
- } |
- } else { |
- if (use_sse2) { |
- ConvolveVertically_SSE2<false>(filter_values, filter_length, |
- first_row_for_filter, |
- filter_x.num_values(), cur_output_row); |
- } else { |
- ConvolveVertically<false>(filter_values, filter_length, |
- first_row_for_filter, |
- filter_x.num_values(), cur_output_row); |
- } |
- } |
+ ConvolveVertically_SSE2<false>(filter_values, |
+ filter_length, |
+ source_data_rows, |
+ pixel_width, |
+ out_row); |
} |
} |