Chromium Code Reviews| Index: skia/ext/convolver.cc |
| diff --git a/skia/ext/convolver.cc b/skia/ext/convolver.cc |
| index 47e3711fac4883c361e880b9cfce9241d52410c2..cbfa9315930edcc9664165a48dc667c2d7fba3b5 100644 |
| --- a/skia/ext/convolver.cc |
| +++ b/skia/ext/convolver.cc |
| @@ -5,12 +5,9 @@ |
| #include <algorithm> |
| #include "skia/ext/convolver.h" |
| +#include "skia/ext/convolver_SSE2.h" |
| #include "third_party/skia/include/core/SkTypes.h" |
| -#if defined(SIMD_SSE2) |
| -#include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h |
| -#endif |
| - |
| namespace skia { |
| namespace { |
| @@ -223,431 +220,23 @@ void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values, |
| } |
| } |
| - |
| -// Convolves horizontally along a single row. The row data is given in |
| -// |src_data| and continues for the num_values() of the filter. |
| -void ConvolveHorizontally_SSE2(const unsigned char* src_data, |
| - const ConvolutionFilter1D& filter, |
| - unsigned char* out_row) { |
| -#if defined(SIMD_SSE2) |
| - int num_values = filter.num_values(); |
| - |
| - int filter_offset, filter_length; |
| - __m128i zero = _mm_setzero_si128(); |
| - __m128i mask[4]; |
| - // |mask| will be used to decimate all extra filter coefficients that are |
| - // loaded by SIMD when |filter_length| is not divisible by 4. |
| - // mask[0] is not used in following algorithm. |
| - mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); |
| - mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); |
| - mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); |
| - |
| - // Output one pixel each iteration, calculating all channels (RGBA) together. |
| - for (int out_x = 0; out_x < num_values; out_x++) { |
| - const ConvolutionFilter1D::Fixed* filter_values = |
| - filter.FilterForValue(out_x, &filter_offset, &filter_length); |
| - |
| - __m128i accum = _mm_setzero_si128(); |
| - |
| - // Compute the first pixel in this row that the filter affects. It will |
| - // touch |filter_length| pixels (4 bytes each) after this. |
| - const __m128i* row_to_filter = |
| - reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]); |
| - |
| - // We will load and accumulate with four coefficients per iteration. |
| - for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) { |
| - |
| - // Load 4 coefficients => duplicate 1st and 2nd of them for all channels. |
| - __m128i coeff, coeff16; |
| - // [16] xx xx xx xx c3 c2 c1 c0 |
| - coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| - // [16] xx xx xx xx c1 c1 c0 c0 |
| - coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| - // [16] c1 c1 c1 c1 c0 c0 c0 c0 |
| - coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| - |
| - // Load four pixels => unpack the first two pixels to 16 bits => |
| - // multiply with coefficients => accumulate the convolution result. |
| - // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| - __m128i src8 = _mm_loadu_si128(row_to_filter); |
| - // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| - __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| - __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| - __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| - // [32] a0*c0 b0*c0 g0*c0 r0*c0 |
| - __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| - accum = _mm_add_epi32(accum, t); |
| - // [32] a1*c1 b1*c1 g1*c1 r1*c1 |
| - t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| - accum = _mm_add_epi32(accum, t); |
| - |
| - // Duplicate 3rd and 4th coefficients for all channels => |
| - // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients |
| - // => accumulate the convolution results. |
| - // [16] xx xx xx xx c3 c3 c2 c2 |
| - coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| - // [16] c3 c3 c3 c3 c2 c2 c2 c2 |
| - coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| - // [16] a3 g3 b3 r3 a2 g2 b2 r2 |
| - src16 = _mm_unpackhi_epi8(src8, zero); |
| - mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| - mul_lo = _mm_mullo_epi16(src16, coeff16); |
| - // [32] a2*c2 b2*c2 g2*c2 r2*c2 |
| - t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| - accum = _mm_add_epi32(accum, t); |
| - // [32] a3*c3 b3*c3 g3*c3 r3*c3 |
| - t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| - accum = _mm_add_epi32(accum, t); |
| - |
| - // Advance the pixel and coefficients pointers. |
| - row_to_filter += 1; |
| - filter_values += 4; |
| - } |
| - |
| - // When |filter_length| is not divisible by 4, we need to decimate some of |
| - // the filter coefficient that was loaded incorrectly to zero; Other than |
| - // that the algorithm is same with above, exceot that the 4th pixel will be |
| - // always absent. |
| - int r = filter_length&3; |
| - if (r) { |
| - // Note: filter_values must be padded to align_up(filter_offset, 8). |
| - __m128i coeff, coeff16; |
| - coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| - // Mask out extra filter taps. |
| - coeff = _mm_and_si128(coeff, mask[r]); |
| - coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| - coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| - |
| - // Note: line buffer must be padded to align_up(filter_offset, 16). |
| - // We resolve this by use C-version for the last horizontal line. |
| - __m128i src8 = _mm_loadu_si128(row_to_filter); |
| - __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| - __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| - __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| - __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| - accum = _mm_add_epi32(accum, t); |
| - t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| - accum = _mm_add_epi32(accum, t); |
| - |
| - src16 = _mm_unpackhi_epi8(src8, zero); |
| - coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| - coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| - mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| - mul_lo = _mm_mullo_epi16(src16, coeff16); |
| - t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| - accum = _mm_add_epi32(accum, t); |
| - } |
| - |
| - // Shift right for fixed point implementation. |
| - accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits); |
| - |
| - // Packing 32 bits |accum| to 16 bits per channel (signed saturation). |
| - accum = _mm_packs_epi32(accum, zero); |
| - // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). |
| - accum = _mm_packus_epi16(accum, zero); |
| - |
| - // Store the pixel value of 32 bits. |
| - *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum); |
| - out_row += 4; |
| - } |
| -#endif |
| -} |
| - |
| -// Convolves horizontally along four rows. The row data is given in |
| -// |src_data| and continues for the num_values() of the filter. |
| -// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please |
| -// refer to that function for detailed comments. |
| -void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4], |
| - const ConvolutionFilter1D& filter, |
| - unsigned char* out_row[4]) { |
| -#if defined(SIMD_SSE2) |
| - int num_values = filter.num_values(); |
| - |
| - int filter_offset, filter_length; |
| - __m128i zero = _mm_setzero_si128(); |
| - __m128i mask[4]; |
| - // |mask| will be used to decimate all extra filter coefficients that are |
| - // loaded by SIMD when |filter_length| is not divisible by 4. |
| - // mask[0] is not used in following algorithm. |
| - mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); |
| - mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); |
| - mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); |
| - |
| - // Output one pixel each iteration, calculating all channels (RGBA) together. |
| - for (int out_x = 0; out_x < num_values; out_x++) { |
| - const ConvolutionFilter1D::Fixed* filter_values = |
| - filter.FilterForValue(out_x, &filter_offset, &filter_length); |
| - |
| - // four pixels in a column per iteration. |
| - __m128i accum0 = _mm_setzero_si128(); |
| - __m128i accum1 = _mm_setzero_si128(); |
| - __m128i accum2 = _mm_setzero_si128(); |
| - __m128i accum3 = _mm_setzero_si128(); |
| - int start = (filter_offset<<2); |
| - // We will load and accumulate with four coefficients per iteration. |
| - for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) { |
| - __m128i coeff, coeff16lo, coeff16hi; |
| - // [16] xx xx xx xx c3 c2 c1 c0 |
| - coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| - // [16] xx xx xx xx c1 c1 c0 c0 |
| - coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| - // [16] c1 c1 c1 c1 c0 c0 c0 c0 |
| - coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); |
| - // [16] xx xx xx xx c3 c3 c2 c2 |
| - coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| - // [16] c3 c3 c3 c3 c2 c2 c2 c2 |
| - coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); |
| - |
| - __m128i src8, src16, mul_hi, mul_lo, t; |
| - |
| -#define ITERATION(src, accum) \ |
| - src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \ |
| - src16 = _mm_unpacklo_epi8(src8, zero); \ |
| - mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \ |
| - mul_lo = _mm_mullo_epi16(src16, coeff16lo); \ |
| - t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ |
| - accum = _mm_add_epi32(accum, t); \ |
| - t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ |
| - accum = _mm_add_epi32(accum, t); \ |
| - src16 = _mm_unpackhi_epi8(src8, zero); \ |
| - mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \ |
| - mul_lo = _mm_mullo_epi16(src16, coeff16hi); \ |
| - t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ |
| - accum = _mm_add_epi32(accum, t); \ |
| - t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ |
| - accum = _mm_add_epi32(accum, t) |
| - |
| - ITERATION(src_data[0] + start, accum0); |
| - ITERATION(src_data[1] + start, accum1); |
| - ITERATION(src_data[2] + start, accum2); |
| - ITERATION(src_data[3] + start, accum3); |
| - |
| - start += 16; |
| - filter_values += 4; |
| - } |
| - |
| - int r = filter_length & 3; |
| - if (r) { |
| - // Note: filter_values must be padded to align_up(filter_offset, 8); |
| - __m128i coeff; |
| - coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| - // Mask out extra filter taps. |
| - coeff = _mm_and_si128(coeff, mask[r]); |
| - |
| - __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| - /* c1 c1 c1 c1 c0 c0 c0 c0 */ |
| - coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); |
| - __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| - coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); |
| - |
| - __m128i src8, src16, mul_hi, mul_lo, t; |
| - |
| - ITERATION(src_data[0] + start, accum0); |
| - ITERATION(src_data[1] + start, accum1); |
| - ITERATION(src_data[2] + start, accum2); |
| - ITERATION(src_data[3] + start, accum3); |
| - } |
| - |
| - accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); |
| - accum0 = _mm_packs_epi32(accum0, zero); |
| - accum0 = _mm_packus_epi16(accum0, zero); |
| - accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); |
| - accum1 = _mm_packs_epi32(accum1, zero); |
| - accum1 = _mm_packus_epi16(accum1, zero); |
| - accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); |
| - accum2 = _mm_packs_epi32(accum2, zero); |
| - accum2 = _mm_packus_epi16(accum2, zero); |
| - accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); |
| - accum3 = _mm_packs_epi32(accum3, zero); |
| - accum3 = _mm_packus_epi16(accum3, zero); |
| - |
| - *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0); |
| - *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1); |
| - *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2); |
| - *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3); |
| - |
| - out_row[0] += 4; |
| - out_row[1] += 4; |
| - out_row[2] += 4; |
| - out_row[3] += 4; |
| - } |
| -#endif |
| -} |
| - |
| -// Does vertical convolution to produce one output row. The filter values and |
| -// length are given in the first two parameters. These are applied to each |
| -// of the rows pointed to in the |source_data_rows| array, with each row |
| -// being |pixel_width| wide. |
| -// |
| -// The output must have room for |pixel_width * 4| bytes. |
| -template<bool has_alpha> |
| -void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values, |
| - int filter_length, |
| - unsigned char* const* source_data_rows, |
| - int pixel_width, |
| - unsigned char* out_row) { |
| -#if defined(SIMD_SSE2) |
| - int width = pixel_width & ~3; |
| - |
| - __m128i zero = _mm_setzero_si128(); |
| - __m128i accum0, accum1, accum2, accum3, coeff16; |
| - const __m128i* src; |
| - // Output four pixels per iteration (16 bytes). |
| - for (int out_x = 0; out_x < width; out_x += 4) { |
| - |
| - // Accumulated result for each pixel. 32 bits per RGBA channel. |
| - accum0 = _mm_setzero_si128(); |
| - accum1 = _mm_setzero_si128(); |
| - accum2 = _mm_setzero_si128(); |
| - accum3 = _mm_setzero_si128(); |
| - |
| - // Convolve with one filter coefficient per iteration. |
| - for (int filter_y = 0; filter_y < filter_length; filter_y++) { |
| - |
| - // Duplicate the filter coefficient 8 times. |
| - // [16] cj cj cj cj cj cj cj cj |
| - coeff16 = _mm_set1_epi16(filter_values[filter_y]); |
| - |
| - // Load four pixels (16 bytes) together. |
| - // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| - src = reinterpret_cast<const __m128i*>( |
| - &source_data_rows[filter_y][out_x << 2]); |
| - __m128i src8 = _mm_loadu_si128(src); |
| - |
| - // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels => |
| - // multiply with current coefficient => accumulate the result. |
| - // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| - __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| - __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| - __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| - // [32] a0 b0 g0 r0 |
| - __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| - accum0 = _mm_add_epi32(accum0, t); |
| - // [32] a1 b1 g1 r1 |
| - t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| - accum1 = _mm_add_epi32(accum1, t); |
| - |
| - // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels => |
| - // multiply with current coefficient => accumulate the result. |
| - // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| - src16 = _mm_unpackhi_epi8(src8, zero); |
| - mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| - mul_lo = _mm_mullo_epi16(src16, coeff16); |
| - // [32] a2 b2 g2 r2 |
| - t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| - accum2 = _mm_add_epi32(accum2, t); |
| - // [32] a3 b3 g3 r3 |
| - t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| - accum3 = _mm_add_epi32(accum3, t); |
| - } |
| - |
| - // Shift right for fixed point implementation. |
| - accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); |
| - accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); |
| - accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); |
| - accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); |
| - |
| - // Packing 32 bits |accum| to 16 bits per channel (signed saturation). |
| - // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| - accum0 = _mm_packs_epi32(accum0, accum1); |
| - // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| - accum2 = _mm_packs_epi32(accum2, accum3); |
| - |
| - // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). |
| - // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| - accum0 = _mm_packus_epi16(accum0, accum2); |
| - |
| - if (has_alpha) { |
| - // Compute the max(ri, gi, bi) for each pixel. |
| - // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
| - __m128i a = _mm_srli_epi32(accum0, 8); |
| - // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| - __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. |
| - // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
| - a = _mm_srli_epi32(accum0, 16); |
| - // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| - b = _mm_max_epu8(a, b); // Max of r and g and b. |
| - // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
| - b = _mm_slli_epi32(b, 24); |
| - |
| - // Make sure the value of alpha channel is always larger than maximum |
| - // value of color channels. |
| - accum0 = _mm_max_epu8(b, accum0); |
| - } else { |
| - // Set value of alpha channels to 0xFF. |
| - __m128i mask = _mm_set1_epi32(0xff000000); |
| - accum0 = _mm_or_si128(accum0, mask); |
| - } |
| - |
| - // Store the convolution result (16 bytes) and advance the pixel pointers. |
| - _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0); |
| - out_row += 16; |
| - } |
| - |
| - // When the width of the output is not divisible by 4, We need to save one |
| - // pixel (4 bytes) each time. And also the fourth pixel is always absent. |
| - if (pixel_width & 3) { |
| - accum0 = _mm_setzero_si128(); |
| - accum1 = _mm_setzero_si128(); |
| - accum2 = _mm_setzero_si128(); |
| - for (int filter_y = 0; filter_y < filter_length; ++filter_y) { |
| - coeff16 = _mm_set1_epi16(filter_values[filter_y]); |
| - // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| - src = reinterpret_cast<const __m128i*>( |
| - &source_data_rows[filter_y][width<<2]); |
| - __m128i src8 = _mm_loadu_si128(src); |
| - // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| - __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| - __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| - __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| - // [32] a0 b0 g0 r0 |
| - __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| - accum0 = _mm_add_epi32(accum0, t); |
| - // [32] a1 b1 g1 r1 |
| - t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| - accum1 = _mm_add_epi32(accum1, t); |
| - // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| - src16 = _mm_unpackhi_epi8(src8, zero); |
| - mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| - mul_lo = _mm_mullo_epi16(src16, coeff16); |
| - // [32] a2 b2 g2 r2 |
| - t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| - accum2 = _mm_add_epi32(accum2, t); |
| - } |
| - |
| - accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); |
| - accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); |
| - accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); |
| - // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| - accum0 = _mm_packs_epi32(accum0, accum1); |
| - // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| - accum2 = _mm_packs_epi32(accum2, zero); |
| - // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| - accum0 = _mm_packus_epi16(accum0, accum2); |
| - if (has_alpha) { |
| - // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
| - __m128i a = _mm_srli_epi32(accum0, 8); |
| - // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| - __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. |
| - // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
| - a = _mm_srli_epi32(accum0, 16); |
| - // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| - b = _mm_max_epu8(a, b); // Max of r and g and b. |
| - // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
| - b = _mm_slli_epi32(b, 24); |
| - accum0 = _mm_max_epu8(b, accum0); |
| - } else { |
| - __m128i mask = _mm_set1_epi32(0xff000000); |
| - accum0 = _mm_or_si128(accum0, mask); |
| - } |
| - |
| - for (int out_x = width; out_x < pixel_width; out_x++) { |
| - *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0); |
| - accum0 = _mm_srli_si128(accum0, 4); |
| - out_row += 4; |
| - } |
| +void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values, |
| + int filter_length, |
| + unsigned char* const* source_data_rows, |
| + int pixel_width, |
| + unsigned char* out_row, |
| + bool source_has_alpha) { |
| + if (source_has_alpha) { |
| + ConvolveVertically<true>(filter_values, filter_length, |
| + source_data_rows, |
| + pixel_width, |
| + out_row); |
| + } else { |
| + ConvolveVertically<false>(filter_values, filter_length, |
| + source_data_rows, |
| + pixel_width, |
| + out_row); |
| } |
| -#endif |
| } |
| } // namespace |
| @@ -715,6 +304,43 @@ void ConvolutionFilter1D::AddFilter(int filter_offset, |
| max_filter_ = std::max(max_filter_, filter_length); |
| } |
| +typedef void (*ConvolveVertically_pointer)( |
| + const ConvolutionFilter1D::Fixed* filter_values, |
| + int filter_length, |
| + unsigned char* const* source_data_rows, |
| + int pixel_width, |
| + unsigned char* out_row, |
| + bool has_alpha); |
| +typedef void (*Convolve4RowsHorizontally_pointer)( |
| + const unsigned char* src_data[4], |
| + const ConvolutionFilter1D& filter, |
| + unsigned char* out_row[4]); |
| +typedef void (*ConvolveHorizontally_pointer)( |
| + const unsigned char* src_data, |
| + const ConvolutionFilter1D& filter, |
| + unsigned char* out_row); |
| + |
| +struct ConvolveProcs { |
| + // This is how many extra pixels may be read by the |
| + // conolve*horizontally functions. |
| + int extra_horizontal_reads; |
| + ConvolveVertically_pointer convolve_vertically; |
| + Convolve4RowsHorizontally_pointer convolve_4rows_horizontally; |
| + ConvolveHorizontally_pointer convolve_horizontally; |
| +}; |
| + |
| +void SetupSIMD(ConvolveProcs *procs) { |
| +#ifdef SIMD_SSE2 |
| + base::CPU cpu; |
| + if (cpu.has_sse2()) { |
| + procs->extra_horizontal_reads = 3; |
| + procs->convolve_vertically = &ConvolveVertically_SSE2; |
| + procs->convolve_4rows_horizontally = &Convolve4RowsHorizontally_SSE2; |
| + procs->convolve_horizontally = &ConvolveHorizontally_SSE2; |
| + } |
| +#endif |
| +} |
| + |
| void BGRAConvolve2D(const unsigned char* source_data, |
| int source_byte_row_stride, |
| bool source_has_alpha, |
| @@ -722,12 +348,15 @@ void BGRAConvolve2D(const unsigned char* source_data, |
| const ConvolutionFilter1D& filter_y, |
| int output_byte_row_stride, |
| unsigned char* output, |
| - bool use_sse2) { |
| -#if !defined(SIMD_SSE2) |
| - // Even we have runtime support for SSE2 instructions, since the binary |
| - // was not built with SSE2 support, we had to fallback to C version. |
| - use_sse2 = false; |
| -#endif |
| + bool use_simd_if_possible) { |
| + ConvolveProcs simd; |
| + simd.extra_horizontal_reads = 0; |
| + simd.convolve_vertically = NULL; |
| + simd.convolve_4rows_horizontally = NULL; |
| + simd.convolve_horizontally = NULL; |
| + if (use_simd_if_possible) { |
| + SetupSIMD(&simd); |
| + } |
| int max_y_filter_size = filter_y.max_filter(); |
| @@ -752,7 +381,8 @@ void BGRAConvolve2D(const unsigned char* source_data, |
| // TODO(jiesun): We do not use aligned load from row buffer in vertical |
| // convolution pass yet. Somehow Windows does not like it. |
| int row_buffer_width = (filter_x.num_values() + 15) & ~0xF; |
| - int row_buffer_height = max_y_filter_size + (use_sse2 ? 4 : 0); |
| + int row_buffer_height = max_y_filter_size + |
| + (simd.convolve_4rows_horizontally ? 4 : 0); |
| CircularRowBuffer row_buffer(row_buffer_width, |
| row_buffer_height, |
| filter_offset); |
| @@ -775,7 +405,8 @@ void BGRAConvolve2D(const unsigned char* source_data, |
| // rows we need to avoid the SSE implementation for here. |
| filter_x.FilterForValue(filter_x.num_values() - 1, &last_filter_offset, |
| &last_filter_length); |
| - int avoid_sse_rows = 1 + 3/(last_filter_offset + last_filter_length); |
| + int avoid_simd_rows = 1 + simd.extra_horizontal_reads / |
| + (last_filter_offset + last_filter_length); |
| filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset, |
| &last_filter_length); |
| @@ -785,49 +416,36 @@ void BGRAConvolve2D(const unsigned char* source_data, |
| &filter_offset, &filter_length); |
| // Generate output rows until we have enough to run the current filter. |
| - if (use_sse2) { |
| - while (next_x_row < filter_offset + filter_length) { |
| - if (next_x_row + 3 < last_filter_offset + last_filter_length - |
| - avoid_sse_rows) { |
| - const unsigned char* src[4]; |
| - unsigned char* out_row[4]; |
| - for (int i = 0; i < 4; ++i) { |
| - src[i] = &source_data[(next_x_row + i) * source_byte_row_stride]; |
| - out_row[i] = row_buffer.AdvanceRow(); |
| - } |
| - ConvolveHorizontally4_SSE2(src, filter_x, out_row); |
| - next_x_row += 4; |
| + while (next_x_row < filter_offset + filter_length) { |
| + if (simd.convolve_4rows_horizontally && |
| + next_x_row + 3 < last_filter_offset + last_filter_length - |
| + avoid_simd_rows) { |
| + const unsigned char* src[4]; |
| + unsigned char* out_row[4]; |
| + for (int i = 0; i < 4; ++i) { |
| + src[i] = &source_data[(next_x_row + i) * source_byte_row_stride]; |
| + out_row[i] = row_buffer.AdvanceRow(); |
| + } |
| + simd.convolve_4rows_horizontally(src, filter_x, out_row); |
| + next_x_row += 4; |
| + } else { |
| + // Check if we need to avoid SSE2 for this row. |
| + if (simd.convolve_horizontally && |
| + next_x_row < last_filter_offset + last_filter_length - |
| + avoid_simd_rows) { |
| + simd.convolve_horizontally( |
| + &source_data[next_x_row * source_byte_row_stride], |
| + filter_x, row_buffer.AdvanceRow()); |
| } else { |
| - // Check if we need to avoid SSE2 for this row. |
| - if (next_x_row >= last_filter_offset + last_filter_length - |
| - avoid_sse_rows) { |
| - if (source_has_alpha) { |
| - ConvolveHorizontally<true>( |
| - &source_data[next_x_row * source_byte_row_stride], |
| - filter_x, row_buffer.AdvanceRow()); |
| - } else { |
| - ConvolveHorizontally<false>( |
| - &source_data[next_x_row * source_byte_row_stride], |
| - filter_x, row_buffer.AdvanceRow()); |
| - } |
| + if (source_has_alpha) { |
|
Stephen White
2013/04/06 22:44:33
Not new to this patch, but it seems a little stran
|
| + ConvolveHorizontally<true>( |
| + &source_data[next_x_row * source_byte_row_stride], |
| + filter_x, row_buffer.AdvanceRow()); |
| } else { |
| - ConvolveHorizontally_SSE2( |
| + ConvolveHorizontally<false>( |
| &source_data[next_x_row * source_byte_row_stride], |
| filter_x, row_buffer.AdvanceRow()); |
| } |
| - next_x_row++; |
| - } |
| - } |
| - } else { |
| - while (next_x_row < filter_offset + filter_length) { |
| - if (source_has_alpha) { |
| - ConvolveHorizontally<true>( |
| - &source_data[next_x_row * source_byte_row_stride], |
| - filter_x, row_buffer.AdvanceRow()); |
| - } else { |
| - ConvolveHorizontally<false>( |
| - &source_data[next_x_row * source_byte_row_stride], |
| - filter_x, row_buffer.AdvanceRow()); |
| } |
| next_x_row++; |
| } |
| @@ -846,26 +464,16 @@ void BGRAConvolve2D(const unsigned char* source_data, |
| unsigned char* const* first_row_for_filter = |
| &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; |
| - if (source_has_alpha) { |
| - if (use_sse2) { |
| - ConvolveVertically_SSE2<true>(filter_values, filter_length, |
| - first_row_for_filter, |
| - filter_x.num_values(), cur_output_row); |
| - } else { |
| - ConvolveVertically<true>(filter_values, filter_length, |
| - first_row_for_filter, |
| - filter_x.num_values(), cur_output_row); |
| - } |
| + if (simd.convolve_vertically) { |
| + simd.convolve_vertically(filter_values, filter_length, |
| + first_row_for_filter, |
| + filter_x.num_values(), cur_output_row, |
| + source_has_alpha); |
| } else { |
| - if (use_sse2) { |
| - ConvolveVertically_SSE2<false>(filter_values, filter_length, |
| - first_row_for_filter, |
| - filter_x.num_values(), cur_output_row); |
| - } else { |
| - ConvolveVertically<false>(filter_values, filter_length, |
| - first_row_for_filter, |
| - filter_x.num_values(), cur_output_row); |
| - } |
| + ConvolveVertically(filter_values, filter_length, |
| + first_row_for_filter, |
| + filter_x.num_values(), cur_output_row, |
| + source_has_alpha); |
| } |
| } |
| } |