Index: skia/ext/convolver.cc |
diff --git a/skia/ext/convolver.cc b/skia/ext/convolver.cc |
index 47e3711fac4883c361e880b9cfce9241d52410c2..cbfa9315930edcc9664165a48dc667c2d7fba3b5 100644 |
--- a/skia/ext/convolver.cc |
+++ b/skia/ext/convolver.cc |
@@ -5,12 +5,9 @@ |
#include <algorithm> |
#include "skia/ext/convolver.h" |
+#include "skia/ext/convolver_SSE2.h" |
#include "third_party/skia/include/core/SkTypes.h" |
-#if defined(SIMD_SSE2) |
-#include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h |
-#endif |
- |
namespace skia { |
namespace { |
@@ -223,431 +220,23 @@ void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values, |
} |
} |
- |
-// Convolves horizontally along a single row. The row data is given in |
-// |src_data| and continues for the num_values() of the filter. |
-void ConvolveHorizontally_SSE2(const unsigned char* src_data, |
- const ConvolutionFilter1D& filter, |
- unsigned char* out_row) { |
-#if defined(SIMD_SSE2) |
- int num_values = filter.num_values(); |
- |
- int filter_offset, filter_length; |
- __m128i zero = _mm_setzero_si128(); |
- __m128i mask[4]; |
- // |mask| will be used to decimate all extra filter coefficients that are |
- // loaded by SIMD when |filter_length| is not divisible by 4. |
- // mask[0] is not used in following algorithm. |
- mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); |
- mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); |
- mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); |
- |
- // Output one pixel each iteration, calculating all channels (RGBA) together. |
- for (int out_x = 0; out_x < num_values; out_x++) { |
- const ConvolutionFilter1D::Fixed* filter_values = |
- filter.FilterForValue(out_x, &filter_offset, &filter_length); |
- |
- __m128i accum = _mm_setzero_si128(); |
- |
- // Compute the first pixel in this row that the filter affects. It will |
- // touch |filter_length| pixels (4 bytes each) after this. |
- const __m128i* row_to_filter = |
- reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]); |
- |
- // We will load and accumulate with four coefficients per iteration. |
- for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) { |
- |
- // Load 4 coefficients => duplicate 1st and 2nd of them for all channels. |
- __m128i coeff, coeff16; |
- // [16] xx xx xx xx c3 c2 c1 c0 |
- coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
- // [16] xx xx xx xx c1 c1 c0 c0 |
- coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
- // [16] c1 c1 c1 c1 c0 c0 c0 c0 |
- coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
- |
- // Load four pixels => unpack the first two pixels to 16 bits => |
- // multiply with coefficients => accumulate the convolution result. |
- // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
- __m128i src8 = _mm_loadu_si128(row_to_filter); |
- // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
- __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
- __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
- __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
- // [32] a0*c0 b0*c0 g0*c0 r0*c0 |
- __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
- accum = _mm_add_epi32(accum, t); |
- // [32] a1*c1 b1*c1 g1*c1 r1*c1 |
- t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
- accum = _mm_add_epi32(accum, t); |
- |
- // Duplicate 3rd and 4th coefficients for all channels => |
- // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients |
- // => accumulate the convolution results. |
- // [16] xx xx xx xx c3 c3 c2 c2 |
- coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
- // [16] c3 c3 c3 c3 c2 c2 c2 c2 |
- coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
- // [16] a3 g3 b3 r3 a2 g2 b2 r2 |
- src16 = _mm_unpackhi_epi8(src8, zero); |
- mul_hi = _mm_mulhi_epi16(src16, coeff16); |
- mul_lo = _mm_mullo_epi16(src16, coeff16); |
- // [32] a2*c2 b2*c2 g2*c2 r2*c2 |
- t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
- accum = _mm_add_epi32(accum, t); |
- // [32] a3*c3 b3*c3 g3*c3 r3*c3 |
- t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
- accum = _mm_add_epi32(accum, t); |
- |
- // Advance the pixel and coefficients pointers. |
- row_to_filter += 1; |
- filter_values += 4; |
- } |
- |
- // When |filter_length| is not divisible by 4, we need to decimate some of |
- // the filter coefficient that was loaded incorrectly to zero; Other than |
- // that the algorithm is same with above, exceot that the 4th pixel will be |
- // always absent. |
- int r = filter_length&3; |
- if (r) { |
- // Note: filter_values must be padded to align_up(filter_offset, 8). |
- __m128i coeff, coeff16; |
- coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
- // Mask out extra filter taps. |
- coeff = _mm_and_si128(coeff, mask[r]); |
- coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
- coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
- |
- // Note: line buffer must be padded to align_up(filter_offset, 16). |
- // We resolve this by use C-version for the last horizontal line. |
- __m128i src8 = _mm_loadu_si128(row_to_filter); |
- __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
- __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
- __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
- __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
- accum = _mm_add_epi32(accum, t); |
- t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
- accum = _mm_add_epi32(accum, t); |
- |
- src16 = _mm_unpackhi_epi8(src8, zero); |
- coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
- coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
- mul_hi = _mm_mulhi_epi16(src16, coeff16); |
- mul_lo = _mm_mullo_epi16(src16, coeff16); |
- t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
- accum = _mm_add_epi32(accum, t); |
- } |
- |
- // Shift right for fixed point implementation. |
- accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits); |
- |
- // Packing 32 bits |accum| to 16 bits per channel (signed saturation). |
- accum = _mm_packs_epi32(accum, zero); |
- // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). |
- accum = _mm_packus_epi16(accum, zero); |
- |
- // Store the pixel value of 32 bits. |
- *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum); |
- out_row += 4; |
- } |
-#endif |
-} |
- |
-// Convolves horizontally along four rows. The row data is given in |
-// |src_data| and continues for the num_values() of the filter. |
-// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please |
-// refer to that function for detailed comments. |
-void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4], |
- const ConvolutionFilter1D& filter, |
- unsigned char* out_row[4]) { |
-#if defined(SIMD_SSE2) |
- int num_values = filter.num_values(); |
- |
- int filter_offset, filter_length; |
- __m128i zero = _mm_setzero_si128(); |
- __m128i mask[4]; |
- // |mask| will be used to decimate all extra filter coefficients that are |
- // loaded by SIMD when |filter_length| is not divisible by 4. |
- // mask[0] is not used in following algorithm. |
- mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); |
- mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); |
- mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); |
- |
- // Output one pixel each iteration, calculating all channels (RGBA) together. |
- for (int out_x = 0; out_x < num_values; out_x++) { |
- const ConvolutionFilter1D::Fixed* filter_values = |
- filter.FilterForValue(out_x, &filter_offset, &filter_length); |
- |
- // four pixels in a column per iteration. |
- __m128i accum0 = _mm_setzero_si128(); |
- __m128i accum1 = _mm_setzero_si128(); |
- __m128i accum2 = _mm_setzero_si128(); |
- __m128i accum3 = _mm_setzero_si128(); |
- int start = (filter_offset<<2); |
- // We will load and accumulate with four coefficients per iteration. |
- for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) { |
- __m128i coeff, coeff16lo, coeff16hi; |
- // [16] xx xx xx xx c3 c2 c1 c0 |
- coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
- // [16] xx xx xx xx c1 c1 c0 c0 |
- coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
- // [16] c1 c1 c1 c1 c0 c0 c0 c0 |
- coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); |
- // [16] xx xx xx xx c3 c3 c2 c2 |
- coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
- // [16] c3 c3 c3 c3 c2 c2 c2 c2 |
- coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); |
- |
- __m128i src8, src16, mul_hi, mul_lo, t; |
- |
-#define ITERATION(src, accum) \ |
- src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \ |
- src16 = _mm_unpacklo_epi8(src8, zero); \ |
- mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \ |
- mul_lo = _mm_mullo_epi16(src16, coeff16lo); \ |
- t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ |
- accum = _mm_add_epi32(accum, t); \ |
- t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ |
- accum = _mm_add_epi32(accum, t); \ |
- src16 = _mm_unpackhi_epi8(src8, zero); \ |
- mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \ |
- mul_lo = _mm_mullo_epi16(src16, coeff16hi); \ |
- t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ |
- accum = _mm_add_epi32(accum, t); \ |
- t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ |
- accum = _mm_add_epi32(accum, t) |
- |
- ITERATION(src_data[0] + start, accum0); |
- ITERATION(src_data[1] + start, accum1); |
- ITERATION(src_data[2] + start, accum2); |
- ITERATION(src_data[3] + start, accum3); |
- |
- start += 16; |
- filter_values += 4; |
- } |
- |
- int r = filter_length & 3; |
- if (r) { |
- // Note: filter_values must be padded to align_up(filter_offset, 8); |
- __m128i coeff; |
- coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
- // Mask out extra filter taps. |
- coeff = _mm_and_si128(coeff, mask[r]); |
- |
- __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
- /* c1 c1 c1 c1 c0 c0 c0 c0 */ |
- coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); |
- __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
- coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); |
- |
- __m128i src8, src16, mul_hi, mul_lo, t; |
- |
- ITERATION(src_data[0] + start, accum0); |
- ITERATION(src_data[1] + start, accum1); |
- ITERATION(src_data[2] + start, accum2); |
- ITERATION(src_data[3] + start, accum3); |
- } |
- |
- accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); |
- accum0 = _mm_packs_epi32(accum0, zero); |
- accum0 = _mm_packus_epi16(accum0, zero); |
- accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); |
- accum1 = _mm_packs_epi32(accum1, zero); |
- accum1 = _mm_packus_epi16(accum1, zero); |
- accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); |
- accum2 = _mm_packs_epi32(accum2, zero); |
- accum2 = _mm_packus_epi16(accum2, zero); |
- accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); |
- accum3 = _mm_packs_epi32(accum3, zero); |
- accum3 = _mm_packus_epi16(accum3, zero); |
- |
- *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0); |
- *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1); |
- *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2); |
- *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3); |
- |
- out_row[0] += 4; |
- out_row[1] += 4; |
- out_row[2] += 4; |
- out_row[3] += 4; |
- } |
-#endif |
-} |
- |
-// Does vertical convolution to produce one output row. The filter values and |
-// length are given in the first two parameters. These are applied to each |
-// of the rows pointed to in the |source_data_rows| array, with each row |
-// being |pixel_width| wide. |
-// |
-// The output must have room for |pixel_width * 4| bytes. |
-template<bool has_alpha> |
-void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values, |
- int filter_length, |
- unsigned char* const* source_data_rows, |
- int pixel_width, |
- unsigned char* out_row) { |
-#if defined(SIMD_SSE2) |
- int width = pixel_width & ~3; |
- |
- __m128i zero = _mm_setzero_si128(); |
- __m128i accum0, accum1, accum2, accum3, coeff16; |
- const __m128i* src; |
- // Output four pixels per iteration (16 bytes). |
- for (int out_x = 0; out_x < width; out_x += 4) { |
- |
- // Accumulated result for each pixel. 32 bits per RGBA channel. |
- accum0 = _mm_setzero_si128(); |
- accum1 = _mm_setzero_si128(); |
- accum2 = _mm_setzero_si128(); |
- accum3 = _mm_setzero_si128(); |
- |
- // Convolve with one filter coefficient per iteration. |
- for (int filter_y = 0; filter_y < filter_length; filter_y++) { |
- |
- // Duplicate the filter coefficient 8 times. |
- // [16] cj cj cj cj cj cj cj cj |
- coeff16 = _mm_set1_epi16(filter_values[filter_y]); |
- |
- // Load four pixels (16 bytes) together. |
- // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
- src = reinterpret_cast<const __m128i*>( |
- &source_data_rows[filter_y][out_x << 2]); |
- __m128i src8 = _mm_loadu_si128(src); |
- |
- // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels => |
- // multiply with current coefficient => accumulate the result. |
- // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
- __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
- __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
- __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
- // [32] a0 b0 g0 r0 |
- __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
- accum0 = _mm_add_epi32(accum0, t); |
- // [32] a1 b1 g1 r1 |
- t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
- accum1 = _mm_add_epi32(accum1, t); |
- |
- // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels => |
- // multiply with current coefficient => accumulate the result. |
- // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
- src16 = _mm_unpackhi_epi8(src8, zero); |
- mul_hi = _mm_mulhi_epi16(src16, coeff16); |
- mul_lo = _mm_mullo_epi16(src16, coeff16); |
- // [32] a2 b2 g2 r2 |
- t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
- accum2 = _mm_add_epi32(accum2, t); |
- // [32] a3 b3 g3 r3 |
- t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
- accum3 = _mm_add_epi32(accum3, t); |
- } |
- |
- // Shift right for fixed point implementation. |
- accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); |
- accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); |
- accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); |
- accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); |
- |
- // Packing 32 bits |accum| to 16 bits per channel (signed saturation). |
- // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
- accum0 = _mm_packs_epi32(accum0, accum1); |
- // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
- accum2 = _mm_packs_epi32(accum2, accum3); |
- |
- // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). |
- // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
- accum0 = _mm_packus_epi16(accum0, accum2); |
- |
- if (has_alpha) { |
- // Compute the max(ri, gi, bi) for each pixel. |
- // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
- __m128i a = _mm_srli_epi32(accum0, 8); |
- // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
- __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. |
- // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
- a = _mm_srli_epi32(accum0, 16); |
- // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
- b = _mm_max_epu8(a, b); // Max of r and g and b. |
- // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
- b = _mm_slli_epi32(b, 24); |
- |
- // Make sure the value of alpha channel is always larger than maximum |
- // value of color channels. |
- accum0 = _mm_max_epu8(b, accum0); |
- } else { |
- // Set value of alpha channels to 0xFF. |
- __m128i mask = _mm_set1_epi32(0xff000000); |
- accum0 = _mm_or_si128(accum0, mask); |
- } |
- |
- // Store the convolution result (16 bytes) and advance the pixel pointers. |
- _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0); |
- out_row += 16; |
- } |
- |
- // When the width of the output is not divisible by 4, We need to save one |
- // pixel (4 bytes) each time. And also the fourth pixel is always absent. |
- if (pixel_width & 3) { |
- accum0 = _mm_setzero_si128(); |
- accum1 = _mm_setzero_si128(); |
- accum2 = _mm_setzero_si128(); |
- for (int filter_y = 0; filter_y < filter_length; ++filter_y) { |
- coeff16 = _mm_set1_epi16(filter_values[filter_y]); |
- // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
- src = reinterpret_cast<const __m128i*>( |
- &source_data_rows[filter_y][width<<2]); |
- __m128i src8 = _mm_loadu_si128(src); |
- // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
- __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
- __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
- __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
- // [32] a0 b0 g0 r0 |
- __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
- accum0 = _mm_add_epi32(accum0, t); |
- // [32] a1 b1 g1 r1 |
- t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
- accum1 = _mm_add_epi32(accum1, t); |
- // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
- src16 = _mm_unpackhi_epi8(src8, zero); |
- mul_hi = _mm_mulhi_epi16(src16, coeff16); |
- mul_lo = _mm_mullo_epi16(src16, coeff16); |
- // [32] a2 b2 g2 r2 |
- t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
- accum2 = _mm_add_epi32(accum2, t); |
- } |
- |
- accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); |
- accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); |
- accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); |
- // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
- accum0 = _mm_packs_epi32(accum0, accum1); |
- // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
- accum2 = _mm_packs_epi32(accum2, zero); |
- // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
- accum0 = _mm_packus_epi16(accum0, accum2); |
- if (has_alpha) { |
- // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
- __m128i a = _mm_srli_epi32(accum0, 8); |
- // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
- __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. |
- // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
- a = _mm_srli_epi32(accum0, 16); |
- // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
- b = _mm_max_epu8(a, b); // Max of r and g and b. |
- // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
- b = _mm_slli_epi32(b, 24); |
- accum0 = _mm_max_epu8(b, accum0); |
- } else { |
- __m128i mask = _mm_set1_epi32(0xff000000); |
- accum0 = _mm_or_si128(accum0, mask); |
- } |
- |
- for (int out_x = width; out_x < pixel_width; out_x++) { |
- *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0); |
- accum0 = _mm_srli_si128(accum0, 4); |
- out_row += 4; |
- } |
+void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values, |
+ int filter_length, |
+ unsigned char* const* source_data_rows, |
+ int pixel_width, |
+ unsigned char* out_row, |
+ bool source_has_alpha) { |
+ if (source_has_alpha) { |
+ ConvolveVertically<true>(filter_values, filter_length, |
+ source_data_rows, |
+ pixel_width, |
+ out_row); |
+ } else { |
+ ConvolveVertically<false>(filter_values, filter_length, |
+ source_data_rows, |
+ pixel_width, |
+ out_row); |
} |
-#endif |
} |
} // namespace |
@@ -715,6 +304,43 @@ void ConvolutionFilter1D::AddFilter(int filter_offset, |
max_filter_ = std::max(max_filter_, filter_length); |
} |
+typedef void (*ConvolveVertically_pointer)( |
+ const ConvolutionFilter1D::Fixed* filter_values, |
+ int filter_length, |
+ unsigned char* const* source_data_rows, |
+ int pixel_width, |
+ unsigned char* out_row, |
+ bool has_alpha); |
+typedef void (*Convolve4RowsHorizontally_pointer)( |
+ const unsigned char* src_data[4], |
+ const ConvolutionFilter1D& filter, |
+ unsigned char* out_row[4]); |
+typedef void (*ConvolveHorizontally_pointer)( |
+ const unsigned char* src_data, |
+ const ConvolutionFilter1D& filter, |
+ unsigned char* out_row); |
+ |
+struct ConvolveProcs { |
+ // This is how many extra pixels may be read by the |
+ // conolve*horizontally functions. |
+ int extra_horizontal_reads; |
+ ConvolveVertically_pointer convolve_vertically; |
+ Convolve4RowsHorizontally_pointer convolve_4rows_horizontally; |
+ ConvolveHorizontally_pointer convolve_horizontally; |
+}; |
+ |
+void SetupSIMD(ConvolveProcs *procs) { |
+#ifdef SIMD_SSE2 |
+ base::CPU cpu; |
+ if (cpu.has_sse2()) { |
+ procs->extra_horizontal_reads = 3; |
+ procs->convolve_vertically = &ConvolveVertically_SSE2; |
+ procs->convolve_4rows_horizontally = &Convolve4RowsHorizontally_SSE2; |
+ procs->convolve_horizontally = &ConvolveHorizontally_SSE2; |
+ } |
+#endif |
+} |
+ |
void BGRAConvolve2D(const unsigned char* source_data, |
int source_byte_row_stride, |
bool source_has_alpha, |
@@ -722,12 +348,15 @@ void BGRAConvolve2D(const unsigned char* source_data, |
const ConvolutionFilter1D& filter_y, |
int output_byte_row_stride, |
unsigned char* output, |
- bool use_sse2) { |
-#if !defined(SIMD_SSE2) |
- // Even we have runtime support for SSE2 instructions, since the binary |
- // was not built with SSE2 support, we had to fallback to C version. |
- use_sse2 = false; |
-#endif |
+ bool use_simd_if_possible) { |
+ ConvolveProcs simd; |
+ simd.extra_horizontal_reads = 0; |
+ simd.convolve_vertically = NULL; |
+ simd.convolve_4rows_horizontally = NULL; |
+ simd.convolve_horizontally = NULL; |
+ if (use_simd_if_possible) { |
+ SetupSIMD(&simd); |
+ } |
int max_y_filter_size = filter_y.max_filter(); |
@@ -752,7 +381,8 @@ void BGRAConvolve2D(const unsigned char* source_data, |
// TODO(jiesun): We do not use aligned load from row buffer in vertical |
// convolution pass yet. Somehow Windows does not like it. |
int row_buffer_width = (filter_x.num_values() + 15) & ~0xF; |
- int row_buffer_height = max_y_filter_size + (use_sse2 ? 4 : 0); |
+ int row_buffer_height = max_y_filter_size + |
+ (simd.convolve_4rows_horizontally ? 4 : 0); |
CircularRowBuffer row_buffer(row_buffer_width, |
row_buffer_height, |
filter_offset); |
@@ -775,7 +405,8 @@ void BGRAConvolve2D(const unsigned char* source_data, |
// rows we need to avoid the SSE implementation for here. |
filter_x.FilterForValue(filter_x.num_values() - 1, &last_filter_offset, |
&last_filter_length); |
- int avoid_sse_rows = 1 + 3/(last_filter_offset + last_filter_length); |
+ int avoid_simd_rows = 1 + simd.extra_horizontal_reads / |
+ (last_filter_offset + last_filter_length); |
filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset, |
&last_filter_length); |
@@ -785,49 +416,36 @@ void BGRAConvolve2D(const unsigned char* source_data, |
&filter_offset, &filter_length); |
// Generate output rows until we have enough to run the current filter. |
- if (use_sse2) { |
- while (next_x_row < filter_offset + filter_length) { |
- if (next_x_row + 3 < last_filter_offset + last_filter_length - |
- avoid_sse_rows) { |
- const unsigned char* src[4]; |
- unsigned char* out_row[4]; |
- for (int i = 0; i < 4; ++i) { |
- src[i] = &source_data[(next_x_row + i) * source_byte_row_stride]; |
- out_row[i] = row_buffer.AdvanceRow(); |
- } |
- ConvolveHorizontally4_SSE2(src, filter_x, out_row); |
- next_x_row += 4; |
+ while (next_x_row < filter_offset + filter_length) { |
+ if (simd.convolve_4rows_horizontally && |
+ next_x_row + 3 < last_filter_offset + last_filter_length - |
+ avoid_simd_rows) { |
+ const unsigned char* src[4]; |
+ unsigned char* out_row[4]; |
+ for (int i = 0; i < 4; ++i) { |
+ src[i] = &source_data[(next_x_row + i) * source_byte_row_stride]; |
+ out_row[i] = row_buffer.AdvanceRow(); |
+ } |
+ simd.convolve_4rows_horizontally(src, filter_x, out_row); |
+ next_x_row += 4; |
+ } else { |
+ // Check if we need to avoid SSE2 for this row. |
+ if (simd.convolve_horizontally && |
+ next_x_row < last_filter_offset + last_filter_length - |
+ avoid_simd_rows) { |
+ simd.convolve_horizontally( |
+ &source_data[next_x_row * source_byte_row_stride], |
+ filter_x, row_buffer.AdvanceRow()); |
} else { |
- // Check if we need to avoid SSE2 for this row. |
- if (next_x_row >= last_filter_offset + last_filter_length - |
- avoid_sse_rows) { |
- if (source_has_alpha) { |
- ConvolveHorizontally<true>( |
- &source_data[next_x_row * source_byte_row_stride], |
- filter_x, row_buffer.AdvanceRow()); |
- } else { |
- ConvolveHorizontally<false>( |
- &source_data[next_x_row * source_byte_row_stride], |
- filter_x, row_buffer.AdvanceRow()); |
- } |
+ if (source_has_alpha) { |
Stephen White
2013/04/06 22:44:33
Not new to this patch, but it seems a little stran
|
+ ConvolveHorizontally<true>( |
+ &source_data[next_x_row * source_byte_row_stride], |
+ filter_x, row_buffer.AdvanceRow()); |
} else { |
- ConvolveHorizontally_SSE2( |
+ ConvolveHorizontally<false>( |
&source_data[next_x_row * source_byte_row_stride], |
filter_x, row_buffer.AdvanceRow()); |
} |
- next_x_row++; |
- } |
- } |
- } else { |
- while (next_x_row < filter_offset + filter_length) { |
- if (source_has_alpha) { |
- ConvolveHorizontally<true>( |
- &source_data[next_x_row * source_byte_row_stride], |
- filter_x, row_buffer.AdvanceRow()); |
- } else { |
- ConvolveHorizontally<false>( |
- &source_data[next_x_row * source_byte_row_stride], |
- filter_x, row_buffer.AdvanceRow()); |
} |
next_x_row++; |
} |
@@ -846,26 +464,16 @@ void BGRAConvolve2D(const unsigned char* source_data, |
unsigned char* const* first_row_for_filter = |
&rows_to_convolve[filter_offset - first_row_in_circular_buffer]; |
- if (source_has_alpha) { |
- if (use_sse2) { |
- ConvolveVertically_SSE2<true>(filter_values, filter_length, |
- first_row_for_filter, |
- filter_x.num_values(), cur_output_row); |
- } else { |
- ConvolveVertically<true>(filter_values, filter_length, |
- first_row_for_filter, |
- filter_x.num_values(), cur_output_row); |
- } |
+ if (simd.convolve_vertically) { |
+ simd.convolve_vertically(filter_values, filter_length, |
+ first_row_for_filter, |
+ filter_x.num_values(), cur_output_row, |
+ source_has_alpha); |
} else { |
- if (use_sse2) { |
- ConvolveVertically_SSE2<false>(filter_values, filter_length, |
- first_row_for_filter, |
- filter_x.num_values(), cur_output_row); |
- } else { |
- ConvolveVertically<false>(filter_values, filter_length, |
- first_row_for_filter, |
- filter_x.num_values(), cur_output_row); |
- } |
+ ConvolveVertically(filter_values, filter_length, |
+ first_row_for_filter, |
+ filter_x.num_values(), cur_output_row, |
+ source_has_alpha); |
} |
} |
} |