Chromium Code Reviews| OLD | NEW |
|---|---|
| 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #include <algorithm> | 5 #include <algorithm> |
| 6 | 6 |
| 7 #include "skia/ext/convolver.h" | 7 #include "skia/ext/convolver.h" |
| 8 #include "skia/ext/convolver_SSE2.h" | |
| 8 #include "third_party/skia/include/core/SkTypes.h" | 9 #include "third_party/skia/include/core/SkTypes.h" |
| 9 | 10 |
| 10 #if defined(SIMD_SSE2) | |
| 11 #include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h | |
| 12 #endif | |
| 13 | |
| 14 namespace skia { | 11 namespace skia { |
| 15 | 12 |
| 16 namespace { | 13 namespace { |
| 17 | 14 |
| 18 // Converts the argument to an 8-bit unsigned value by clamping to the range | 15 // Converts the argument to an 8-bit unsigned value by clamping to the range |
| 19 // 0-255. | 16 // 0-255. |
| 20 inline unsigned char ClampTo8(int a) { | 17 inline unsigned char ClampTo8(int a) { |
| 21 if (static_cast<unsigned>(a) < 256) | 18 if (static_cast<unsigned>(a) < 256) |
| 22 return a; // Avoid the extra check in the common case. | 19 return a; // Avoid the extra check in the common case. |
| 23 if (a < 0) | 20 if (a < 0) |
| (...skipping 192 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 216 out_row[byte_offset + 3] = max_color_channel; | 213 out_row[byte_offset + 3] = max_color_channel; |
| 217 else | 214 else |
| 218 out_row[byte_offset + 3] = alpha; | 215 out_row[byte_offset + 3] = alpha; |
| 219 } else { | 216 } else { |
| 220 // No alpha channel, the image is opaque. | 217 // No alpha channel, the image is opaque. |
| 221 out_row[byte_offset + 3] = 0xff; | 218 out_row[byte_offset + 3] = 0xff; |
| 222 } | 219 } |
| 223 } | 220 } |
| 224 } | 221 } |
| 225 | 222 |
| 226 | 223 void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values, |
| 227 // Convolves horizontally along a single row. The row data is given in | 224 int filter_length, |
| 228 // |src_data| and continues for the num_values() of the filter. | 225 unsigned char* const* source_data_rows, |
| 229 void ConvolveHorizontally_SSE2(const unsigned char* src_data, | 226 int pixel_width, |
| 230 const ConvolutionFilter1D& filter, | 227 unsigned char* out_row, |
| 231 unsigned char* out_row) { | 228 bool source_has_alpha) { |
| 232 #if defined(SIMD_SSE2) | 229 if (source_has_alpha) { |
| 233 int num_values = filter.num_values(); | 230 ConvolveVertically<true>(filter_values, filter_length, |
| 234 | 231 source_data_rows, |
| 235 int filter_offset, filter_length; | 232 pixel_width, |
| 236 __m128i zero = _mm_setzero_si128(); | 233 out_row); |
| 237 __m128i mask[4]; | 234 } else { |
| 238 // |mask| will be used to decimate all extra filter coefficients that are | 235 ConvolveVertically<false>(filter_values, filter_length, |
| 239 // loaded by SIMD when |filter_length| is not divisible by 4. | 236 source_data_rows, |
| 240 // mask[0] is not used in following algorithm. | 237 pixel_width, |
| 241 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); | 238 out_row); |
| 242 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); | |
| 243 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); | |
| 244 | |
| 245 // Output one pixel each iteration, calculating all channels (RGBA) together. | |
| 246 for (int out_x = 0; out_x < num_values; out_x++) { | |
| 247 const ConvolutionFilter1D::Fixed* filter_values = | |
| 248 filter.FilterForValue(out_x, &filter_offset, &filter_length); | |
| 249 | |
| 250 __m128i accum = _mm_setzero_si128(); | |
| 251 | |
| 252 // Compute the first pixel in this row that the filter affects. It will | |
| 253 // touch |filter_length| pixels (4 bytes each) after this. | |
| 254 const __m128i* row_to_filter = | |
| 255 reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]); | |
| 256 | |
| 257 // We will load and accumulate with four coefficients per iteration. | |
| 258 for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) { | |
| 259 | |
| 260 // Load 4 coefficients => duplicate 1st and 2nd of them for all channels. | |
| 261 __m128i coeff, coeff16; | |
| 262 // [16] xx xx xx xx c3 c2 c1 c0 | |
| 263 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
| 264 // [16] xx xx xx xx c1 c1 c0 c0 | |
| 265 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
| 266 // [16] c1 c1 c1 c1 c0 c0 c0 c0 | |
| 267 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
| 268 | |
| 269 // Load four pixels => unpack the first two pixels to 16 bits => | |
| 270 // multiply with coefficients => accumulate the convolution result. | |
| 271 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
| 272 __m128i src8 = _mm_loadu_si128(row_to_filter); | |
| 273 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
| 274 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
| 275 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 276 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 277 // [32] a0*c0 b0*c0 g0*c0 r0*c0 | |
| 278 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 279 accum = _mm_add_epi32(accum, t); | |
| 280 // [32] a1*c1 b1*c1 g1*c1 r1*c1 | |
| 281 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
| 282 accum = _mm_add_epi32(accum, t); | |
| 283 | |
| 284 // Duplicate 3rd and 4th coefficients for all channels => | |
| 285 // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients | |
| 286 // => accumulate the convolution results. | |
| 287 // [16] xx xx xx xx c3 c3 c2 c2 | |
| 288 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
| 289 // [16] c3 c3 c3 c3 c2 c2 c2 c2 | |
| 290 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
| 291 // [16] a3 g3 b3 r3 a2 g2 b2 r2 | |
| 292 src16 = _mm_unpackhi_epi8(src8, zero); | |
| 293 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 294 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 295 // [32] a2*c2 b2*c2 g2*c2 r2*c2 | |
| 296 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 297 accum = _mm_add_epi32(accum, t); | |
| 298 // [32] a3*c3 b3*c3 g3*c3 r3*c3 | |
| 299 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
| 300 accum = _mm_add_epi32(accum, t); | |
| 301 | |
| 302 // Advance the pixel and coefficients pointers. | |
| 303 row_to_filter += 1; | |
| 304 filter_values += 4; | |
| 305 } | |
| 306 | |
| 307 // When |filter_length| is not divisible by 4, we need to decimate some of | |
| 308 // the filter coefficient that was loaded incorrectly to zero; Other than | |
| 309 // that the algorithm is same with above, exceot that the 4th pixel will be | |
| 310 // always absent. | |
| 311 int r = filter_length&3; | |
| 312 if (r) { | |
| 313 // Note: filter_values must be padded to align_up(filter_offset, 8). | |
| 314 __m128i coeff, coeff16; | |
| 315 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
| 316 // Mask out extra filter taps. | |
| 317 coeff = _mm_and_si128(coeff, mask[r]); | |
| 318 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
| 319 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
| 320 | |
| 321 // Note: line buffer must be padded to align_up(filter_offset, 16). | |
| 322 // We resolve this by use C-version for the last horizontal line. | |
| 323 __m128i src8 = _mm_loadu_si128(row_to_filter); | |
| 324 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
| 325 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 326 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 327 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 328 accum = _mm_add_epi32(accum, t); | |
| 329 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
| 330 accum = _mm_add_epi32(accum, t); | |
| 331 | |
| 332 src16 = _mm_unpackhi_epi8(src8, zero); | |
| 333 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
| 334 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); | |
| 335 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 336 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 337 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 338 accum = _mm_add_epi32(accum, t); | |
| 339 } | |
| 340 | |
| 341 // Shift right for fixed point implementation. | |
| 342 accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits); | |
| 343 | |
| 344 // Packing 32 bits |accum| to 16 bits per channel (signed saturation). | |
| 345 accum = _mm_packs_epi32(accum, zero); | |
| 346 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). | |
| 347 accum = _mm_packus_epi16(accum, zero); | |
| 348 | |
| 349 // Store the pixel value of 32 bits. | |
| 350 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum); | |
| 351 out_row += 4; | |
| 352 } | 239 } |
| 353 #endif | |
| 354 } | |
| 355 | |
| 356 // Convolves horizontally along four rows. The row data is given in | |
| 357 // |src_data| and continues for the num_values() of the filter. | |
| 358 // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please | |
| 359 // refer to that function for detailed comments. | |
| 360 void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4], | |
| 361 const ConvolutionFilter1D& filter, | |
| 362 unsigned char* out_row[4]) { | |
| 363 #if defined(SIMD_SSE2) | |
| 364 int num_values = filter.num_values(); | |
| 365 | |
| 366 int filter_offset, filter_length; | |
| 367 __m128i zero = _mm_setzero_si128(); | |
| 368 __m128i mask[4]; | |
| 369 // |mask| will be used to decimate all extra filter coefficients that are | |
| 370 // loaded by SIMD when |filter_length| is not divisible by 4. | |
| 371 // mask[0] is not used in following algorithm. | |
| 372 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); | |
| 373 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); | |
| 374 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); | |
| 375 | |
| 376 // Output one pixel each iteration, calculating all channels (RGBA) together. | |
| 377 for (int out_x = 0; out_x < num_values; out_x++) { | |
| 378 const ConvolutionFilter1D::Fixed* filter_values = | |
| 379 filter.FilterForValue(out_x, &filter_offset, &filter_length); | |
| 380 | |
| 381 // four pixels in a column per iteration. | |
| 382 __m128i accum0 = _mm_setzero_si128(); | |
| 383 __m128i accum1 = _mm_setzero_si128(); | |
| 384 __m128i accum2 = _mm_setzero_si128(); | |
| 385 __m128i accum3 = _mm_setzero_si128(); | |
| 386 int start = (filter_offset<<2); | |
| 387 // We will load and accumulate with four coefficients per iteration. | |
| 388 for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) { | |
| 389 __m128i coeff, coeff16lo, coeff16hi; | |
| 390 // [16] xx xx xx xx c3 c2 c1 c0 | |
| 391 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
| 392 // [16] xx xx xx xx c1 c1 c0 c0 | |
| 393 coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
| 394 // [16] c1 c1 c1 c1 c0 c0 c0 c0 | |
| 395 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); | |
| 396 // [16] xx xx xx xx c3 c3 c2 c2 | |
| 397 coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
| 398 // [16] c3 c3 c3 c3 c2 c2 c2 c2 | |
| 399 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); | |
| 400 | |
| 401 __m128i src8, src16, mul_hi, mul_lo, t; | |
| 402 | |
| 403 #define ITERATION(src, accum) \ | |
| 404 src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \ | |
| 405 src16 = _mm_unpacklo_epi8(src8, zero); \ | |
| 406 mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \ | |
| 407 mul_lo = _mm_mullo_epi16(src16, coeff16lo); \ | |
| 408 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ | |
| 409 accum = _mm_add_epi32(accum, t); \ | |
| 410 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ | |
| 411 accum = _mm_add_epi32(accum, t); \ | |
| 412 src16 = _mm_unpackhi_epi8(src8, zero); \ | |
| 413 mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \ | |
| 414 mul_lo = _mm_mullo_epi16(src16, coeff16hi); \ | |
| 415 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ | |
| 416 accum = _mm_add_epi32(accum, t); \ | |
| 417 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ | |
| 418 accum = _mm_add_epi32(accum, t) | |
| 419 | |
| 420 ITERATION(src_data[0] + start, accum0); | |
| 421 ITERATION(src_data[1] + start, accum1); | |
| 422 ITERATION(src_data[2] + start, accum2); | |
| 423 ITERATION(src_data[3] + start, accum3); | |
| 424 | |
| 425 start += 16; | |
| 426 filter_values += 4; | |
| 427 } | |
| 428 | |
| 429 int r = filter_length & 3; | |
| 430 if (r) { | |
| 431 // Note: filter_values must be padded to align_up(filter_offset, 8); | |
| 432 __m128i coeff; | |
| 433 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); | |
| 434 // Mask out extra filter taps. | |
| 435 coeff = _mm_and_si128(coeff, mask[r]); | |
| 436 | |
| 437 __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); | |
| 438 /* c1 c1 c1 c1 c0 c0 c0 c0 */ | |
| 439 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); | |
| 440 __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); | |
| 441 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); | |
| 442 | |
| 443 __m128i src8, src16, mul_hi, mul_lo, t; | |
| 444 | |
| 445 ITERATION(src_data[0] + start, accum0); | |
| 446 ITERATION(src_data[1] + start, accum1); | |
| 447 ITERATION(src_data[2] + start, accum2); | |
| 448 ITERATION(src_data[3] + start, accum3); | |
| 449 } | |
| 450 | |
| 451 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); | |
| 452 accum0 = _mm_packs_epi32(accum0, zero); | |
| 453 accum0 = _mm_packus_epi16(accum0, zero); | |
| 454 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); | |
| 455 accum1 = _mm_packs_epi32(accum1, zero); | |
| 456 accum1 = _mm_packus_epi16(accum1, zero); | |
| 457 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); | |
| 458 accum2 = _mm_packs_epi32(accum2, zero); | |
| 459 accum2 = _mm_packus_epi16(accum2, zero); | |
| 460 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); | |
| 461 accum3 = _mm_packs_epi32(accum3, zero); | |
| 462 accum3 = _mm_packus_epi16(accum3, zero); | |
| 463 | |
| 464 *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0); | |
| 465 *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1); | |
| 466 *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2); | |
| 467 *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3); | |
| 468 | |
| 469 out_row[0] += 4; | |
| 470 out_row[1] += 4; | |
| 471 out_row[2] += 4; | |
| 472 out_row[3] += 4; | |
| 473 } | |
| 474 #endif | |
| 475 } | |
| 476 | |
| 477 // Does vertical convolution to produce one output row. The filter values and | |
| 478 // length are given in the first two parameters. These are applied to each | |
| 479 // of the rows pointed to in the |source_data_rows| array, with each row | |
| 480 // being |pixel_width| wide. | |
| 481 // | |
| 482 // The output must have room for |pixel_width * 4| bytes. | |
| 483 template<bool has_alpha> | |
| 484 void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values, | |
| 485 int filter_length, | |
| 486 unsigned char* const* source_data_rows, | |
| 487 int pixel_width, | |
| 488 unsigned char* out_row) { | |
| 489 #if defined(SIMD_SSE2) | |
| 490 int width = pixel_width & ~3; | |
| 491 | |
| 492 __m128i zero = _mm_setzero_si128(); | |
| 493 __m128i accum0, accum1, accum2, accum3, coeff16; | |
| 494 const __m128i* src; | |
| 495 // Output four pixels per iteration (16 bytes). | |
| 496 for (int out_x = 0; out_x < width; out_x += 4) { | |
| 497 | |
| 498 // Accumulated result for each pixel. 32 bits per RGBA channel. | |
| 499 accum0 = _mm_setzero_si128(); | |
| 500 accum1 = _mm_setzero_si128(); | |
| 501 accum2 = _mm_setzero_si128(); | |
| 502 accum3 = _mm_setzero_si128(); | |
| 503 | |
| 504 // Convolve with one filter coefficient per iteration. | |
| 505 for (int filter_y = 0; filter_y < filter_length; filter_y++) { | |
| 506 | |
| 507 // Duplicate the filter coefficient 8 times. | |
| 508 // [16] cj cj cj cj cj cj cj cj | |
| 509 coeff16 = _mm_set1_epi16(filter_values[filter_y]); | |
| 510 | |
| 511 // Load four pixels (16 bytes) together. | |
| 512 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
| 513 src = reinterpret_cast<const __m128i*>( | |
| 514 &source_data_rows[filter_y][out_x << 2]); | |
| 515 __m128i src8 = _mm_loadu_si128(src); | |
| 516 | |
| 517 // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels => | |
| 518 // multiply with current coefficient => accumulate the result. | |
| 519 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
| 520 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
| 521 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 522 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 523 // [32] a0 b0 g0 r0 | |
| 524 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 525 accum0 = _mm_add_epi32(accum0, t); | |
| 526 // [32] a1 b1 g1 r1 | |
| 527 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
| 528 accum1 = _mm_add_epi32(accum1, t); | |
| 529 | |
| 530 // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels => | |
| 531 // multiply with current coefficient => accumulate the result. | |
| 532 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
| 533 src16 = _mm_unpackhi_epi8(src8, zero); | |
| 534 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 535 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 536 // [32] a2 b2 g2 r2 | |
| 537 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 538 accum2 = _mm_add_epi32(accum2, t); | |
| 539 // [32] a3 b3 g3 r3 | |
| 540 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
| 541 accum3 = _mm_add_epi32(accum3, t); | |
| 542 } | |
| 543 | |
| 544 // Shift right for fixed point implementation. | |
| 545 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); | |
| 546 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); | |
| 547 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); | |
| 548 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); | |
| 549 | |
| 550 // Packing 32 bits |accum| to 16 bits per channel (signed saturation). | |
| 551 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
| 552 accum0 = _mm_packs_epi32(accum0, accum1); | |
| 553 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
| 554 accum2 = _mm_packs_epi32(accum2, accum3); | |
| 555 | |
| 556 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). | |
| 557 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
| 558 accum0 = _mm_packus_epi16(accum0, accum2); | |
| 559 | |
| 560 if (has_alpha) { | |
| 561 // Compute the max(ri, gi, bi) for each pixel. | |
| 562 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 | |
| 563 __m128i a = _mm_srli_epi32(accum0, 8); | |
| 564 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
| 565 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. | |
| 566 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 | |
| 567 a = _mm_srli_epi32(accum0, 16); | |
| 568 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
| 569 b = _mm_max_epu8(a, b); // Max of r and g and b. | |
| 570 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 | |
| 571 b = _mm_slli_epi32(b, 24); | |
| 572 | |
| 573 // Make sure the value of alpha channel is always larger than maximum | |
| 574 // value of color channels. | |
| 575 accum0 = _mm_max_epu8(b, accum0); | |
| 576 } else { | |
| 577 // Set value of alpha channels to 0xFF. | |
| 578 __m128i mask = _mm_set1_epi32(0xff000000); | |
| 579 accum0 = _mm_or_si128(accum0, mask); | |
| 580 } | |
| 581 | |
| 582 // Store the convolution result (16 bytes) and advance the pixel pointers. | |
| 583 _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0); | |
| 584 out_row += 16; | |
| 585 } | |
| 586 | |
| 587 // When the width of the output is not divisible by 4, We need to save one | |
| 588 // pixel (4 bytes) each time. And also the fourth pixel is always absent. | |
| 589 if (pixel_width & 3) { | |
| 590 accum0 = _mm_setzero_si128(); | |
| 591 accum1 = _mm_setzero_si128(); | |
| 592 accum2 = _mm_setzero_si128(); | |
| 593 for (int filter_y = 0; filter_y < filter_length; ++filter_y) { | |
| 594 coeff16 = _mm_set1_epi16(filter_values[filter_y]); | |
| 595 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
| 596 src = reinterpret_cast<const __m128i*>( | |
| 597 &source_data_rows[filter_y][width<<2]); | |
| 598 __m128i src8 = _mm_loadu_si128(src); | |
| 599 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
| 600 __m128i src16 = _mm_unpacklo_epi8(src8, zero); | |
| 601 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 602 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 603 // [32] a0 b0 g0 r0 | |
| 604 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 605 accum0 = _mm_add_epi32(accum0, t); | |
| 606 // [32] a1 b1 g1 r1 | |
| 607 t = _mm_unpackhi_epi16(mul_lo, mul_hi); | |
| 608 accum1 = _mm_add_epi32(accum1, t); | |
| 609 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
| 610 src16 = _mm_unpackhi_epi8(src8, zero); | |
| 611 mul_hi = _mm_mulhi_epi16(src16, coeff16); | |
| 612 mul_lo = _mm_mullo_epi16(src16, coeff16); | |
| 613 // [32] a2 b2 g2 r2 | |
| 614 t = _mm_unpacklo_epi16(mul_lo, mul_hi); | |
| 615 accum2 = _mm_add_epi32(accum2, t); | |
| 616 } | |
| 617 | |
| 618 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); | |
| 619 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); | |
| 620 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); | |
| 621 // [16] a1 b1 g1 r1 a0 b0 g0 r0 | |
| 622 accum0 = _mm_packs_epi32(accum0, accum1); | |
| 623 // [16] a3 b3 g3 r3 a2 b2 g2 r2 | |
| 624 accum2 = _mm_packs_epi32(accum2, zero); | |
| 625 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | |
| 626 accum0 = _mm_packus_epi16(accum0, accum2); | |
| 627 if (has_alpha) { | |
| 628 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 | |
| 629 __m128i a = _mm_srli_epi32(accum0, 8); | |
| 630 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
| 631 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. | |
| 632 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 | |
| 633 a = _mm_srli_epi32(accum0, 16); | |
| 634 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | |
| 635 b = _mm_max_epu8(a, b); // Max of r and g and b. | |
| 636 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 | |
| 637 b = _mm_slli_epi32(b, 24); | |
| 638 accum0 = _mm_max_epu8(b, accum0); | |
| 639 } else { | |
| 640 __m128i mask = _mm_set1_epi32(0xff000000); | |
| 641 accum0 = _mm_or_si128(accum0, mask); | |
| 642 } | |
| 643 | |
| 644 for (int out_x = width; out_x < pixel_width; out_x++) { | |
| 645 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0); | |
| 646 accum0 = _mm_srli_si128(accum0, 4); | |
| 647 out_row += 4; | |
| 648 } | |
| 649 } | |
| 650 #endif | |
| 651 } | 240 } |
| 652 | 241 |
| 653 } // namespace | 242 } // namespace |
| 654 | 243 |
| 655 // ConvolutionFilter1D --------------------------------------------------------- | 244 // ConvolutionFilter1D --------------------------------------------------------- |
| 656 | 245 |
| 657 ConvolutionFilter1D::ConvolutionFilter1D() | 246 ConvolutionFilter1D::ConvolutionFilter1D() |
| 658 : max_filter_(0) { | 247 : max_filter_(0) { |
| 659 } | 248 } |
| 660 | 249 |
| (...skipping 47 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 708 // We pushed filter_length elements onto filter_values_ | 297 // We pushed filter_length elements onto filter_values_ |
| 709 instance.data_location = (static_cast<int>(filter_values_.size()) - | 298 instance.data_location = (static_cast<int>(filter_values_.size()) - |
| 710 filter_length); | 299 filter_length); |
| 711 instance.offset = filter_offset; | 300 instance.offset = filter_offset; |
| 712 instance.length = filter_length; | 301 instance.length = filter_length; |
| 713 filters_.push_back(instance); | 302 filters_.push_back(instance); |
| 714 | 303 |
| 715 max_filter_ = std::max(max_filter_, filter_length); | 304 max_filter_ = std::max(max_filter_, filter_length); |
| 716 } | 305 } |
| 717 | 306 |
| 307 typedef void (*ConvolveVertically_pointer)( | |
| 308 const ConvolutionFilter1D::Fixed* filter_values, | |
| 309 int filter_length, | |
| 310 unsigned char* const* source_data_rows, | |
| 311 int pixel_width, | |
| 312 unsigned char* out_row, | |
| 313 bool has_alpha); | |
| 314 typedef void (*Convolve4RowsHorizontally_pointer)( | |
| 315 const unsigned char* src_data[4], | |
| 316 const ConvolutionFilter1D& filter, | |
| 317 unsigned char* out_row[4]); | |
| 318 typedef void (*ConvolveHorizontally_pointer)( | |
| 319 const unsigned char* src_data, | |
| 320 const ConvolutionFilter1D& filter, | |
| 321 unsigned char* out_row); | |
| 322 | |
| 323 struct ConvolveProcs { | |
| 324 // This is how many extra pixels may be read by the | |
| 325 // conolve*horizontally functions. | |
| 326 int extra_horizontal_reads; | |
| 327 ConvolveVertically_pointer convolve_vertically; | |
| 328 Convolve4RowsHorizontally_pointer convolve_4rows_horizontally; | |
| 329 ConvolveHorizontally_pointer convolve_horizontally; | |
| 330 }; | |
| 331 | |
| 332 void SetupSIMD(ConvolveProcs *procs) { | |
| 333 #ifdef SIMD_SSE2 | |
| 334 base::CPU cpu; | |
| 335 if (cpu.has_sse2()) { | |
| 336 procs->extra_horizontal_reads = 3; | |
| 337 procs->convolve_vertically = &ConvolveVertically_SSE2; | |
| 338 procs->convolve_4rows_horizontally = &Convolve4RowsHorizontally_SSE2; | |
| 339 procs->convolve_horizontally = &ConvolveHorizontally_SSE2; | |
| 340 } | |
| 341 #endif | |
| 342 } | |
| 343 | |
| 718 void BGRAConvolve2D(const unsigned char* source_data, | 344 void BGRAConvolve2D(const unsigned char* source_data, |
| 719 int source_byte_row_stride, | 345 int source_byte_row_stride, |
| 720 bool source_has_alpha, | 346 bool source_has_alpha, |
| 721 const ConvolutionFilter1D& filter_x, | 347 const ConvolutionFilter1D& filter_x, |
| 722 const ConvolutionFilter1D& filter_y, | 348 const ConvolutionFilter1D& filter_y, |
| 723 int output_byte_row_stride, | 349 int output_byte_row_stride, |
| 724 unsigned char* output, | 350 unsigned char* output, |
| 725 bool use_sse2) { | 351 bool use_simd_if_possible) { |
| 726 #if !defined(SIMD_SSE2) | 352 ConvolveProcs simd; |
| 727 // Even we have runtime support for SSE2 instructions, since the binary | 353 simd.extra_horizontal_reads = 0; |
| 728 // was not built with SSE2 support, we had to fallback to C version. | 354 simd.convolve_vertically = NULL; |
| 729 use_sse2 = false; | 355 simd.convolve_4rows_horizontally = NULL; |
| 730 #endif | 356 simd.convolve_horizontally = NULL; |
| 357 if (use_simd_if_possible) { | |
| 358 SetupSIMD(&simd); | |
| 359 } | |
| 731 | 360 |
| 732 int max_y_filter_size = filter_y.max_filter(); | 361 int max_y_filter_size = filter_y.max_filter(); |
| 733 | 362 |
| 734 // The next row in the input that we will generate a horizontally | 363 // The next row in the input that we will generate a horizontally |
| 735 // convolved row for. If the filter doesn't start at the beginning of the | 364 // convolved row for. If the filter doesn't start at the beginning of the |
| 736 // image (this is the case when we are only resizing a subset), then we | 365 // image (this is the case when we are only resizing a subset), then we |
| 737 // don't want to generate any output rows before that. Compute the starting | 366 // don't want to generate any output rows before that. Compute the starting |
| 738 // row for convolution as the first pixel for the first vertical filter. | 367 // row for convolution as the first pixel for the first vertical filter. |
| 739 int filter_offset, filter_length; | 368 int filter_offset, filter_length; |
| 740 const ConvolutionFilter1D::Fixed* filter_values = | 369 const ConvolutionFilter1D::Fixed* filter_values = |
| 741 filter_y.FilterForValue(0, &filter_offset, &filter_length); | 370 filter_y.FilterForValue(0, &filter_offset, &filter_length); |
| 742 int next_x_row = filter_offset; | 371 int next_x_row = filter_offset; |
| 743 | 372 |
| 744 // We loop over each row in the input doing a horizontal convolution. This | 373 // We loop over each row in the input doing a horizontal convolution. This |
| 745 // will result in a horizontally convolved image. We write the results into | 374 // will result in a horizontally convolved image. We write the results into |
| 746 // a circular buffer of convolved rows and do vertical convolution as rows | 375 // a circular buffer of convolved rows and do vertical convolution as rows |
| 747 // are available. This prevents us from having to store the entire | 376 // are available. This prevents us from having to store the entire |
| 748 // intermediate image and helps cache coherency. | 377 // intermediate image and helps cache coherency. |
| 749 // We will need four extra rows to allow horizontal convolution could be done | 378 // We will need four extra rows to allow horizontal convolution could be done |
| 750 // simultaneously. We also padding each row in row buffer to be aligned-up to | 379 // simultaneously. We also padding each row in row buffer to be aligned-up to |
| 751 // 16 bytes. | 380 // 16 bytes. |
| 752 // TODO(jiesun): We do not use aligned load from row buffer in vertical | 381 // TODO(jiesun): We do not use aligned load from row buffer in vertical |
| 753 // convolution pass yet. Somehow Windows does not like it. | 382 // convolution pass yet. Somehow Windows does not like it. |
| 754 int row_buffer_width = (filter_x.num_values() + 15) & ~0xF; | 383 int row_buffer_width = (filter_x.num_values() + 15) & ~0xF; |
| 755 int row_buffer_height = max_y_filter_size + (use_sse2 ? 4 : 0); | 384 int row_buffer_height = max_y_filter_size + |
| 385 (simd.convolve_4rows_horizontally ? 4 : 0); | |
| 756 CircularRowBuffer row_buffer(row_buffer_width, | 386 CircularRowBuffer row_buffer(row_buffer_width, |
| 757 row_buffer_height, | 387 row_buffer_height, |
| 758 filter_offset); | 388 filter_offset); |
| 759 | 389 |
| 760 // Loop over every possible output row, processing just enough horizontal | 390 // Loop over every possible output row, processing just enough horizontal |
| 761 // convolutions to run each subsequent vertical convolution. | 391 // convolutions to run each subsequent vertical convolution. |
| 762 SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4); | 392 SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4); |
| 763 int num_output_rows = filter_y.num_values(); | 393 int num_output_rows = filter_y.num_values(); |
| 764 | 394 |
| 765 // We need to check which is the last line to convolve before we advance 4 | 395 // We need to check which is the last line to convolve before we advance 4 |
| 766 // lines in one iteration. | 396 // lines in one iteration. |
| 767 int last_filter_offset, last_filter_length; | 397 int last_filter_offset, last_filter_length; |
| 768 | 398 |
| 769 // SSE2 can access up to 3 extra pixels past the end of the | 399 // SSE2 can access up to 3 extra pixels past the end of the |
| 770 // buffer. At the bottom of the image, we have to be careful | 400 // buffer. At the bottom of the image, we have to be careful |
| 771 // not to access data past the end of the buffer. Normally | 401 // not to access data past the end of the buffer. Normally |
| 772 // we fall back to the C++ implementation for the last row. | 402 // we fall back to the C++ implementation for the last row. |
| 773 // If the last row is less than 3 pixels wide, we may have to fall | 403 // If the last row is less than 3 pixels wide, we may have to fall |
| 774 // back to the C++ version for more rows. Compute how many | 404 // back to the C++ version for more rows. Compute how many |
| 775 // rows we need to avoid the SSE implementation for here. | 405 // rows we need to avoid the SSE implementation for here. |
| 776 filter_x.FilterForValue(filter_x.num_values() - 1, &last_filter_offset, | 406 filter_x.FilterForValue(filter_x.num_values() - 1, &last_filter_offset, |
| 777 &last_filter_length); | 407 &last_filter_length); |
| 778 int avoid_sse_rows = 1 + 3/(last_filter_offset + last_filter_length); | 408 int avoid_simd_rows = 1 + simd.extra_horizontal_reads / |
| 409 (last_filter_offset + last_filter_length); | |
| 779 | 410 |
| 780 filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset, | 411 filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset, |
| 781 &last_filter_length); | 412 &last_filter_length); |
| 782 | 413 |
| 783 for (int out_y = 0; out_y < num_output_rows; out_y++) { | 414 for (int out_y = 0; out_y < num_output_rows; out_y++) { |
| 784 filter_values = filter_y.FilterForValue(out_y, | 415 filter_values = filter_y.FilterForValue(out_y, |
| 785 &filter_offset, &filter_length); | 416 &filter_offset, &filter_length); |
| 786 | 417 |
| 787 // Generate output rows until we have enough to run the current filter. | 418 // Generate output rows until we have enough to run the current filter. |
| 788 if (use_sse2) { | 419 while (next_x_row < filter_offset + filter_length) { |
| 789 while (next_x_row < filter_offset + filter_length) { | 420 if (simd.convolve_4rows_horizontally && |
| 790 if (next_x_row + 3 < last_filter_offset + last_filter_length - | 421 next_x_row + 3 < last_filter_offset + last_filter_length - |
| 791 avoid_sse_rows) { | 422 avoid_simd_rows) { |
| 792 const unsigned char* src[4]; | 423 const unsigned char* src[4]; |
| 793 unsigned char* out_row[4]; | 424 unsigned char* out_row[4]; |
| 794 for (int i = 0; i < 4; ++i) { | 425 for (int i = 0; i < 4; ++i) { |
| 795 src[i] = &source_data[(next_x_row + i) * source_byte_row_stride]; | 426 src[i] = &source_data[(next_x_row + i) * source_byte_row_stride]; |
| 796 out_row[i] = row_buffer.AdvanceRow(); | 427 out_row[i] = row_buffer.AdvanceRow(); |
| 797 } | 428 } |
| 798 ConvolveHorizontally4_SSE2(src, filter_x, out_row); | 429 simd.convolve_4rows_horizontally(src, filter_x, out_row); |
| 799 next_x_row += 4; | 430 next_x_row += 4; |
| 431 } else { | |
| 432 // Check if we need to avoid SSE2 for this row. | |
| 433 if (simd.convolve_horizontally && | |
| 434 next_x_row < last_filter_offset + last_filter_length - | |
| 435 avoid_simd_rows) { | |
| 436 simd.convolve_horizontally( | |
| 437 &source_data[next_x_row * source_byte_row_stride], | |
| 438 filter_x, row_buffer.AdvanceRow()); | |
| 800 } else { | 439 } else { |
| 801 // Check if we need to avoid SSE2 for this row. | 440 if (source_has_alpha) { |
|
Stephen White
2013/04/06 22:44:33
Not new to this patch, but it seems a little stran
| |
| 802 if (next_x_row >= last_filter_offset + last_filter_length - | 441 ConvolveHorizontally<true>( |
| 803 avoid_sse_rows) { | 442 &source_data[next_x_row * source_byte_row_stride], |
| 804 if (source_has_alpha) { | 443 filter_x, row_buffer.AdvanceRow()); |
| 805 ConvolveHorizontally<true>( | |
| 806 &source_data[next_x_row * source_byte_row_stride], | |
| 807 filter_x, row_buffer.AdvanceRow()); | |
| 808 } else { | |
| 809 ConvolveHorizontally<false>( | |
| 810 &source_data[next_x_row * source_byte_row_stride], | |
| 811 filter_x, row_buffer.AdvanceRow()); | |
| 812 } | |
| 813 } else { | 444 } else { |
| 814 ConvolveHorizontally_SSE2( | 445 ConvolveHorizontally<false>( |
| 815 &source_data[next_x_row * source_byte_row_stride], | 446 &source_data[next_x_row * source_byte_row_stride], |
| 816 filter_x, row_buffer.AdvanceRow()); | 447 filter_x, row_buffer.AdvanceRow()); |
| 817 } | 448 } |
| 818 next_x_row++; | |
| 819 } | |
| 820 } | |
| 821 } else { | |
| 822 while (next_x_row < filter_offset + filter_length) { | |
| 823 if (source_has_alpha) { | |
| 824 ConvolveHorizontally<true>( | |
| 825 &source_data[next_x_row * source_byte_row_stride], | |
| 826 filter_x, row_buffer.AdvanceRow()); | |
| 827 } else { | |
| 828 ConvolveHorizontally<false>( | |
| 829 &source_data[next_x_row * source_byte_row_stride], | |
| 830 filter_x, row_buffer.AdvanceRow()); | |
| 831 } | 449 } |
| 832 next_x_row++; | 450 next_x_row++; |
| 833 } | 451 } |
| 834 } | 452 } |
| 835 | 453 |
| 836 // Compute where in the output image this row of final data will go. | 454 // Compute where in the output image this row of final data will go. |
| 837 unsigned char* cur_output_row = &output[out_y * output_byte_row_stride]; | 455 unsigned char* cur_output_row = &output[out_y * output_byte_row_stride]; |
| 838 | 456 |
| 839 // Get the list of rows that the circular buffer has, in order. | 457 // Get the list of rows that the circular buffer has, in order. |
| 840 int first_row_in_circular_buffer; | 458 int first_row_in_circular_buffer; |
| 841 unsigned char* const* rows_to_convolve = | 459 unsigned char* const* rows_to_convolve = |
| 842 row_buffer.GetRowAddresses(&first_row_in_circular_buffer); | 460 row_buffer.GetRowAddresses(&first_row_in_circular_buffer); |
| 843 | 461 |
| 844 // Now compute the start of the subset of those rows that the filter | 462 // Now compute the start of the subset of those rows that the filter |
| 845 // needs. | 463 // needs. |
| 846 unsigned char* const* first_row_for_filter = | 464 unsigned char* const* first_row_for_filter = |
| 847 &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; | 465 &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; |
| 848 | 466 |
| 849 if (source_has_alpha) { | 467 if (simd.convolve_vertically) { |
| 850 if (use_sse2) { | 468 simd.convolve_vertically(filter_values, filter_length, |
| 851 ConvolveVertically_SSE2<true>(filter_values, filter_length, | 469 first_row_for_filter, |
| 852 first_row_for_filter, | 470 filter_x.num_values(), cur_output_row, |
| 853 filter_x.num_values(), cur_output_row); | 471 source_has_alpha); |
| 854 } else { | |
| 855 ConvolveVertically<true>(filter_values, filter_length, | |
| 856 first_row_for_filter, | |
| 857 filter_x.num_values(), cur_output_row); | |
| 858 } | |
| 859 } else { | 472 } else { |
| 860 if (use_sse2) { | 473 ConvolveVertically(filter_values, filter_length, |
| 861 ConvolveVertically_SSE2<false>(filter_values, filter_length, | 474 first_row_for_filter, |
| 862 first_row_for_filter, | 475 filter_x.num_values(), cur_output_row, |
| 863 filter_x.num_values(), cur_output_row); | 476 source_has_alpha); |
| 864 } else { | |
| 865 ConvolveVertically<false>(filter_values, filter_length, | |
| 866 first_row_for_filter, | |
| 867 filter_x.num_values(), cur_output_row); | |
| 868 } | |
| 869 } | 477 } |
| 870 } | 478 } |
| 871 } | 479 } |
| 872 | 480 |
| 873 } // namespace skia | 481 } // namespace skia |
| OLD | NEW |