| Index: cc/trees/layer_tree_host_common.cc
|
| diff --git a/cc/trees/layer_tree_host_common.cc b/cc/trees/layer_tree_host_common.cc
|
| index 770a408f7982ef0cf9ac5f55bc443acac955e182..27aeb700d4bb9e85c00e63e423d8cbfb6cf563a1 100644
|
| --- a/cc/trees/layer_tree_host_common.cc
|
| +++ b/cc/trees/layer_tree_host_common.cc
|
| @@ -22,1204 +22,1561 @@
|
|
|
| namespace cc {
|
|
|
| -ScrollAndScaleSet::ScrollAndScaleSet()
|
| -{
|
| -}
|
| +ScrollAndScaleSet::ScrollAndScaleSet() {}
|
| +
|
| +ScrollAndScaleSet::~ScrollAndScaleSet() {}
|
|
|
| -ScrollAndScaleSet::~ScrollAndScaleSet()
|
| -{
|
| +static void SortLayers(std::vector<scoped_refptr<Layer> >::iterator forst,
|
| + std::vector<scoped_refptr<Layer> >::iterator end,
|
| + void* layer_sorter) {
|
| + NOTREACHED();
|
| }
|
|
|
| -static void sortLayers(std::vector<scoped_refptr<Layer> >::iterator forst, std::vector<scoped_refptr<Layer> >::iterator end, void* layerSorter)
|
| -{
|
| - NOTREACHED();
|
| +static void SortLayers(std::vector<LayerImpl*>::iterator first,
|
| + std::vector<LayerImpl*>::iterator end,
|
| + LayerSorter* layer_sorter) {
|
| + DCHECK(layer_sorter);
|
| + TRACE_EVENT0("cc", "LayerTreeHostCommon::SortLayers");
|
| + layer_sorter->Sort(first, end);
|
| }
|
|
|
| -static void sortLayers(std::vector<LayerImpl*>::iterator first, std::vector<LayerImpl*>::iterator end, LayerSorter* layerSorter)
|
| -{
|
| - DCHECK(layerSorter);
|
| - TRACE_EVENT0("cc", "layer_tree_host_common::sortLayers");
|
| - layerSorter->Sort(first, end);
|
| +inline gfx::Rect CalculateVisibleRectWithCachedLayerRect(
|
| + gfx::Rect target_surface_rect,
|
| + gfx::Rect layer_bound_rect,
|
| + gfx::Rect layer_rect_in_target_space,
|
| + const gfx::Transform& transform) {
|
| + // Is this layer fully contained within the target surface?
|
| + if (target_surface_rect.Contains(layer_rect_in_target_space))
|
| + return layer_bound_rect;
|
| +
|
| + // If the layer doesn't fill up the entire surface, then find the part of
|
| + // the surface rect where the layer could be visible. This avoids trying to
|
| + // project surface rect points that are behind the projection point.
|
| + gfx::Rect minimal_surface_rect = target_surface_rect;
|
| + minimal_surface_rect.Intersect(layer_rect_in_target_space);
|
| +
|
| + // Project the corners of the target surface rect into the layer space.
|
| + // This bounding rectangle may be larger than it needs to be (being
|
| + // axis-aligned), but is a reasonable filter on the space to consider.
|
| + // Non-invertible transforms will create an empty rect here.
|
| +
|
| + gfx::Transform surface_to_layer(gfx::Transform::kSkipInitialization);
|
| + if (!transform.GetInverse(&surface_to_layer)) {
|
| + // TODO(shawnsingh): Either we need to handle uninvertible transforms
|
| + // here, or DCHECK that the transform is invertible.
|
| + }
|
| + gfx::Rect layer_rect = gfx::ToEnclosingRect(MathUtil::ProjectClippedRect(
|
| + surface_to_layer, gfx::RectF(minimal_surface_rect)));
|
| + layer_rect.Intersect(layer_bound_rect);
|
| + return layer_rect;
|
| }
|
|
|
| -inline gfx::Rect calculateVisibleRectWithCachedLayerRect(const gfx::Rect& targetSurfaceRect, const gfx::Rect& layerBoundRect, const gfx::Rect& layerRectInTargetSpace, const gfx::Transform& transform)
|
| -{
|
| - // Is this layer fully contained within the target surface?
|
| - if (targetSurfaceRect.Contains(layerRectInTargetSpace))
|
| - return layerBoundRect;
|
| -
|
| - // If the layer doesn't fill up the entire surface, then find the part of
|
| - // the surface rect where the layer could be visible. This avoids trying to
|
| - // project surface rect points that are behind the projection point.
|
| - gfx::Rect minimalSurfaceRect = targetSurfaceRect;
|
| - minimalSurfaceRect.Intersect(layerRectInTargetSpace);
|
| -
|
| - // Project the corners of the target surface rect into the layer space.
|
| - // This bounding rectangle may be larger than it needs to be (being
|
| - // axis-aligned), but is a reasonable filter on the space to consider.
|
| - // Non-invertible transforms will create an empty rect here.
|
| -
|
| - gfx::Transform surfaceToLayer(gfx::Transform::kSkipInitialization);
|
| - if (!transform.GetInverse(&surfaceToLayer)) {
|
| - // TODO(shawnsingh): Either we need to handle uninvertible transforms
|
| - // here, or DCHECK that the transform is invertible.
|
| - }
|
| - gfx::Rect layerRect = gfx::ToEnclosingRect(MathUtil::ProjectClippedRect(surfaceToLayer, gfx::RectF(minimalSurfaceRect)));
|
| - layerRect.Intersect(layerBoundRect);
|
| - return layerRect;
|
| +gfx::Rect LayerTreeHostCommon::CalculateVisibleRect(
|
| + gfx::Rect target_surface_rect,
|
| + gfx::Rect layer_bound_rect,
|
| + const gfx::Transform& transform) {
|
| + gfx::Rect layer_in_surface_space =
|
| + MathUtil::MapClippedRect(transform, layer_bound_rect);
|
| + return CalculateVisibleRectWithCachedLayerRect(
|
| + target_surface_rect, layer_bound_rect, layer_in_surface_space, transform);
|
| }
|
|
|
| -gfx::Rect LayerTreeHostCommon::calculateVisibleRect(const gfx::Rect& targetSurfaceRect, const gfx::Rect& layerBoundRect, const gfx::Transform& transform)
|
| -{
|
| - gfx::Rect layerInSurfaceSpace = MathUtil::MapClippedRect(transform, layerBoundRect);
|
| - return calculateVisibleRectWithCachedLayerRect(targetSurfaceRect, layerBoundRect, layerInSurfaceSpace, transform);
|
| +template <typename LayerType> static inline bool IsRootLayer(LayerType* layer) {
|
| + return !layer->parent();
|
| }
|
|
|
| template <typename LayerType>
|
| -static inline bool isRootLayer(LayerType* layer)
|
| -{
|
| - return !layer->parent();
|
| +static inline bool LayerIsInExisting3DRenderingContext(LayerType* layer) {
|
| + // According to current W3C spec on CSS transforms, a layer is part of an
|
| + // established 3d rendering context if its parent has transform-style of
|
| + // preserves-3d.
|
| + return layer->parent() && layer->parent()->preserves_3d();
|
| }
|
|
|
| -template<typename LayerType>
|
| -static inline bool layerIsInExisting3DRenderingContext(LayerType* layer)
|
| -{
|
| - // According to current W3C spec on CSS transforms, a layer is part of an established
|
| - // 3d rendering context if its parent has transform-style of preserves-3d.
|
| - return layer->parent() && layer->parent()->preserves_3d();
|
| +template <typename LayerType>
|
| +static bool IsRootLayerOfNewRenderingContext(LayerType* layer) {
|
| + // According to current W3C spec on CSS transforms (Section 6.1), a layer is
|
| + // the beginning of 3d rendering context if its parent does not have
|
| + // transform-style: preserve-3d, but this layer itself does.
|
| + if (layer->parent())
|
| + return !layer->parent()->preserves_3d() && layer->preserves_3d();
|
| +
|
| + return layer->preserves_3d();
|
| }
|
|
|
| -template<typename LayerType>
|
| -static bool isRootLayerOfNewRenderingContext(LayerType* layer)
|
| -{
|
| - // According to current W3C spec on CSS transforms (Section 6.1), a layer is the
|
| - // beginning of 3d rendering context if its parent does not have transform-style:
|
| - // preserve-3d, but this layer itself does.
|
| - if (layer->parent())
|
| - return !layer->parent()->preserves_3d() && layer->preserves_3d();
|
| -
|
| - return layer->preserves_3d();
|
| +template <typename LayerType>
|
| +static bool IsLayerBackFaceVisible(LayerType* layer) {
|
| + // The current W3C spec on CSS transforms says that backface visibility should
|
| + // be determined differently depending on whether the layer is in a "3d
|
| + // rendering context" or not. For Chromium code, we can determine whether we
|
| + // are in a 3d rendering context by checking if the parent preserves 3d.
|
| +
|
| + if (LayerIsInExisting3DRenderingContext(layer))
|
| + return layer->draw_transform().IsBackFaceVisible();
|
| +
|
| + // In this case, either the layer establishes a new 3d rendering context, or
|
| + // is not in a 3d rendering context at all.
|
| + return layer->transform().IsBackFaceVisible();
|
| }
|
|
|
| -template<typename LayerType>
|
| -static bool isLayerBackFaceVisible(LayerType* layer)
|
| -{
|
| - // The current W3C spec on CSS transforms says that backface visibility should be
|
| - // determined differently depending on whether the layer is in a "3d rendering
|
| - // context" or not. For Chromium code, we can determine whether we are in a 3d
|
| - // rendering context by checking if the parent preserves 3d.
|
| -
|
| - if (layerIsInExisting3DRenderingContext(layer))
|
| - return layer->draw_transform().IsBackFaceVisible();
|
| +template <typename LayerType>
|
| +static bool IsSurfaceBackFaceVisible(LayerType* layer,
|
| + const gfx::Transform& draw_transform) {
|
| + if (LayerIsInExisting3DRenderingContext(layer))
|
| + return draw_transform.IsBackFaceVisible();
|
|
|
| - // In this case, either the layer establishes a new 3d rendering context, or is not in
|
| - // a 3d rendering context at all.
|
| + if (IsRootLayerOfNewRenderingContext(layer))
|
| return layer->transform().IsBackFaceVisible();
|
| -}
|
| -
|
| -template<typename LayerType>
|
| -static bool isSurfaceBackFaceVisible(LayerType* layer, const gfx::Transform& drawTransform)
|
| -{
|
| - if (layerIsInExisting3DRenderingContext(layer))
|
| - return drawTransform.IsBackFaceVisible();
|
|
|
| - if (isRootLayerOfNewRenderingContext(layer))
|
| - return layer->transform().IsBackFaceVisible();
|
| -
|
| - // If the renderSurface is not part of a new or existing rendering context, then the
|
| - // layers that contribute to this surface will decide back-face visibility for themselves.
|
| - return false;
|
| + // If the render_surface is not part of a new or existing rendering context,
|
| + // then the layers that contribute to this surface will decide back-face
|
| + // visibility for themselves.
|
| + return false;
|
| }
|
|
|
| -template<typename LayerType>
|
| -static inline bool layerClipsSubtree(LayerType* layer)
|
| -{
|
| - return layer->masks_to_bounds() || layer->mask_layer();
|
| +template <typename LayerType>
|
| +static inline bool LayerClipsSubtree(LayerType* layer) {
|
| + return layer->masks_to_bounds() || layer->mask_layer();
|
| }
|
|
|
| -template<typename LayerType>
|
| -static gfx::Rect calculateVisibleContentRect(LayerType* layer, const gfx::Rect& ancestorClipRectInDescendantSurfaceSpace, const gfx::Rect& layerRectInTargetSpace)
|
| -{
|
| - DCHECK(layer->render_target());
|
| -
|
| - // Nothing is visible if the layer bounds are empty.
|
| - if (!layer->DrawsContent() || layer->content_bounds().IsEmpty() || layer->drawable_content_rect().IsEmpty())
|
| - return gfx::Rect();
|
| -
|
| - // Compute visible bounds in target surface space.
|
| - gfx::Rect visibleRectInTargetSurfaceSpace = layer->drawable_content_rect();
|
| -
|
| - if (!layer->render_target()->render_surface()->clip_rect().IsEmpty()) {
|
| - // In this case the target surface does clip layers that contribute to
|
| - // it. So, we have to convert the current surface's clipRect from its
|
| - // ancestor surface space to the current (descendant) surface
|
| - // space. This conversion is done outside this function so that it can
|
| - // be cached instead of computing it redundantly for every layer.
|
| - visibleRectInTargetSurfaceSpace.Intersect(ancestorClipRectInDescendantSurfaceSpace);
|
| - }
|
| -
|
| - if (visibleRectInTargetSurfaceSpace.IsEmpty())
|
| - return gfx::Rect();
|
| -
|
| - return calculateVisibleRectWithCachedLayerRect(visibleRectInTargetSurfaceSpace, gfx::Rect(gfx::Point(), layer->content_bounds()), layerRectInTargetSpace, layer->draw_transform());
|
| +template <typename LayerType>
|
| +static gfx::Rect CalculateVisibleContentRect(
|
| + LayerType* layer,
|
| + gfx::Rect ancestor_clip_rect_in_descendant_surface_space,
|
| + gfx::Rect layer_rect_in_target_space) {
|
| + DCHECK(layer->render_target());
|
| +
|
| + // Nothing is visible if the layer bounds are empty.
|
| + if (!layer->DrawsContent() || layer->content_bounds().IsEmpty() ||
|
| + layer->drawable_content_rect().IsEmpty())
|
| + return gfx::Rect();
|
| +
|
| + // Compute visible bounds in target surface space.
|
| + gfx::Rect visible_rect_in_target_surface_space =
|
| + layer->drawable_content_rect();
|
| +
|
| + if (!layer->render_target()->render_surface()->clip_rect().IsEmpty()) {
|
| + // In this case the target surface does clip layers that contribute to
|
| + // it. So, we have to convert the current surface's clipRect from its
|
| + // ancestor surface space to the current (descendant) surface
|
| + // space. This conversion is done outside this function so that it can
|
| + // be cached instead of computing it redundantly for every layer.
|
| + visible_rect_in_target_surface_space.Intersect(
|
| + ancestor_clip_rect_in_descendant_surface_space);
|
| + }
|
| +
|
| + if (visible_rect_in_target_surface_space.IsEmpty())
|
| + return gfx::Rect();
|
| +
|
| + return CalculateVisibleRectWithCachedLayerRect(
|
| + visible_rect_in_target_surface_space,
|
| + gfx::Rect(gfx::Point(), layer->content_bounds()),
|
| + layer_rect_in_target_space,
|
| + layer->draw_transform());
|
| }
|
|
|
| -static inline bool transformToParentIsKnown(LayerImpl*)
|
| -{
|
| - return true;
|
| -}
|
| +static inline bool TransformToParentIsKnown(LayerImpl* layer) { return true; }
|
|
|
| -static inline bool transformToParentIsKnown(Layer* layer)
|
| -{
|
| +static inline bool TransformToParentIsKnown(Layer* layer) {
|
|
|
| - return !layer->TransformIsAnimating();
|
| + return !layer->TransformIsAnimating();
|
| }
|
|
|
| -static inline bool transformToScreenIsKnown(LayerImpl*)
|
| -{
|
| - return true;
|
| -}
|
| +static inline bool TransformToScreenIsKnown(LayerImpl* layer) { return true; }
|
|
|
| -static inline bool transformToScreenIsKnown(Layer* layer)
|
| -{
|
| - return !layer->screen_space_transform_is_animating();
|
| +static inline bool TransformToScreenIsKnown(Layer* layer) {
|
| + return !layer->screen_space_transform_is_animating();
|
| }
|
|
|
| -template<typename LayerType>
|
| -static bool layerShouldBeSkipped(LayerType* layer)
|
| -{
|
| - // Layers can be skipped if any of these conditions are met.
|
| - // - does not draw content.
|
| - // - is transparent
|
| - // - has empty bounds
|
| - // - the layer is not double-sided, but its back face is visible.
|
| - //
|
| - // Some additional conditions need to be computed at a later point after the recursion is finished.
|
| - // - the intersection of render surface content and layer clipRect is empty
|
| - // - the visibleContentRect is empty
|
| - //
|
| - // Note, if the layer should not have been drawn due to being fully transparent,
|
| - // we would have skipped the entire subtree and never made it into this function,
|
| - // so it is safe to omit this check here.
|
| -
|
| - if (!layer->DrawsContent() || layer->bounds().IsEmpty())
|
| - return true;
|
| -
|
| - LayerType* backfaceTestLayer = layer;
|
| - if (layer->use_parent_backface_visibility()) {
|
| - DCHECK(layer->parent());
|
| - DCHECK(!layer->parent()->use_parent_backface_visibility());
|
| - backfaceTestLayer = layer->parent();
|
| - }
|
| +template <typename LayerType>
|
| +static bool LayerShouldBeSkipped(LayerType* layer) {
|
| + // Layers can be skipped if any of these conditions are met.
|
| + // - does not draw content.
|
| + // - is transparent
|
| + // - has empty bounds
|
| + // - the layer is not double-sided, but its back face is visible.
|
| + //
|
| + // Some additional conditions need to be computed at a later point after the
|
| + // recursion is finished.
|
| + // - the intersection of render surface content and layer clipRect is empty
|
| + // - the visibleContentRect is empty
|
| + //
|
| + // Note, if the layer should not have been drawn due to being fully
|
| + // transparent, we would have skipped the entire subtree and never made it
|
| + // into this function, so it is safe to omit this check here.
|
| +
|
| + if (!layer->DrawsContent() || layer->bounds().IsEmpty())
|
| + return true;
|
|
|
| - // The layer should not be drawn if (1) it is not double-sided and (2) the back of the layer is known to be facing the screen.
|
| - if (!backfaceTestLayer->double_sided() && transformToScreenIsKnown(backfaceTestLayer) && isLayerBackFaceVisible(backfaceTestLayer))
|
| - return true;
|
| + LayerType* backface_test_layer = layer;
|
| + if (layer->use_parent_backface_visibility()) {
|
| + DCHECK(layer->parent());
|
| + DCHECK(!layer->parent()->use_parent_backface_visibility());
|
| + backface_test_layer = layer->parent();
|
| + }
|
| +
|
| + // The layer should not be drawn if (1) it is not double-sided and (2) the
|
| + // back of the layer is known to be facing the screen.
|
| + if (!backface_test_layer->double_sided() &&
|
| + TransformToScreenIsKnown(backface_test_layer) &&
|
| + IsLayerBackFaceVisible(backface_test_layer))
|
| + return true;
|
|
|
| - return false;
|
| + return false;
|
| }
|
|
|
| -static inline bool subtreeShouldBeSkipped(LayerImpl* layer)
|
| -{
|
| - // The opacity of a layer always applies to its children (either implicitly
|
| - // via a render surface or explicitly if the parent preserves 3D), so the
|
| - // entire subtree can be skipped if this layer is fully transparent.
|
| - return !layer->opacity();
|
| +static inline bool SubtreeShouldBeSkipped(LayerImpl* layer) {
|
| + // The opacity of a layer always applies to its children (either implicitly
|
| + // via a render surface or explicitly if the parent preserves 3D), so the
|
| + // entire subtree can be skipped if this layer is fully transparent.
|
| + return !layer->opacity();
|
| }
|
|
|
| -static inline bool subtreeShouldBeSkipped(Layer* layer)
|
| -{
|
| - // If the opacity is being animated then the opacity on the main thread is unreliable
|
| - // (since the impl thread may be using a different opacity), so it should not be trusted.
|
| - // In particular, it should not cause the subtree to be skipped.
|
| - // Similarly, for layers that might animate opacity using an impl-only
|
| - // animation, their subtree should also not be skipped.
|
| - return !layer->opacity() && !layer->OpacityIsAnimating() &&
|
| - !layer->OpacityCanAnimateOnImplThread();
|
| +static inline bool SubtreeShouldBeSkipped(Layer* layer) {
|
| + // If the opacity is being animated then the opacity on the main thread is
|
| + // unreliable (since the impl thread may be using a different opacity), so it
|
| + // should not be trusted.
|
| + // In particular, it should not cause the subtree to be skipped.
|
| + // Similarly, for layers that might animate opacity using an impl-only
|
| + // animation, their subtree should also not be skipped.
|
| + return !layer->opacity() && !layer->OpacityIsAnimating() &&
|
| + !layer->OpacityCanAnimateOnImplThread();
|
| }
|
|
|
| // Called on each layer that could be drawn after all information from
|
| // calcDrawProperties has been updated on that layer. May have some false
|
| // positives (e.g. layers get this called on them but don't actually get drawn).
|
| -static inline void updateTilePrioritiesForLayer(LayerImpl* layer)
|
| -{
|
| - layer->UpdateTilePriorities();
|
| -
|
| - // Mask layers don't get this call, so explicitly update them so they can
|
| - // kick off tile rasterization.
|
| - if (layer->mask_layer())
|
| - layer->mask_layer()->UpdateTilePriorities();
|
| - if (layer->replica_layer() && layer->replica_layer()->mask_layer())
|
| - layer->replica_layer()->mask_layer()->UpdateTilePriorities();
|
| +static inline void UpdateTilePrioritiesForLayer(LayerImpl* layer) {
|
| + layer->UpdateTilePriorities();
|
| +
|
| + // Mask layers don't get this call, so explicitly update them so they can
|
| + // kick off tile rasterization.
|
| + if (layer->mask_layer())
|
| + layer->mask_layer()->UpdateTilePriorities();
|
| + if (layer->replica_layer() && layer->replica_layer()->mask_layer())
|
| + layer->replica_layer()->mask_layer()->UpdateTilePriorities();
|
| }
|
|
|
| -static inline void updateTilePrioritiesForLayer(Layer* layer)
|
| -{
|
| -}
|
| -
|
| -template<typename LayerType>
|
| -static bool subtreeShouldRenderToSeparateSurface(LayerType* layer, bool axisAlignedWithRespectToParent)
|
| -{
|
| - //
|
| - // A layer and its descendants should render onto a new RenderSurfaceImpl if any of these rules hold:
|
| - //
|
| -
|
| - // The root layer should always have a renderSurface.
|
| - if (isRootLayer(layer))
|
| - return true;
|
| -
|
| - // If we force it.
|
| - if (layer->force_render_surface())
|
| - return true;
|
| +static inline void UpdateTilePrioritiesForLayer(Layer* layer) {}
|
|
|
| - // If the layer uses a mask.
|
| - if (layer->mask_layer())
|
| - return true;
|
| -
|
| - // If the layer has a reflection.
|
| - if (layer->replica_layer())
|
| - return true;
|
| +template <typename LayerType>
|
| +static bool SubtreeShouldRenderToSeparateSurface(
|
| + LayerType* layer,
|
| + bool axis_aligned_with_respect_to_parent) {
|
| + //
|
| + // A layer and its descendants should render onto a new RenderSurfaceImpl if
|
| + // any of these rules hold:
|
| + //
|
| +
|
| + // The root layer should always have a render_surface.
|
| + if (IsRootLayer(layer))
|
| + return true;
|
|
|
| - // If the layer uses a CSS filter.
|
| - if (!layer->filters().isEmpty() || !layer->background_filters().isEmpty() || layer->filter())
|
| - return true;
|
| + // If we force it.
|
| + if (layer->force_render_surface())
|
| + return true;
|
|
|
| - int numDescendantsThatDrawContent = layer->draw_properties().num_descendants_that_draw_content;
|
| + // If the layer uses a mask.
|
| + if (layer->mask_layer())
|
| + return true;
|
|
|
| - // If the layer flattens its subtree (i.e. the layer doesn't preserve-3d), but it is
|
| - // treated as a 3D object by its parent (i.e. parent does preserve-3d).
|
| - if (layerIsInExisting3DRenderingContext(layer) && !layer->preserves_3d() && numDescendantsThatDrawContent > 0) {
|
| - TRACE_EVENT_INSTANT0("cc", "LayerTreeHostCommon::requireSurface flattening");
|
| - return true;
|
| - }
|
| + // If the layer has a reflection.
|
| + if (layer->replica_layer())
|
| + return true;
|
|
|
| - // If the layer clips its descendants but it is not axis-aligned with respect to its parent.
|
| - bool layerClipsExternalContent = layerClipsSubtree(layer) || layer->HasDelegatedContent();
|
| - if (layerClipsExternalContent && !axisAlignedWithRespectToParent && !layer->draw_properties().descendants_can_clip_selves)
|
| - {
|
| - TRACE_EVENT_INSTANT0("cc", "LayerTreeHostCommon::requireSurface clipping");
|
| - return true;
|
| - }
|
| + // If the layer uses a CSS filter.
|
| + if (!layer->filters().isEmpty() || !layer->background_filters().isEmpty() ||
|
| + layer->filter())
|
| + return true;
|
|
|
| - // If the layer has some translucency and does not have a preserves-3d transform style.
|
| - // This condition only needs a render surface if two or more layers in the
|
| - // subtree overlap. But checking layer overlaps is unnecessarily costly so
|
| - // instead we conservatively create a surface whenever at least two layers
|
| - // draw content for this subtree.
|
| - bool atLeastTwoLayersInSubtreeDrawContent = numDescendantsThatDrawContent > 0 && (layer->DrawsContent() || numDescendantsThatDrawContent > 1);
|
| + int num_descendants_that_draw_content =
|
| + layer->draw_properties().num_descendants_that_draw_content;
|
|
|
| - if (layer->opacity() != 1.f && !layer->preserves_3d() && atLeastTwoLayersInSubtreeDrawContent) {
|
| - TRACE_EVENT_INSTANT0("cc", "LayerTreeHostCommon::requireSurface opacity");
|
| - return true;
|
| - }
|
| + // If the layer flattens its subtree (i.e. the layer doesn't preserve-3d), but
|
| + // it is treated as a 3D object by its parent (i.e. parent does preserve-3d).
|
| + if (LayerIsInExisting3DRenderingContext(layer) && !layer->preserves_3d() &&
|
| + num_descendants_that_draw_content > 0) {
|
| + TRACE_EVENT_INSTANT0(
|
| + "cc",
|
| + "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface flattening");
|
| + return true;
|
| + }
|
| +
|
| + // If the layer clips its descendants but it is not axis-aligned with respect
|
| + // to its parent.
|
| + bool layer_clips_external_content =
|
| + LayerClipsSubtree(layer) || layer->HasDelegatedContent();
|
| + if (layer_clips_external_content && !axis_aligned_with_respect_to_parent &&
|
| + !layer->draw_properties().descendants_can_clip_selves) {
|
| + TRACE_EVENT_INSTANT0(
|
| + "cc",
|
| + "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface clipping");
|
| + return true;
|
| + }
|
| +
|
| + // If the layer has some translucency and does not have a preserves-3d
|
| + // transform style. This condition only needs a render surface if two or more
|
| + // layers in the subtree overlap. But checking layer overlaps is unnecessarily
|
| + // costly so instead we conservatively create a surface whenever at least two
|
| + // layers draw content for this subtree.
|
| + bool at_least_two_layers_in_subtree_draw_content =
|
| + num_descendants_that_draw_content > 0 &&
|
| + (layer->DrawsContent() || num_descendants_that_draw_content > 1);
|
| +
|
| + if (layer->opacity() != 1.f && !layer->preserves_3d() &&
|
| + at_least_two_layers_in_subtree_draw_content) {
|
| + TRACE_EVENT_INSTANT0(
|
| + "cc",
|
| + "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface opacity");
|
| + return true;
|
| + }
|
|
|
| - return false;
|
| + return false;
|
| }
|
|
|
| -gfx::Transform computeScrollCompensationForThisLayer(LayerImpl* scrollingLayer, const gfx::Transform& parentMatrix)
|
| -{
|
| - // For every layer that has non-zero scrollDelta, we have to compute a transform that can undo the
|
| - // scrollDelta translation. In particular, we want this matrix to premultiply a fixed-position layer's
|
| - // parentMatrix, so we design this transform in three steps as follows. The steps described here apply
|
| - // from right-to-left, so Step 1 would be the right-most matrix:
|
| - //
|
| - // Step 1. transform from target surface space to the exact space where scrollDelta is actually applied.
|
| - // -- this is inverse of the matrix in step 3
|
| - // Step 2. undo the scrollDelta
|
| - // -- this is just a translation by scrollDelta.
|
| - // Step 3. transform back to target surface space.
|
| - // -- this transform is the "partialLayerOriginTransform" = (parentMatrix * scale(layer->pageScaleDelta()));
|
| - //
|
| - // These steps create a matrix that both start and end in targetSurfaceSpace. So this matrix can
|
| - // pre-multiply any fixed-position layer's drawTransform to undo the scrollDeltas -- as long as
|
| - // that fixed position layer is fixed onto the same renderTarget as this scrollingLayer.
|
| - //
|
| -
|
| - gfx::Transform partialLayerOriginTransform = parentMatrix;
|
| - partialLayerOriginTransform.PreconcatTransform(scrollingLayer->impl_transform());
|
| -
|
| - gfx::Transform scrollCompensationForThisLayer = partialLayerOriginTransform; // Step 3
|
| - scrollCompensationForThisLayer.Translate(scrollingLayer->scroll_delta().x(), scrollingLayer->scroll_delta().y()); // Step 2
|
| -
|
| - gfx::Transform inversePartialLayerOriginTransform(gfx::Transform::kSkipInitialization);
|
| - if (!partialLayerOriginTransform.GetInverse(&inversePartialLayerOriginTransform)) {
|
| - // TODO(shawnsingh): Either we need to handle uninvertible transforms
|
| - // here, or DCHECK that the transform is invertible.
|
| - }
|
| - scrollCompensationForThisLayer.PreconcatTransform(inversePartialLayerOriginTransform); // Step 1
|
| - return scrollCompensationForThisLayer;
|
| +gfx::Transform ComputeScrollCompensationForThisLayer(
|
| + LayerImpl* scrolling_layer,
|
| + const gfx::Transform& parent_matrix) {
|
| + // For every layer that has non-zero scroll_delta, we have to compute a
|
| + // transform that can undo the scroll_delta translation. In particular, we
|
| + // want this matrix to premultiply a fixed-position layer's parent_matrix, so
|
| + // we design this transform in three steps as follows. The steps described
|
| + // here apply from right-to-left, so Step 1 would be the right-most matrix:
|
| + //
|
| + // Step 1. transform from target surface space to the exact space where
|
| + // scroll_delta is actually applied.
|
| + // -- this is inverse of the matrix in step 3
|
| + // Step 2. undo the scroll_delta
|
| + // -- this is just a translation by scroll_delta.
|
| + // Step 3. transform back to target surface space.
|
| + // -- this transform is the "partial_layer_origin_transform" =
|
| + // (parent_matrix * scale(layer->pageScaleDelta()));
|
| + //
|
| + // These steps create a matrix that both start and end in targetSurfaceSpace.
|
| + // So this matrix can pre-multiply any fixed-position layer's draw_transform
|
| + // to undo the scroll_deltas -- as long as that fixed position layer is fixed
|
| + // onto the same render_target as this scrolling_layer.
|
| + //
|
| +
|
| + gfx::Transform partial_layer_origin_transform = parent_matrix;
|
| + partial_layer_origin_transform.PreconcatTransform(
|
| + scrolling_layer->impl_transform());
|
| +
|
| + gfx::Transform scroll_compensation_for_this_layer =
|
| + partial_layer_origin_transform; // Step 3
|
| + scroll_compensation_for_this_layer.Translate(
|
| + scrolling_layer->scroll_delta().x(),
|
| + scrolling_layer->scroll_delta().y()); // Step 2
|
| +
|
| + gfx::Transform inverse_partial_layer_origin_transform(
|
| + gfx::Transform::kSkipInitialization);
|
| + if (!partial_layer_origin_transform.GetInverse(
|
| + &inverse_partial_layer_origin_transform)) {
|
| + // TODO(shawnsingh): Either we need to handle uninvertible transforms
|
| + // here, or DCHECK that the transform is invertible.
|
| + }
|
| + scroll_compensation_for_this_layer.PreconcatTransform(
|
| + inverse_partial_layer_origin_transform); // Step 1
|
| + return scroll_compensation_for_this_layer;
|
| }
|
|
|
| -gfx::Transform computeScrollCompensationMatrixForChildren(Layer* current_layer, const gfx::Transform& currentParentMatrix, const gfx::Transform& currentScrollCompensation)
|
| -{
|
| - // The main thread (i.e. Layer) does not need to worry about scroll compensation.
|
| - // So we can just return an identity matrix here.
|
| - return gfx::Transform();
|
| +gfx::Transform ComputeScrollCompensationMatrixForChildren(
|
| + Layer* current_layer,
|
| + const gfx::Transform& current_parent_matrix,
|
| + const gfx::Transform& current_scroll_compensation) {
|
| + // The main thread (i.e. Layer) does not need to worry about scroll
|
| + // compensation. So we can just return an identity matrix here.
|
| + return gfx::Transform();
|
| }
|
|
|
| -gfx::Transform computeScrollCompensationMatrixForChildren(LayerImpl* layer, const gfx::Transform& parentMatrix, const gfx::Transform& currentScrollCompensationMatrix)
|
| -{
|
| - // "Total scroll compensation" is the transform needed to cancel out all scrollDelta translations that
|
| - // occurred since the nearest container layer, even if there are renderSurfaces in-between.
|
| - //
|
| - // There are some edge cases to be aware of, that are not explicit in the code:
|
| - // - A layer that is both a fixed-position and container should not be its own container, instead, that means
|
| - // it is fixed to an ancestor, and is a container for any fixed-position descendants.
|
| - // - A layer that is a fixed-position container and has a renderSurface should behave the same as a container
|
| - // without a renderSurface, the renderSurface is irrelevant in that case.
|
| - // - A layer that does not have an explicit container is simply fixed to the viewport.
|
| - // (i.e. the root renderSurface.)
|
| - // - If the fixed-position layer has its own renderSurface, then the renderSurface is
|
| - // the one who gets fixed.
|
| - //
|
| - // This function needs to be called AFTER layers create their own renderSurfaces.
|
| - //
|
| -
|
| - // Avoid the overheads (including stack allocation and matrix initialization/copy) if we know that the scroll compensation doesn't need to be reset or adjusted.
|
| - if (!layer->is_container_for_fixed_position_layers() && layer->scroll_delta().IsZero() && !layer->render_surface())
|
| - return currentScrollCompensationMatrix;
|
| -
|
| - // Start as identity matrix.
|
| - gfx::Transform nextScrollCompensationMatrix;
|
| -
|
| - // If this layer is not a container, then it inherits the existing scroll compensations.
|
| - if (!layer->is_container_for_fixed_position_layers())
|
| - nextScrollCompensationMatrix = currentScrollCompensationMatrix;
|
| -
|
| - // If the current layer has a non-zero scrollDelta, then we should compute its local scrollCompensation
|
| - // and accumulate it to the nextScrollCompensationMatrix.
|
| - if (!layer->scroll_delta().IsZero()) {
|
| - gfx::Transform scrollCompensationForThisLayer = computeScrollCompensationForThisLayer(layer, parentMatrix);
|
| - nextScrollCompensationMatrix.PreconcatTransform(scrollCompensationForThisLayer);
|
| - }
|
| -
|
| - // If the layer created its own renderSurface, we have to adjust nextScrollCompensationMatrix.
|
| - // The adjustment allows us to continue using the scrollCompensation on the next surface.
|
| - // Step 1 (right-most in the math): transform from the new surface to the original ancestor surface
|
| - // Step 2: apply the scroll compensation
|
| - // Step 3: transform back to the new surface.
|
| - if (layer->render_surface() && !nextScrollCompensationMatrix.IsIdentity()) {
|
| - gfx::Transform inverseSurfaceDrawTransform(gfx::Transform::kSkipInitialization);
|
| - if (!layer->render_surface()->draw_transform().GetInverse(&inverseSurfaceDrawTransform)) {
|
| - // TODO(shawnsingh): Either we need to handle uninvertible transforms
|
| - // here, or DCHECK that the transform is invertible.
|
| - }
|
| - nextScrollCompensationMatrix = inverseSurfaceDrawTransform * nextScrollCompensationMatrix * layer->render_surface()->draw_transform();
|
| +gfx::Transform ComputeScrollCompensationMatrixForChildren(
|
| + LayerImpl* layer,
|
| + const gfx::Transform& parent_matrix,
|
| + const gfx::Transform& current_scroll_compensation_matrix) {
|
| + // "Total scroll compensation" is the transform needed to cancel out all
|
| + // scroll_delta translations that occurred since the nearest container layer,
|
| + // even if there are render_surfaces in-between.
|
| + //
|
| + // There are some edge cases to be aware of, that are not explicit in the
|
| + // code:
|
| + // - A layer that is both a fixed-position and container should not be its
|
| + // own container, instead, that means it is fixed to an ancestor, and is a
|
| + // container for any fixed-position descendants.
|
| + // - A layer that is a fixed-position container and has a render_surface
|
| + // should behave the same as a container without a render_surface, the
|
| + // render_surface is irrelevant in that case.
|
| + // - A layer that does not have an explicit container is simply fixed to the
|
| + // viewport. (i.e. the root render_surface.)
|
| + // - If the fixed-position layer has its own render_surface, then the
|
| + // render_surface is the one who gets fixed.
|
| + //
|
| + // This function needs to be called AFTER layers create their own
|
| + // render_surfaces.
|
| + //
|
| +
|
| + // Avoid the overheads (including stack allocation and matrix
|
| + // initialization/copy) if we know that the scroll compensation doesn't need
|
| + // to be reset or adjusted.
|
| + if (!layer->is_container_for_fixed_position_layers() &&
|
| + layer->scroll_delta().IsZero() && !layer->render_surface())
|
| + return current_scroll_compensation_matrix;
|
| +
|
| + // Start as identity matrix.
|
| + gfx::Transform next_scroll_compensation_matrix;
|
| +
|
| + // If this layer is not a container, then it inherits the existing scroll
|
| + // compensations.
|
| + if (!layer->is_container_for_fixed_position_layers())
|
| + next_scroll_compensation_matrix = current_scroll_compensation_matrix;
|
| +
|
| + // If the current layer has a non-zero scroll_delta, then we should compute
|
| + // its local scrollCompensation and accumulate it to the
|
| + // next_scroll_compensation_matrix.
|
| + if (!layer->scroll_delta().IsZero()) {
|
| + gfx::Transform scroll_compensation_for_this_layer =
|
| + ComputeScrollCompensationForThisLayer(layer, parent_matrix);
|
| + next_scroll_compensation_matrix.PreconcatTransform(
|
| + scroll_compensation_for_this_layer);
|
| + }
|
| +
|
| + // If the layer created its own render_surface, we have to adjust
|
| + // next_scroll_compensation_matrix. The adjustment allows us to continue
|
| + // using the scrollCompensation on the next surface.
|
| + // Step 1 (right-most in the math): transform from the new surface to the
|
| + // original ancestor surface
|
| + // Step 2: apply the scroll compensation
|
| + // Step 3: transform back to the new surface.
|
| + if (layer->render_surface() &&
|
| + !next_scroll_compensation_matrix.IsIdentity()) {
|
| + gfx::Transform inverse_surface_draw_transform(
|
| + gfx::Transform::kSkipInitialization);
|
| + if (!layer->render_surface()->draw_transform().GetInverse(
|
| + &inverse_surface_draw_transform)) {
|
| + // TODO(shawnsingh): Either we need to handle uninvertible transforms
|
| + // here, or DCHECK that the transform is invertible.
|
| }
|
| + next_scroll_compensation_matrix =
|
| + inverse_surface_draw_transform * next_scroll_compensation_matrix *
|
| + layer->render_surface()->draw_transform();
|
| + }
|
|
|
| - return nextScrollCompensationMatrix;
|
| + return next_scroll_compensation_matrix;
|
| }
|
|
|
| -template<typename LayerType>
|
| -static inline void CalculateContentsScale(LayerType* layer, float contentsScale, bool animating_transform_to_screen)
|
| -{
|
| - layer->CalculateContentsScale(
|
| - contentsScale,
|
| +template <typename LayerType>
|
| +static inline void CalculateContentsScale(LayerType* layer,
|
| + float contents_scale,
|
| + bool animating_transform_to_screen) {
|
| + layer->CalculateContentsScale(contents_scale,
|
| + animating_transform_to_screen,
|
| + &layer->draw_properties().contents_scale_x,
|
| + &layer->draw_properties().contents_scale_y,
|
| + &layer->draw_properties().content_bounds);
|
| +
|
| + LayerType* mask_layer = layer->mask_layer();
|
| + if (mask_layer) {
|
| + mask_layer->CalculateContentsScale(
|
| + contents_scale,
|
| animating_transform_to_screen,
|
| - &layer->draw_properties().contents_scale_x,
|
| - &layer->draw_properties().contents_scale_y,
|
| - &layer->draw_properties().content_bounds);
|
| -
|
| - LayerType* maskLayer = layer->mask_layer();
|
| - if (maskLayer)
|
| - {
|
| - maskLayer->CalculateContentsScale(
|
| - contentsScale,
|
| - animating_transform_to_screen,
|
| - &maskLayer->draw_properties().contents_scale_x,
|
| - &maskLayer->draw_properties().contents_scale_y,
|
| - &maskLayer->draw_properties().content_bounds);
|
| - }
|
| -
|
| - LayerType* replicaMaskLayer = layer->replica_layer() ? layer->replica_layer()->mask_layer() : 0;
|
| - if (replicaMaskLayer)
|
| - {
|
| - replicaMaskLayer->CalculateContentsScale(
|
| - contentsScale,
|
| - animating_transform_to_screen,
|
| - &replicaMaskLayer->draw_properties().contents_scale_x,
|
| - &replicaMaskLayer->draw_properties().contents_scale_y,
|
| - &replicaMaskLayer->draw_properties().content_bounds);
|
| - }
|
| + &mask_layer->draw_properties().contents_scale_x,
|
| + &mask_layer->draw_properties().contents_scale_y,
|
| + &mask_layer->draw_properties().content_bounds);
|
| + }
|
| +
|
| + LayerType* replica_mask_layer =
|
| + layer->replica_layer() ? layer->replica_layer()->mask_layer() : NULL;
|
| + if (replica_mask_layer) {
|
| + replica_mask_layer->CalculateContentsScale(
|
| + contents_scale,
|
| + animating_transform_to_screen,
|
| + &replica_mask_layer->draw_properties().contents_scale_x,
|
| + &replica_mask_layer->draw_properties().contents_scale_y,
|
| + &replica_mask_layer->draw_properties().content_bounds);
|
| + }
|
| }
|
|
|
| -static inline void updateLayerContentsScale(LayerImpl* layer, const gfx::Transform& combinedTransform, float deviceScaleFactor, float pageScaleFactor, bool animating_transform_to_screen)
|
| -{
|
| - gfx::Vector2dF transformScale = MathUtil::ComputeTransform2dScaleComponents(combinedTransform, deviceScaleFactor * pageScaleFactor);
|
| - float contentsScale = std::max(transformScale.x(), transformScale.y());
|
| - CalculateContentsScale(layer, contentsScale, animating_transform_to_screen);
|
| +static inline void UpdateLayerContentsScale(
|
| + LayerImpl* layer,
|
| + const gfx::Transform& combined_transform,
|
| + float device_scale_factor,
|
| + float page_scale_factor,
|
| + bool animating_transform_to_screen) {
|
| + gfx::Vector2dF transform_scale = MathUtil::ComputeTransform2dScaleComponents(
|
| + combined_transform, device_scale_factor * page_scale_factor);
|
| + float contents_scale = std::max(transform_scale.x(), transform_scale.y());
|
| + CalculateContentsScale(layer, contents_scale, animating_transform_to_screen);
|
| }
|
|
|
| -static inline void updateLayerContentsScale(Layer* layer, const gfx::Transform& combinedTransform, float deviceScaleFactor, float pageScaleFactor, bool animating_transform_to_screen)
|
| -{
|
| - float rasterScale = layer->raster_scale();
|
| -
|
| - if (layer->automatically_compute_raster_scale()) {
|
| - gfx::Vector2dF transformScale = MathUtil::ComputeTransform2dScaleComponents(combinedTransform, 0.f);
|
| - float combinedScale = std::max(transformScale.x(), transformScale.y());
|
| - float idealRasterScale = combinedScale / deviceScaleFactor;
|
| - if (!layer->bounds_contain_page_scale())
|
| - idealRasterScale /= pageScaleFactor;
|
| -
|
| - bool needToSetRasterScale = !rasterScale;
|
| -
|
| - // If we've previously saved a rasterScale but the ideal changes, things are unpredictable and we should just use 1.
|
| - if (rasterScale && rasterScale != 1.f && idealRasterScale != rasterScale) {
|
| - idealRasterScale = 1.f;
|
| - needToSetRasterScale = true;
|
| - }
|
| -
|
| - if (needToSetRasterScale) {
|
| - bool useAndSaveIdealScale = idealRasterScale >= 1.f && !animating_transform_to_screen;
|
| - if (useAndSaveIdealScale) {
|
| - rasterScale = idealRasterScale;
|
| - layer->SetRasterScale(rasterScale);
|
| - }
|
| - }
|
| - }
|
| -
|
| - if (!rasterScale)
|
| - rasterScale = 1.f;
|
| -
|
| - float contentsScale = rasterScale * deviceScaleFactor;
|
| +static inline void UpdateLayerContentsScale(
|
| + Layer* layer,
|
| + const gfx::Transform& combined_transform,
|
| + float device_scale_factor,
|
| + float page_scale_factor,
|
| + bool animating_transform_to_screen) {
|
| + float raster_scale = layer->raster_scale();
|
| +
|
| + if (layer->automatically_compute_raster_scale()) {
|
| + gfx::Vector2dF transform_scale =
|
| + MathUtil::ComputeTransform2dScaleComponents(combined_transform, 0.f);
|
| + float combined_scale = std::max(transform_scale.x(), transform_scale.y());
|
| + float ideal_raster_scale = combined_scale / device_scale_factor;
|
| if (!layer->bounds_contain_page_scale())
|
| - contentsScale *= pageScaleFactor;
|
| + ideal_raster_scale /= page_scale_factor;
|
|
|
| - CalculateContentsScale(layer, contentsScale, animating_transform_to_screen);
|
| -}
|
| + bool need_to_set_raster_scale = !raster_scale;
|
|
|
| -template<typename LayerType, typename LayerList>
|
| -static inline void removeSurfaceForEarlyExit(LayerType* layerToRemove, LayerList& renderSurfaceLayerList)
|
| -{
|
| - DCHECK(layerToRemove->render_surface());
|
| - // Technically, we know that the layer we want to remove should be
|
| - // at the back of the renderSurfaceLayerList. However, we have had
|
| - // bugs before that added unnecessary layers here
|
| - // (https://bugs.webkit.org/show_bug.cgi?id=74147), but that causes
|
| - // things to crash. So here we proactively remove any additional
|
| - // layers from the end of the list.
|
| - while (renderSurfaceLayerList.back() != layerToRemove) {
|
| - renderSurfaceLayerList.back()->ClearRenderSurface();
|
| - renderSurfaceLayerList.pop_back();
|
| + // If we've previously saved a raster_scale but the ideal changes, things
|
| + // are unpredictable and we should just use 1.
|
| + if (raster_scale && raster_scale != 1.f &&
|
| + ideal_raster_scale != raster_scale) {
|
| + ideal_raster_scale = 1.f;
|
| + need_to_set_raster_scale = true;
|
| }
|
| - DCHECK(renderSurfaceLayerList.back() == layerToRemove);
|
| - renderSurfaceLayerList.pop_back();
|
| - layerToRemove->ClearRenderSurface();
|
| -}
|
|
|
| -// Recursively walks the layer tree to compute any information that is needed
|
| -// before doing the main recursion.
|
| -template<typename LayerType>
|
| -static void preCalculateMetaInformation(LayerType* layer)
|
| -{
|
| - if (layer->HasDelegatedContent()) {
|
| - // Layers with delegated content need to be treated as if they have as many children as the number
|
| - // of layers they own delegated quads for. Since we don't know this number right now, we choose
|
| - // one that acts like infinity for our purposes.
|
| - layer->draw_properties().num_descendants_that_draw_content = 1000;
|
| - layer->draw_properties().descendants_can_clip_selves = false;
|
| - return;
|
| + if (need_to_set_raster_scale) {
|
| + bool use_and_save_ideal_scale =
|
| + ideal_raster_scale >= 1.f && !animating_transform_to_screen;
|
| + if (use_and_save_ideal_scale) {
|
| + raster_scale = ideal_raster_scale;
|
| + layer->SetRasterScale(raster_scale);
|
| + }
|
| }
|
| + }
|
|
|
| - int numDescendantsThatDrawContent = 0;
|
| - bool descendantsCanClipSelves = true;
|
| - bool sublayerTransformPreventsClip = !layer->sublayer_transform().IsPositiveScaleOrTranslation();
|
| + if (!raster_scale)
|
| + raster_scale = 1.f;
|
|
|
| - for (size_t i = 0; i < layer->children().size(); ++i) {
|
| - LayerType* childLayer = layer->children()[i];
|
| - preCalculateMetaInformation<LayerType>(childLayer);
|
| + float contents_scale = raster_scale * device_scale_factor;
|
| + if (!layer->bounds_contain_page_scale())
|
| + contents_scale *= page_scale_factor;
|
|
|
| - numDescendantsThatDrawContent += childLayer->DrawsContent() ? 1 : 0;
|
| - numDescendantsThatDrawContent += childLayer->draw_properties().num_descendants_that_draw_content;
|
| + CalculateContentsScale(layer, contents_scale, animating_transform_to_screen);
|
| +}
|
|
|
| - if ((childLayer->DrawsContent() && !childLayer->CanClipSelf()) ||
|
| - !childLayer->draw_properties().descendants_can_clip_selves ||
|
| - sublayerTransformPreventsClip ||
|
| - !childLayer->transform().IsPositiveScaleOrTranslation())
|
| - descendantsCanClipSelves = false;
|
| - }
|
| +template <typename LayerType, typename LayerList>
|
| +static inline void RemoveSurfaceForEarlyExit(
|
| + LayerType* layer_to_remove,
|
| + LayerList& render_surface_layer_list) {
|
| + DCHECK(layer_to_remove->render_surface());
|
| + // Technically, we know that the layer we want to remove should be
|
| + // at the back of the render_surface_layer_list. However, we have had
|
| + // bugs before that added unnecessary layers here
|
| + // (https://bugs.webkit.org/show_bug.cgi?id=74147), but that causes
|
| + // things to crash. So here we proactively remove any additional
|
| + // layers from the end of the list.
|
| + while (render_surface_layer_list->back() != layer_to_remove) {
|
| + render_surface_layer_list->back()->ClearRenderSurface();
|
| + render_surface_layer_list->pop_back();
|
| + }
|
| + DCHECK_EQ(render_surface_layer_list->back(), layer_to_remove);
|
| + render_surface_layer_list->pop_back();
|
| + layer_to_remove->ClearRenderSurface();
|
| +}
|
|
|
| - layer->draw_properties().num_descendants_that_draw_content = numDescendantsThatDrawContent;
|
| - layer->draw_properties().descendants_can_clip_selves = descendantsCanClipSelves;
|
| +// Recursively walks the layer tree to compute any information that is needed
|
| +// before doing the main recursion.
|
| +template <typename LayerType>
|
| +static void PreCalculateMetaInformation(LayerType* layer) {
|
| + if (layer->HasDelegatedContent()) {
|
| + // Layers with delegated content need to be treated as if they have as many
|
| + // children as the number of layers they own delegated quads for. Since we
|
| + // don't know this number right now, we choose one that acts like infinity
|
| + // for our purposes.
|
| + layer->draw_properties().num_descendants_that_draw_content = 1000;
|
| + layer->draw_properties().descendants_can_clip_selves = false;
|
| + return;
|
| + }
|
| +
|
| + int num_descendants_that_draw_content = 0;
|
| + bool descendants_can_clip_selves = true;
|
| + bool sublayer_transform_prevents_clip =
|
| + !layer->sublayer_transform().IsPositiveScaleOrTranslation();
|
| +
|
| + for (size_t i = 0; i < layer->children().size(); ++i) {
|
| + LayerType* child_layer = layer->children()[i];
|
| + PreCalculateMetaInformation<LayerType>(child_layer);
|
| +
|
| + num_descendants_that_draw_content += child_layer->DrawsContent() ? 1 : 0;
|
| + num_descendants_that_draw_content +=
|
| + child_layer->draw_properties().num_descendants_that_draw_content;
|
| +
|
| + if ((child_layer->DrawsContent() && !child_layer->CanClipSelf()) ||
|
| + !child_layer->draw_properties().descendants_can_clip_selves ||
|
| + sublayer_transform_prevents_clip ||
|
| + !child_layer->transform().IsPositiveScaleOrTranslation())
|
| + descendants_can_clip_selves = false;
|
| + }
|
| +
|
| + layer->draw_properties().num_descendants_that_draw_content =
|
| + num_descendants_that_draw_content;
|
| + layer->draw_properties().descendants_can_clip_selves =
|
| + descendants_can_clip_selves;
|
| }
|
|
|
| -static void roundTranslationComponents(gfx::Transform* transform)
|
| -{
|
| - transform->matrix().setDouble(0, 3, MathUtil::Round(transform->matrix().getDouble(0, 3)));
|
| - transform->matrix().setDouble(1, 3, MathUtil::Round(transform->matrix().getDouble(1, 3)));
|
| +static void RoundTranslationComponents(gfx::Transform* transform) {
|
| + transform->matrix().
|
| + setDouble(0, 3, MathUtil::Round(transform->matrix().getDouble(0, 3)));
|
| + transform->matrix().
|
| + setDouble(1, 3, MathUtil::Round(transform->matrix().getDouble(1, 3)));
|
| }
|
|
|
| -// Recursively walks the layer tree starting at the given node and computes all the
|
| -// necessary transformations, clipRects, render surfaces, etc.
|
| -template<typename LayerType, typename LayerList, typename RenderSurfaceType>
|
| -static void calculateDrawPropertiesInternal(LayerType* layer, const gfx::Transform& parentMatrix,
|
| - const gfx::Transform& fullHierarchyMatrix, const gfx::Transform& currentScrollCompensationMatrix,
|
| - const gfx::Rect& clipRectFromAncestor, const gfx::Rect& clipRectFromAncestorInDescendantSpace, bool ancestorClipsSubtree,
|
| - RenderSurfaceType* nearestAncestorThatMovesPixels, LayerList& renderSurfaceLayerList, LayerList& layerList,
|
| - LayerSorter* layerSorter, int maxTextureSize, float deviceScaleFactor, float pageScaleFactor, bool subtreeCanUseLCDText,
|
| - gfx::Rect& drawableContentRectOfSubtree, bool updateTilePriorities)
|
| -{
|
| - // This function computes the new matrix transformations recursively for this
|
| - // layer and all its descendants. It also computes the appropriate render surfaces.
|
| - // Some important points to remember:
|
| - //
|
| - // 0. Here, transforms are notated in Matrix x Vector order, and in words we describe what
|
| - // the transform does from left to right.
|
| - //
|
| - // 1. In our terminology, the "layer origin" refers to the top-left corner of a layer, and the
|
| - // positive Y-axis points downwards. This interpretation is valid because the orthographic
|
| - // projection applied at draw time flips the Y axis appropriately.
|
| - //
|
| - // 2. The anchor point, when given as a PointF object, is specified in "unit layer space",
|
| - // where the bounds of the layer map to [0, 1]. However, as a Transform object,
|
| - // the transform to the anchor point is specified in "layer space", where the bounds
|
| - // of the layer map to [bounds.width(), bounds.height()].
|
| - //
|
| - // 3. Definition of various transforms used:
|
| - // M[parent] is the parent matrix, with respect to the nearest render surface, passed down recursively.
|
| - // M[root] is the full hierarchy, with respect to the root, passed down recursively.
|
| - // Tr[origin] is the translation matrix from the parent's origin to this layer's origin.
|
| - // Tr[origin2anchor] is the translation from the layer's origin to its anchor point
|
| - // Tr[origin2center] is the translation from the layer's origin to its center
|
| - // M[layer] is the layer's matrix (applied at the anchor point)
|
| - // M[sublayer] is the layer's sublayer transform (also applied at the layer's anchor point)
|
| - // S[layer2content] is the ratio of a layer's ContentBounds() to its Bounds().
|
| - //
|
| - // Some composite transforms can help in understanding the sequence of transforms:
|
| - // compositeLayerTransform = Tr[origin2anchor] * M[layer] * Tr[origin2anchor].inverse()
|
| - // compositeSublayerTransform = Tr[origin2anchor] * M[sublayer] * Tr[origin2anchor].inverse()
|
| - //
|
| - // 4. When a layer (or render surface) is drawn, it is drawn into a "target render surface". Therefore the draw
|
| - // transform does not necessarily transform from screen space to local layer space. Instead, the draw transform
|
| - // is the transform between the "target render surface space" and local layer space. Note that render surfaces,
|
| - // except for the root, also draw themselves into a different target render surface, and so their draw
|
| - // transform and origin transforms are also described with respect to the target.
|
| - //
|
| - // Using these definitions, then:
|
| - //
|
| - // The draw transform for the layer is:
|
| - // M[draw] = M[parent] * Tr[origin] * compositeLayerTransform * S[layer2content]
|
| - // = M[parent] * Tr[layer->Position() + anchor] * M[layer] * Tr[anchor2origin] * S[layer2content]
|
| - //
|
| - // Interpreting the math left-to-right, this transforms from the layer's render surface to the origin of the layer in content space.
|
| - //
|
| - // The screen space transform is:
|
| - // M[screenspace] = M[root] * Tr[origin] * compositeLayerTransform * S[layer2content]
|
| - // = M[root] * Tr[layer->Position() + anchor] * M[layer] * Tr[anchor2origin] * S[layer2content]
|
| - //
|
| - // Interpreting the math left-to-right, this transforms from the root render surface's content space to the origin of the layer in content space.
|
| - //
|
| - // The transform hierarchy that is passed on to children (i.e. the child's parentMatrix) is:
|
| - // M[parent]_for_child = M[parent] * Tr[origin] * compositeLayerTransform * compositeSublayerTransform
|
| - // = M[parent] * Tr[layer->Position() + anchor] * M[layer] * Tr[anchor2origin] * compositeSublayerTransform
|
| - //
|
| - // and a similar matrix for the full hierarchy with respect to the root.
|
| - //
|
| - // Finally, note that the final matrix used by the shader for the layer is P * M[draw] * S . This final product
|
| - // is computed in drawTexturedQuad(), where:
|
| - // P is the projection matrix
|
| - // S is the scale adjustment (to scale up a canonical quad to the layer's size)
|
| - //
|
| - // When a render surface has a replica layer, that layer's transform is used to draw a second copy of the surface.
|
| - // gfx::Transforms named here are relative to the surface, unless they specify they are relative to the replica layer.
|
| - //
|
| - // We will denote a scale by device scale S[deviceScale]
|
| - //
|
| - // The render surface draw transform to its target surface origin is:
|
| - // M[surfaceDraw] = M[owningLayer->Draw]
|
| - //
|
| - // The render surface origin transform to its the root (screen space) origin is:
|
| - // M[surface2root] = M[owningLayer->screenspace] * S[deviceScale].inverse()
|
| - //
|
| - // The replica draw transform to its target surface origin is:
|
| - // M[replicaDraw] = S[deviceScale] * M[surfaceDraw] * Tr[replica->Position() + replica->anchor()] * Tr[replica] * Tr[origin2anchor].inverse() * S[contentsScale].inverse()
|
| - //
|
| - // The replica draw transform to the root (screen space) origin is:
|
| - // M[replica2root] = M[surface2root] * Tr[replica->Position()] * Tr[replica] * Tr[origin2anchor].inverse()
|
| - //
|
| -
|
| - // If we early-exit anywhere in this function, the drawableContentRect of this subtree should be considered empty.
|
| - drawableContentRectOfSubtree = gfx::Rect();
|
| -
|
| - // The root layer cannot skip calcDrawProperties.
|
| - if (!isRootLayer(layer) && subtreeShouldBeSkipped(layer))
|
| - return;
|
| -
|
| - // As this function proceeds, these are the properties for the current
|
| - // layer that actually get computed. To avoid unnecessary copies
|
| - // (particularly for matrices), we do computations directly on these values
|
| - // when possible.
|
| - DrawProperties<LayerType, RenderSurfaceType>& layerDrawProperties = layer->draw_properties();
|
| -
|
| - gfx::Rect clipRectForSubtree;
|
| - bool subtreeShouldBeClipped = false;
|
| -
|
| - // This value is cached on the stack so that we don't have to inverse-project
|
| - // the surface's clipRect redundantly for every layer. This value is the
|
| - // same as the surface's clipRect, except that instead of being described
|
| - // in the target surface space (i.e. the ancestor surface space), it is
|
| - // described in the current surface space.
|
| - gfx::Rect clipRectForSubtreeInDescendantSpace;
|
| -
|
| - float accumulatedDrawOpacity = layer->opacity();
|
| - bool animatingOpacityToTarget = layer->OpacityIsAnimating();
|
| - bool animatingOpacityToScreen = animatingOpacityToTarget;
|
| - if (layer->parent()) {
|
| - accumulatedDrawOpacity *= layer->parent()->draw_opacity();
|
| - animatingOpacityToTarget |= layer->parent()->draw_opacity_is_animating();
|
| - animatingOpacityToScreen |= layer->parent()->screen_space_opacity_is_animating();
|
| +// Recursively walks the layer tree starting at the given node and computes all
|
| +// the necessary transformations, clipRects, render surfaces, etc.
|
| +template <typename LayerType, typename LayerList, typename RenderSurfaceType>
|
| +static void CalculateDrawPropertiesInternal(
|
| + LayerType* layer,
|
| + const gfx::Transform& parent_matrix,
|
| + const gfx::Transform& full_hierarchy_matrix,
|
| + const gfx::Transform& current_scroll_compensation_matrix,
|
| + gfx::Rect clip_rect_from_ancestor,
|
| + gfx::Rect clip_rect_from_ancestor_in_descendant_space,
|
| + bool ancestor_clips_subtree,
|
| + RenderSurfaceType* nearest_ancestor_that_moves_pixels,
|
| + LayerList* render_surface_layer_list,
|
| + LayerList* layer_list,
|
| + LayerSorter* layer_sorter,
|
| + int max_texture_size,
|
| + float device_scale_factor,
|
| + float page_scale_factor,
|
| + bool subtree_can_use_lcd_text,
|
| + gfx::Rect* drawable_content_rect_of_subtree,
|
| + bool update_tile_priorities) {
|
| + // This function computes the new matrix transformations recursively for this
|
| + // layer and all its descendants. It also computes the appropriate render
|
| + // surfaces.
|
| + // Some important points to remember:
|
| + //
|
| + // 0. Here, transforms are notated in Matrix x Vector order, and in words we
|
| + // describe what the transform does from left to right.
|
| + //
|
| + // 1. In our terminology, the "layer origin" refers to the top-left corner of
|
| + // a layer, and the positive Y-axis points downwards. This interpretation is
|
| + // valid because the orthographic projection applied at draw time flips the Y
|
| + // axis appropriately.
|
| + //
|
| + // 2. The anchor point, when given as a PointF object, is specified in "unit
|
| + // layer space", where the bounds of the layer map to [0, 1]. However, as a
|
| + // Transform object, the transform to the anchor point is specified in "layer
|
| + // space", where the bounds of the layer map to [bounds.width(),
|
| + // bounds.height()].
|
| + //
|
| + // 3. Definition of various transforms used:
|
| + // M[parent] is the parent matrix, with respect to the nearest render
|
| + // surface, passed down recursively.
|
| + //
|
| + // M[root] is the full hierarchy, with respect to the root, passed down
|
| + // recursively.
|
| + //
|
| + // Tr[origin] is the translation matrix from the parent's origin to
|
| + // this layer's origin.
|
| + //
|
| + // Tr[origin2anchor] is the translation from the layer's origin to its
|
| + // anchor point
|
| + //
|
| + // Tr[origin2center] is the translation from the layer's origin to its
|
| + // center
|
| + //
|
| + // M[layer] is the layer's matrix (applied at the anchor point)
|
| + //
|
| + // M[sublayer] is the layer's sublayer transform (also applied at the
|
| + // layer's anchor point)
|
| + //
|
| + // S[layer2content] is the ratio of a layer's ContentBounds() to its
|
| + // Bounds().
|
| + //
|
| + // Some composite transforms can help in understanding the sequence of
|
| + // transforms:
|
| + // compositeLayerTransform = Tr[origin2anchor] * M[layer] *
|
| + // Tr[origin2anchor].inverse()
|
| + //
|
| + // compositeSublayerTransform = Tr[origin2anchor] * M[sublayer] *
|
| + // Tr[origin2anchor].inverse()
|
| + //
|
| + // 4. When a layer (or render surface) is drawn, it is drawn into a "target
|
| + // render surface". Therefore the draw transform does not necessarily
|
| + // transform from screen space to local layer space. Instead, the draw
|
| + // transform is the transform between the "target render surface space" and
|
| + // local layer space. Note that render surfaces, except for the root, also
|
| + // draw themselves into a different target render surface, and so their draw
|
| + // transform and origin transforms are also described with respect to the
|
| + // target.
|
| + //
|
| + // Using these definitions, then:
|
| + //
|
| + // The draw transform for the layer is:
|
| + // M[draw] = M[parent] * Tr[origin] * compositeLayerTransform *
|
| + // S[layer2content] = M[parent] * Tr[layer->Position() + anchor] *
|
| + // M[layer] * Tr[anchor2origin] * S[layer2content]
|
| + //
|
| + // Interpreting the math left-to-right, this transforms from the
|
| + // layer's render surface to the origin of the layer in content space.
|
| + //
|
| + // The screen space transform is:
|
| + // M[screenspace] = M[root] * Tr[origin] * compositeLayerTransform *
|
| + // S[layer2content]
|
| + // = M[root] * Tr[layer->Position() + anchor] * M[layer]
|
| + // * Tr[anchor2origin] * S[layer2content]
|
| + //
|
| + // Interpreting the math left-to-right, this transforms from the root
|
| + // render surface's content space to the origin of the layer in content
|
| + // space.
|
| + //
|
| + // The transform hierarchy that is passed on to children (i.e. the child's
|
| + // parent_matrix) is:
|
| + // M[parent]_for_child = M[parent] * Tr[origin] *
|
| + // compositeLayerTransform * compositeSublayerTransform
|
| + // = M[parent] * Tr[layer->Position() + anchor] *
|
| + // M[layer] * Tr[anchor2origin] *
|
| + // compositeSublayerTransform
|
| + //
|
| + // and a similar matrix for the full hierarchy with respect to the
|
| + // root.
|
| + //
|
| + // Finally, note that the final matrix used by the shader for the layer is P *
|
| + // M[draw] * S . This final product is computed in drawTexturedQuad(), where:
|
| + // P is the projection matrix
|
| + // S is the scale adjustment (to scale up a canonical quad to the
|
| + // layer's size)
|
| + //
|
| + // When a render surface has a replica layer, that layer's transform is used
|
| + // to draw a second copy of the surface. gfx::Transforms named here are
|
| + // relative to the surface, unless they specify they are relative to the
|
| + // replica layer.
|
| + //
|
| + // We will denote a scale by device scale S[deviceScale]
|
| + //
|
| + // The render surface draw transform to its target surface origin is:
|
| + // M[surfaceDraw] = M[owningLayer->Draw]
|
| + //
|
| + // The render surface origin transform to its the root (screen space) origin
|
| + // is:
|
| + // M[surface2root] = M[owningLayer->screenspace] *
|
| + // S[deviceScale].inverse()
|
| + //
|
| + // The replica draw transform to its target surface origin is:
|
| + // M[replicaDraw] = S[deviceScale] * M[surfaceDraw] *
|
| + // Tr[replica->Position() + replica->anchor()] * Tr[replica] *
|
| + // Tr[origin2anchor].inverse() * S[contents_scale].inverse()
|
| + //
|
| + // The replica draw transform to the root (screen space) origin is:
|
| + // M[replica2root] = M[surface2root] * Tr[replica->Position()] *
|
| + // Tr[replica] * Tr[origin2anchor].inverse()
|
| + //
|
| +
|
| + // If we early-exit anywhere in this function, the drawableContentRect of this
|
| + // subtree should be considered empty.
|
| + *drawable_content_rect_of_subtree = gfx::Rect();
|
| +
|
| + // The root layer cannot skip calcDrawProperties.
|
| + if (!IsRootLayer(layer) && SubtreeShouldBeSkipped(layer))
|
| + return;
|
| +
|
| + // As this function proceeds, these are the properties for the current
|
| + // layer that actually get computed. To avoid unnecessary copies
|
| + // (particularly for matrices), we do computations directly on these values
|
| + // when possible.
|
| + DrawProperties<LayerType, RenderSurfaceType>& layer_draw_properties =
|
| + layer->draw_properties();
|
| +
|
| + gfx::Rect clip_rect_for_subtree;
|
| + bool subtree_should_be_clipped = false;
|
| +
|
| + // This value is cached on the stack so that we don't have to inverse-project
|
| + // the surface's clipRect redundantly for every layer. This value is the
|
| + // same as the surface's clipRect, except that instead of being described
|
| + // in the target surface space (i.e. the ancestor surface space), it is
|
| + // described in the current surface space.
|
| + gfx::Rect clip_rect_for_subtree_in_descendant_space;
|
| +
|
| + float accumulated_draw_opacity = layer->opacity();
|
| + bool animating_opacity_to_target = layer->OpacityIsAnimating();
|
| + bool animating_opacity_to_screen = animating_opacity_to_target;
|
| + if (layer->parent()) {
|
| + accumulated_draw_opacity *= layer->parent()->draw_opacity();
|
| + animating_opacity_to_target |= layer->parent()->draw_opacity_is_animating();
|
| + animating_opacity_to_screen |=
|
| + layer->parent()->screen_space_opacity_is_animating();
|
| + }
|
| +
|
| + bool animating_transform_to_target = layer->TransformIsAnimating();
|
| + bool animating_transform_to_screen = animating_transform_to_target;
|
| + if (layer->parent()) {
|
| + animating_transform_to_target |=
|
| + layer->parent()->draw_transform_is_animating();
|
| + animating_transform_to_screen |=
|
| + layer->parent()->screen_space_transform_is_animating();
|
| + }
|
| +
|
| + gfx::Size bounds = layer->bounds();
|
| + gfx::PointF anchor_point = layer->anchor_point();
|
| + gfx::PointF position = layer->position() - layer->scroll_delta();
|
| +
|
| + gfx::Transform combined_transform = parent_matrix;
|
| + if (!layer->transform().IsIdentity()) {
|
| + // LT = Tr[origin] * Tr[origin2anchor]
|
| + combined_transform.Translate3d(
|
| + position.x() + anchor_point.x() * bounds.width(),
|
| + position.y() + anchor_point.y() * bounds.height(),
|
| + layer->anchor_point_z());
|
| + // LT = Tr[origin] * Tr[origin2anchor] * M[layer]
|
| + combined_transform.PreconcatTransform(layer->transform());
|
| + // LT = Tr[origin] * Tr[origin2anchor] * M[layer] * Tr[anchor2origin]
|
| + combined_transform.Translate3d(-anchor_point.x() * bounds.width(),
|
| + -anchor_point.y() * bounds.height(),
|
| + -layer->anchor_point_z());
|
| + } else {
|
| + combined_transform.Translate(position.x(), position.y());
|
| + }
|
| +
|
| + // The layer's contentsSize is determined from the combined_transform, which
|
| + // then informs the layer's draw_transform.
|
| + UpdateLayerContentsScale(layer,
|
| + combined_transform,
|
| + device_scale_factor,
|
| + page_scale_factor,
|
| + animating_transform_to_screen);
|
| +
|
| + // If there is a transformation from the impl thread then it should be at
|
| + // the start of the combined_transform, but we don't want it to affect the
|
| + // computation of contents_scale above.
|
| + // Note carefully: this is Concat, not Preconcat (implTransform *
|
| + // combined_transform).
|
| + combined_transform.ConcatTransform(layer->impl_transform());
|
| +
|
| + if (!animating_transform_to_target && layer->scrollable() &&
|
| + combined_transform.IsScaleOrTranslation()) {
|
| + // Align the scrollable layer's position to screen space pixels to avoid
|
| + // blurriness. To avoid side-effects, do this only if the transform is
|
| + // simple.
|
| + RoundTranslationComponents(&combined_transform);
|
| + }
|
| +
|
| + if (layer->fixed_to_container_layer()) {
|
| + // Special case: this layer is a composited fixed-position layer; we need to
|
| + // explicitly compensate for all ancestors' nonzero scroll_deltas to keep
|
| + // this layer fixed correctly.
|
| + // Note carefully: this is Concat, not Preconcat
|
| + // (current_scroll_compensation * combined_transform).
|
| + combined_transform.ConcatTransform(current_scroll_compensation_matrix);
|
| + }
|
| +
|
| + // The draw_transform that gets computed below is effectively the layer's
|
| + // draw_transform, unless the layer itself creates a render_surface. In that
|
| + // case, the render_surface re-parents the transforms.
|
| + layer_draw_properties.target_space_transform = combined_transform;
|
| + // M[draw] = M[parent] * LT * S[layer2content]
|
| + layer_draw_properties.target_space_transform.Scale
|
| + (1.f / layer->contents_scale_x(), 1.f / layer->contents_scale_y());
|
| +
|
| + // layerScreenSpaceTransform represents the transform between root layer's
|
| + // "screen space" and local content space.
|
| + layer_draw_properties.screen_space_transform = full_hierarchy_matrix;
|
| + if (!layer->preserves_3d())
|
| + layer_draw_properties.screen_space_transform.FlattenTo2d();
|
| + layer_draw_properties.screen_space_transform.PreconcatTransform
|
| + (layer_draw_properties.target_space_transform);
|
| +
|
| + // Adjusting text AA method during animation may cause repaints, which in-turn
|
| + // causes jank.
|
| + bool adjust_text_aa =
|
| + !animating_opacity_to_screen && !animating_transform_to_screen;
|
| + // To avoid color fringing, LCD text should only be used on opaque layers with
|
| + // just integral translation.
|
| + bool layer_can_use_lcd_text =
|
| + subtree_can_use_lcd_text && (accumulated_draw_opacity == 1.f) &&
|
| + layer_draw_properties.target_space_transform.
|
| + IsIdentityOrIntegerTranslation();
|
| +
|
| + gfx::RectF content_rect(gfx::PointF(), layer->content_bounds());
|
| +
|
| + // full_hierarchy_matrix is the matrix that transforms objects between screen
|
| + // space (except projection matrix) and the most recent RenderSurfaceImpl's
|
| + // space. next_hierarchy_matrix will only change if this layer uses a new
|
| + // RenderSurfaceImpl, otherwise remains the same.
|
| + gfx::Transform next_hierarchy_matrix = full_hierarchy_matrix;
|
| + gfx::Transform sublayer_matrix;
|
| +
|
| + gfx::Vector2dF render_surface_sublayer_scale =
|
| + MathUtil::ComputeTransform2dScaleComponents(
|
| + combined_transform, device_scale_factor * page_scale_factor);
|
| +
|
| + if (SubtreeShouldRenderToSeparateSurface(
|
| + layer, combined_transform.IsScaleOrTranslation())) {
|
| + // Check back-face visibility before continuing with this surface and its
|
| + // subtree
|
| + if (!layer->double_sided() && TransformToParentIsKnown(layer) &&
|
| + IsSurfaceBackFaceVisible(layer, combined_transform))
|
| + return;
|
| +
|
| + if (!layer->render_surface())
|
| + layer->CreateRenderSurface();
|
| +
|
| + RenderSurfaceType* render_surface = layer->render_surface();
|
| + render_surface->ClearLayerLists();
|
| +
|
| + // The owning layer's draw transform has a scale from content to layer
|
| + // space which we do not want; so here we use the combined_transform
|
| + // instead of the draw_transform. However, we do need to add a different
|
| + // scale factor that accounts for the surface's pixel dimensions.
|
| + combined_transform.Scale(1.0 / render_surface_sublayer_scale.x(),
|
| + 1.0 / render_surface_sublayer_scale.y());
|
| + render_surface->SetDrawTransform(combined_transform);
|
| +
|
| + // The owning layer's transform was re-parented by the surface, so the
|
| + // layer's new draw_transform only needs to scale the layer to surface
|
| + // space.
|
| + layer_draw_properties.target_space_transform.MakeIdentity();
|
| + layer_draw_properties.target_space_transform.
|
| + Scale(render_surface_sublayer_scale.x() / layer->contents_scale_x(),
|
| + render_surface_sublayer_scale.y() / layer->contents_scale_y());
|
| +
|
| + // Inside the surface's subtree, we scale everything to the owning layer's
|
| + // scale. The sublayer matrix transforms layer rects into target surface
|
| + // content space.
|
| + DCHECK(sublayer_matrix.IsIdentity());
|
| + sublayer_matrix.Scale(render_surface_sublayer_scale.x(),
|
| + render_surface_sublayer_scale.y());
|
| +
|
| + // The opacity value is moved from the layer to its surface, so that the
|
| + // entire subtree properly inherits opacity.
|
| + render_surface->SetDrawOpacity(accumulated_draw_opacity);
|
| + render_surface->SetDrawOpacityIsAnimating(animating_opacity_to_target);
|
| + animating_opacity_to_target = false;
|
| + layer_draw_properties.opacity = 1.f;
|
| + layer_draw_properties.opacity_is_animating = animating_opacity_to_target;
|
| + layer_draw_properties.screen_space_opacity_is_animating =
|
| + animating_opacity_to_screen;
|
| +
|
| + render_surface->SetTargetSurfaceTransformsAreAnimating(
|
| + animating_transform_to_target);
|
| + render_surface->SetScreenSpaceTransformsAreAnimating(
|
| + animating_transform_to_screen);
|
| + animating_transform_to_target = false;
|
| + layer_draw_properties.target_space_transform_is_animating =
|
| + animating_transform_to_target;
|
| + layer_draw_properties.screen_space_transform_is_animating =
|
| + animating_transform_to_screen;
|
| +
|
| + // Update the aggregate hierarchy matrix to include the transform of the
|
| + // newly created RenderSurfaceImpl.
|
| + next_hierarchy_matrix.PreconcatTransform(render_surface->draw_transform());
|
| +
|
| + // The new render_surface here will correctly clip the entire subtree. So,
|
| + // we do not need to continue propagating the clipping state further down
|
| + // the tree. This way, we can avoid transforming clipRects from ancestor
|
| + // target surface space to current target surface space that could cause
|
| + // more w < 0 headaches.
|
| + subtree_should_be_clipped = false;
|
| +
|
| + if (layer->mask_layer()) {
|
| + DrawProperties<LayerType, RenderSurfaceType>& mask_layer_draw_properties =
|
| + layer->mask_layer()->draw_properties();
|
| + mask_layer_draw_properties.render_target = layer;
|
| + mask_layer_draw_properties.visible_content_rect =
|
| + gfx::Rect(gfx::Point(), layer->content_bounds());
|
| }
|
|
|
| - bool animatingTransformToTarget = layer->TransformIsAnimating();
|
| - bool animating_transform_to_screen = animatingTransformToTarget;
|
| - if (layer->parent()) {
|
| - animatingTransformToTarget |= layer->parent()->draw_transform_is_animating();
|
| - animating_transform_to_screen |= layer->parent()->screen_space_transform_is_animating();
|
| + if (layer->replica_layer() && layer->replica_layer()->mask_layer()) {
|
| + DrawProperties<LayerType, RenderSurfaceType>&
|
| + replica_mask_draw_properties =
|
| + layer->replica_layer()->mask_layer()->draw_properties();
|
| + replica_mask_draw_properties.render_target = layer;
|
| + replica_mask_draw_properties.visible_content_rect =
|
| + gfx::Rect(gfx::Point(), layer->content_bounds());
|
| }
|
|
|
| - gfx::Size bounds = layer->bounds();
|
| - gfx::PointF anchorPoint = layer->anchor_point();
|
| - gfx::PointF position = layer->position() - layer->scroll_delta();
|
| -
|
| - gfx::Transform combinedTransform = parentMatrix;
|
| - if (!layer->transform().IsIdentity()) {
|
| - // LT = Tr[origin] * Tr[origin2anchor]
|
| - combinedTransform.Translate3d(position.x() + anchorPoint.x() * bounds.width(), position.y() + anchorPoint.y() * bounds.height(), layer->anchor_point_z());
|
| - // LT = Tr[origin] * Tr[origin2anchor] * M[layer]
|
| - combinedTransform.PreconcatTransform(layer->transform());
|
| - // LT = Tr[origin] * Tr[origin2anchor] * M[layer] * Tr[anchor2origin]
|
| - combinedTransform.Translate3d(-anchorPoint.x() * bounds.width(), -anchorPoint.y() * bounds.height(), -layer->anchor_point_z());
|
| + // TODO(senorblanco): make this smarter for the SkImageFilter case (check
|
| + // for pixel-moving filters)
|
| + if (layer->filters().hasFilterThatMovesPixels() || layer->filter())
|
| + nearest_ancestor_that_moves_pixels = render_surface;
|
| +
|
| + // The render surface clipRect is expressed in the space where this surface
|
| + // draws, i.e. the same space as clip_rect_from_ancestor.
|
| + render_surface->SetIsClipped(ancestor_clips_subtree);
|
| + if (ancestor_clips_subtree) {
|
| + render_surface->SetClipRect(clip_rect_from_ancestor);
|
| +
|
| + gfx::Transform inverse_surface_draw_transform(
|
| + gfx::Transform::kSkipInitialization);
|
| + if (!render_surface->draw_transform().GetInverse(
|
| + &inverse_surface_draw_transform)) {
|
| + // TODO(shawnsingh): Either we need to handle uninvertible transforms
|
| + // here, or DCHECK that the transform is invertible.
|
| + }
|
| + clip_rect_for_subtree_in_descendant_space =
|
| + gfx::ToEnclosingRect(MathUtil::ProjectClippedRect(
|
| + inverse_surface_draw_transform, render_surface->clip_rect()));
|
| } else {
|
| - combinedTransform.Translate(position.x(), position.y());
|
| + render_surface->SetClipRect(gfx::Rect());
|
| + clip_rect_for_subtree_in_descendant_space =
|
| + clip_rect_from_ancestor_in_descendant_space;
|
| }
|
|
|
| - // The layer's contentsSize is determined from the combinedTransform, which then informs the
|
| - // layer's drawTransform.
|
| - updateLayerContentsScale(layer, combinedTransform, deviceScaleFactor, pageScaleFactor, animating_transform_to_screen);
|
| -
|
| - // If there is a transformation from the impl thread then it should be at
|
| - // the start of the combinedTransform, but we don't want it to affect the
|
| - // computation of contentsScale above.
|
| - // Note carefully: this is Concat, not Preconcat (implTransform * combinedTransform).
|
| - combinedTransform.ConcatTransform(layer->impl_transform());
|
| -
|
| - if (!animatingTransformToTarget && layer->scrollable() && combinedTransform.IsScaleOrTranslation()) {
|
| - // Align the scrollable layer's position to screen space pixels to avoid blurriness.
|
| - // To avoid side-effects, do this only if the transform is simple.
|
| - roundTranslationComponents(&combinedTransform);
|
| - }
|
| -
|
| - if (layer->fixed_to_container_layer()) {
|
| - // Special case: this layer is a composited fixed-position layer; we need to
|
| - // explicitly compensate for all ancestors' nonzero scrollDeltas to keep this layer
|
| - // fixed correctly.
|
| - // Note carefully: this is Concat, not Preconcat (currentScrollCompensation * combinedTransform).
|
| - combinedTransform.ConcatTransform(currentScrollCompensationMatrix);
|
| - }
|
| -
|
| - // The drawTransform that gets computed below is effectively the layer's drawTransform, unless
|
| - // the layer itself creates a renderSurface. In that case, the renderSurface re-parents the transforms.
|
| - layerDrawProperties.target_space_transform = combinedTransform;
|
| - // M[draw] = M[parent] * LT * S[layer2content]
|
| - layerDrawProperties.target_space_transform.Scale(1.0 / layer->contents_scale_x(), 1.0 / layer->contents_scale_y());
|
| -
|
| - // layerScreenSpaceTransform represents the transform between root layer's "screen space" and local content space.
|
| - layerDrawProperties.screen_space_transform = fullHierarchyMatrix;
|
| - if (!layer->preserves_3d())
|
| - layerDrawProperties.screen_space_transform.FlattenTo2d();
|
| - layerDrawProperties.screen_space_transform.PreconcatTransform(layerDrawProperties.target_space_transform);
|
| -
|
| - // Adjusting text AA method during animation may cause repaints, which in-turn causes jank.
|
| - bool adjustTextAA = !animatingOpacityToScreen && !animating_transform_to_screen;
|
| - // To avoid color fringing, LCD text should only be used on opaque layers with just integral translation.
|
| - bool layerCanUseLCDText = subtreeCanUseLCDText &&
|
| - (accumulatedDrawOpacity == 1.0) &&
|
| - layerDrawProperties.target_space_transform.IsIdentityOrIntegerTranslation();
|
| -
|
| - gfx::RectF contentRect(gfx::PointF(), layer->content_bounds());
|
| -
|
| - // fullHierarchyMatrix is the matrix that transforms objects between screen space (except projection matrix) and the most recent RenderSurfaceImpl's space.
|
| - // nextHierarchyMatrix will only change if this layer uses a new RenderSurfaceImpl, otherwise remains the same.
|
| - gfx::Transform nextHierarchyMatrix = fullHierarchyMatrix;
|
| - gfx::Transform sublayerMatrix;
|
| -
|
| - gfx::Vector2dF renderSurfaceSublayerScale = MathUtil::ComputeTransform2dScaleComponents(combinedTransform, deviceScaleFactor * pageScaleFactor);
|
| -
|
| - if (subtreeShouldRenderToSeparateSurface(layer, combinedTransform.IsScaleOrTranslation())) {
|
| - // Check back-face visibility before continuing with this surface and its subtree
|
| - if (!layer->double_sided() && transformToParentIsKnown(layer) && isSurfaceBackFaceVisible(layer, combinedTransform))
|
| - return;
|
| -
|
| - if (!layer->render_surface())
|
| - layer->CreateRenderSurface();
|
| -
|
| - RenderSurfaceType* renderSurface = layer->render_surface();
|
| - renderSurface->ClearLayerLists();
|
| -
|
| - // The owning layer's draw transform has a scale from content to layer
|
| - // space which we do not want; so here we use the combinedTransform
|
| - // instead of the drawTransform. However, we do need to add a different
|
| - // scale factor that accounts for the surface's pixel dimensions.
|
| - combinedTransform.Scale(1 / renderSurfaceSublayerScale.x(), 1 / renderSurfaceSublayerScale.y());
|
| - renderSurface->SetDrawTransform(combinedTransform);
|
| -
|
| - // The owning layer's transform was re-parented by the surface, so the layer's new drawTransform
|
| - // only needs to scale the layer to surface space.
|
| - layerDrawProperties.target_space_transform.MakeIdentity();
|
| - layerDrawProperties.target_space_transform.Scale(renderSurfaceSublayerScale.x() / layer->contents_scale_x(), renderSurfaceSublayerScale.y() / layer->contents_scale_y());
|
| -
|
| - // Inside the surface's subtree, we scale everything to the owning layer's scale.
|
| - // The sublayer matrix transforms layer rects into target
|
| - // surface content space.
|
| - DCHECK(sublayerMatrix.IsIdentity());
|
| - sublayerMatrix.Scale(renderSurfaceSublayerScale.x(), renderSurfaceSublayerScale.y());
|
| -
|
| - // The opacity value is moved from the layer to its surface, so that the entire subtree properly inherits opacity.
|
| - renderSurface->SetDrawOpacity(accumulatedDrawOpacity);
|
| - renderSurface->SetDrawOpacityIsAnimating(animatingOpacityToTarget);
|
| - animatingOpacityToTarget = false;
|
| - layerDrawProperties.opacity = 1;
|
| - layerDrawProperties.opacity_is_animating = animatingOpacityToTarget;
|
| - layerDrawProperties.screen_space_opacity_is_animating = animatingOpacityToScreen;
|
| -
|
| - renderSurface->SetTargetSurfaceTransformsAreAnimating(animatingTransformToTarget);
|
| - renderSurface->SetScreenSpaceTransformsAreAnimating(animating_transform_to_screen);
|
| - animatingTransformToTarget = false;
|
| - layerDrawProperties.target_space_transform_is_animating = animatingTransformToTarget;
|
| - layerDrawProperties.screen_space_transform_is_animating = animating_transform_to_screen;
|
| -
|
| - // Update the aggregate hierarchy matrix to include the transform of the
|
| - // newly created RenderSurfaceImpl.
|
| - nextHierarchyMatrix.PreconcatTransform(renderSurface->draw_transform());
|
| -
|
| - // The new renderSurface here will correctly clip the entire subtree. So, we do
|
| - // not need to continue propagating the clipping state further down the tree. This
|
| - // way, we can avoid transforming clipRects from ancestor target surface space to
|
| - // current target surface space that could cause more w < 0 headaches.
|
| - subtreeShouldBeClipped = false;
|
| -
|
| - if (layer->mask_layer()) {
|
| - DrawProperties<LayerType, RenderSurfaceType>& maskLayerDrawProperties = layer->mask_layer()->draw_properties();
|
| - maskLayerDrawProperties.render_target = layer;
|
| - maskLayerDrawProperties.visible_content_rect = gfx::Rect(gfx::Point(), layer->content_bounds());
|
| - }
|
| -
|
| - if (layer->replica_layer() && layer->replica_layer()->mask_layer()) {
|
| - DrawProperties<LayerType, RenderSurfaceType>& replicaMaskDrawProperties = layer->replica_layer()->mask_layer()->draw_properties();
|
| - replicaMaskDrawProperties.render_target = layer;
|
| - replicaMaskDrawProperties.visible_content_rect = gfx::Rect(gfx::Point(), layer->content_bounds());
|
| - }
|
| -
|
| - // FIXME: make this smarter for the SkImageFilter case (check for
|
| - // pixel-moving filters)
|
| - if (layer->filters().hasFilterThatMovesPixels() || layer->filter())
|
| - nearestAncestorThatMovesPixels = renderSurface;
|
| -
|
| - // The render surface clipRect is expressed in the space where this surface draws, i.e. the same space as clipRectFromAncestor.
|
| - renderSurface->SetIsClipped(ancestorClipsSubtree);
|
| - if (ancestorClipsSubtree) {
|
| - renderSurface->SetClipRect(clipRectFromAncestor);
|
| -
|
| - gfx::Transform inverseSurfaceDrawTransform(gfx::Transform::kSkipInitialization);
|
| - if (!renderSurface->draw_transform().GetInverse(&inverseSurfaceDrawTransform)) {
|
| - // TODO(shawnsingh): Either we need to handle uninvertible transforms
|
| - // here, or DCHECK that the transform is invertible.
|
| - }
|
| - clipRectForSubtreeInDescendantSpace = gfx::ToEnclosingRect(MathUtil::ProjectClippedRect(inverseSurfaceDrawTransform, renderSurface->clip_rect()));
|
| - } else {
|
| - renderSurface->SetClipRect(gfx::Rect());
|
| - clipRectForSubtreeInDescendantSpace = clipRectFromAncestorInDescendantSpace;
|
| - }
|
| -
|
| - renderSurface->SetNearestAncestorThatMovesPixels(nearestAncestorThatMovesPixels);
|
| -
|
| - // If the new render surface is drawn translucent or with a non-integral translation
|
| - // then the subtree that gets drawn on this render surface cannot use LCD text.
|
| - subtreeCanUseLCDText = layerCanUseLCDText;
|
| -
|
| - renderSurfaceLayerList.push_back(layer);
|
| + render_surface->SetNearestAncestorThatMovesPixels(
|
| + nearest_ancestor_that_moves_pixels);
|
| +
|
| + // If the new render surface is drawn translucent or with a non-integral
|
| + // translation then the subtree that gets drawn on this render surface
|
| + // cannot use LCD text.
|
| + subtree_can_use_lcd_text = layer_can_use_lcd_text;
|
| +
|
| + render_surface_layer_list->push_back(layer);
|
| + } else {
|
| + DCHECK(layer->parent());
|
| +
|
| + // Note: layer_draw_properties.target_space_transform is computed above,
|
| + // before this if-else statement.
|
| + layer_draw_properties.target_space_transform_is_animating =
|
| + animating_transform_to_target;
|
| + layer_draw_properties.screen_space_transform_is_animating =
|
| + animating_transform_to_screen;
|
| + layer_draw_properties.opacity = accumulated_draw_opacity;
|
| + layer_draw_properties.opacity_is_animating = animating_opacity_to_target;
|
| + layer_draw_properties.screen_space_opacity_is_animating =
|
| + animating_opacity_to_screen;
|
| + sublayer_matrix = combined_transform;
|
| +
|
| + layer->ClearRenderSurface();
|
| +
|
| + // Layers without render_surfaces directly inherit the ancestor's clip
|
| + // status.
|
| + subtree_should_be_clipped = ancestor_clips_subtree;
|
| + if (ancestor_clips_subtree)
|
| + clip_rect_for_subtree = clip_rect_from_ancestor;
|
| +
|
| + // The surface's cached clipRect value propagates regardless of what
|
| + // clipping goes on between layers here.
|
| + clip_rect_for_subtree_in_descendant_space =
|
| + clip_rect_from_ancestor_in_descendant_space;
|
| +
|
| + // Layers that are not their own render_target will render into the target
|
| + // of their nearest ancestor.
|
| + layer_draw_properties.render_target = layer->parent()->render_target();
|
| + }
|
| +
|
| + if (adjust_text_aa)
|
| + layer_draw_properties.can_use_lcd_text = layer_can_use_lcd_text;
|
| +
|
| + gfx::Rect rect_in_target_space = ToEnclosingRect(
|
| + MathUtil::MapClippedRect(layer->draw_transform(), content_rect));
|
| +
|
| + if (LayerClipsSubtree(layer)) {
|
| + subtree_should_be_clipped = true;
|
| + if (ancestor_clips_subtree && !layer->render_surface()) {
|
| + clip_rect_for_subtree = clip_rect_from_ancestor;
|
| + clip_rect_for_subtree.Intersect(rect_in_target_space);
|
| } else {
|
| - DCHECK(layer->parent());
|
| -
|
| - // Note: layerDrawProperties.target_space_transform is computed above,
|
| - // before this if-else statement.
|
| - layerDrawProperties.target_space_transform_is_animating = animatingTransformToTarget;
|
| - layerDrawProperties.screen_space_transform_is_animating = animating_transform_to_screen;
|
| - layerDrawProperties.opacity = accumulatedDrawOpacity;
|
| - layerDrawProperties.opacity_is_animating = animatingOpacityToTarget;
|
| - layerDrawProperties.screen_space_opacity_is_animating = animatingOpacityToScreen;
|
| - sublayerMatrix = combinedTransform;
|
| -
|
| - layer->ClearRenderSurface();
|
| -
|
| - // Layers without renderSurfaces directly inherit the ancestor's clip status.
|
| - subtreeShouldBeClipped = ancestorClipsSubtree;
|
| - if (ancestorClipsSubtree)
|
| - clipRectForSubtree = clipRectFromAncestor;
|
| -
|
| - // The surface's cached clipRect value propagates regardless of what clipping goes on between layers here.
|
| - clipRectForSubtreeInDescendantSpace = clipRectFromAncestorInDescendantSpace;
|
| -
|
| - // Layers that are not their own renderTarget will render into the target of their nearest ancestor.
|
| - layerDrawProperties.render_target = layer->parent()->render_target();
|
| + clip_rect_for_subtree = rect_in_target_space;
|
| }
|
| -
|
| - if (adjustTextAA)
|
| - layerDrawProperties.can_use_lcd_text = layerCanUseLCDText;
|
| -
|
| - gfx::Rect rectInTargetSpace = ToEnclosingRect(MathUtil::MapClippedRect(layer->draw_transform(), contentRect));
|
| -
|
| - if (layerClipsSubtree(layer)) {
|
| - subtreeShouldBeClipped = true;
|
| - if (ancestorClipsSubtree && !layer->render_surface()) {
|
| - clipRectForSubtree = clipRectFromAncestor;
|
| - clipRectForSubtree.Intersect(rectInTargetSpace);
|
| - } else
|
| - clipRectForSubtree = rectInTargetSpace;
|
| + }
|
| +
|
| + // Flatten to 2D if the layer doesn't preserve 3D.
|
| + if (!layer->preserves_3d())
|
| + sublayer_matrix.FlattenTo2d();
|
| +
|
| + // Apply the sublayer transform at the anchor point of the layer.
|
| + if (!layer->sublayer_transform().IsIdentity()) {
|
| + sublayer_matrix.Translate(layer->anchor_point().x() * bounds.width(),
|
| + layer->anchor_point().y() * bounds.height());
|
| + sublayer_matrix.PreconcatTransform(layer->sublayer_transform());
|
| + sublayer_matrix.Translate(-layer->anchor_point().x() * bounds.width(),
|
| + -layer->anchor_point().y() * bounds.height());
|
| + }
|
| +
|
| + LayerList& descendants =
|
| + (layer->render_surface() ? layer->render_surface()->layer_list()
|
| + : *layer_list);
|
| +
|
| + // Any layers that are appended after this point are in the layer's subtree
|
| + // and should be included in the sorting process.
|
| + size_t sorting_start_index = descendants.size();
|
| +
|
| + if (!LayerShouldBeSkipped(layer))
|
| + descendants.push_back(layer);
|
| +
|
| + gfx::Transform next_scroll_compensation_matrix =
|
| + ComputeScrollCompensationMatrixForChildren(
|
| + layer, parent_matrix, current_scroll_compensation_matrix);
|
| +
|
| + gfx::Rect accumulated_drawable_content_rect_of_children;
|
| + for (size_t i = 0; i < layer->children().size(); ++i) {
|
| + LayerType* child =
|
| + LayerTreeHostCommon::get_child_as_raw_ptr(layer->children(), i);
|
| + gfx::Rect drawable_content_rect_of_child_subtree;
|
| + CalculateDrawPropertiesInternal<LayerType, LayerList, RenderSurfaceType>(
|
| + child,
|
| + sublayer_matrix,
|
| + next_hierarchy_matrix,
|
| + next_scroll_compensation_matrix,
|
| + clip_rect_for_subtree,
|
| + clip_rect_for_subtree_in_descendant_space,
|
| + subtree_should_be_clipped,
|
| + nearest_ancestor_that_moves_pixels,
|
| + render_surface_layer_list,
|
| + &descendants,
|
| + layer_sorter,
|
| + max_texture_size,
|
| + device_scale_factor,
|
| + page_scale_factor,
|
| + subtree_can_use_lcd_text,
|
| + &drawable_content_rect_of_child_subtree,
|
| + update_tile_priorities);
|
| + if (!drawable_content_rect_of_child_subtree.IsEmpty()) {
|
| + accumulated_drawable_content_rect_of_children.Union(
|
| + drawable_content_rect_of_child_subtree);
|
| + if (child->render_surface())
|
| + descendants.push_back(child);
|
| }
|
| -
|
| - // Flatten to 2D if the layer doesn't preserve 3D.
|
| - if (!layer->preserves_3d())
|
| - sublayerMatrix.FlattenTo2d();
|
| -
|
| - // Apply the sublayer transform at the anchor point of the layer.
|
| - if (!layer->sublayer_transform().IsIdentity()) {
|
| - sublayerMatrix.Translate(layer->anchor_point().x() * bounds.width(), layer->anchor_point().y() * bounds.height());
|
| - sublayerMatrix.PreconcatTransform(layer->sublayer_transform());
|
| - sublayerMatrix.Translate(-layer->anchor_point().x() * bounds.width(), -layer->anchor_point().y() * bounds.height());
|
| + }
|
| +
|
| + if (layer->render_surface() && !IsRootLayer(layer) &&
|
| + layer->render_surface()->layer_list().empty()) {
|
| + RemoveSurfaceForEarlyExit(layer, render_surface_layer_list);
|
| + return;
|
| + }
|
| +
|
| + // Compute the total drawableContentRect for this subtree (the rect is in
|
| + // targetSurface space).
|
| + gfx::Rect local_drawable_content_rect_of_subtree =
|
| + accumulated_drawable_content_rect_of_children;
|
| + if (layer->DrawsContent())
|
| + local_drawable_content_rect_of_subtree.Union(rect_in_target_space);
|
| + if (subtree_should_be_clipped)
|
| + local_drawable_content_rect_of_subtree.Intersect(clip_rect_for_subtree);
|
| +
|
| + // Compute the layer's drawable content rect (the rect is in targetSurface
|
| + // space).
|
| + layer_draw_properties.drawable_content_rect = rect_in_target_space;
|
| + if (subtree_should_be_clipped) {
|
| + layer_draw_properties.drawable_content_rect.
|
| + Intersect(clip_rect_for_subtree);
|
| + }
|
| +
|
| + // Tell the layer the rect that is clipped by. In theory we could use a
|
| + // tighter clipRect here (drawableContentRect), but that actually does not
|
| + // reduce how much would be drawn, and instead it would create unnecessary
|
| + // changes to scissor state affecting GPU performance.
|
| + layer_draw_properties.is_clipped = subtree_should_be_clipped;
|
| + if (subtree_should_be_clipped) {
|
| + layer_draw_properties.clip_rect = clip_rect_for_subtree;
|
| + } else {
|
| + // Initialize the clipRect to a safe value that will not clip the
|
| + // layer, just in case clipping is still accidentally used.
|
| + layer_draw_properties.clip_rect = rect_in_target_space;
|
| + }
|
| +
|
| + // Compute the layer's visible content rect (the rect is in content space)
|
| + layer_draw_properties.visible_content_rect = CalculateVisibleContentRect(
|
| + layer, clip_rect_for_subtree_in_descendant_space, rect_in_target_space);
|
| +
|
| + // Compute the remaining properties for the render surface, if the layer has
|
| + // one.
|
| + if (IsRootLayer(layer)) {
|
| + // The root layer's surface's content_rect is always the entire viewport.
|
| + DCHECK(layer->render_surface());
|
| + layer->render_surface()->SetContentRect(clip_rect_from_ancestor);
|
| + } else if (layer->render_surface() && !IsRootLayer(layer)) {
|
| + RenderSurfaceType* render_surface = layer->render_surface();
|
| + gfx::Rect clipped_content_rect = local_drawable_content_rect_of_subtree;
|
| +
|
| + // Don't clip if the layer is reflected as the reflection shouldn't be
|
| + // clipped. If the layer is animating, then the surface's transform to
|
| + // its target is not known on the main thread, and we should not use it
|
| + // to clip.
|
| + if (!layer->replica_layer() && TransformToParentIsKnown(layer)) {
|
| + // Note, it is correct to use ancestor_clips_subtree here, because we are
|
| + // looking at this layer's render_surface, not the layer itself.
|
| + if (ancestor_clips_subtree && !clipped_content_rect.IsEmpty()) {
|
| + gfx::Rect surface_clip_rect = LayerTreeHostCommon::CalculateVisibleRect(
|
| + render_surface->clip_rect(),
|
| + clipped_content_rect,
|
| + render_surface->draw_transform());
|
| + clipped_content_rect.Intersect(surface_clip_rect);
|
| + }
|
| }
|
|
|
| - LayerList& descendants = (layer->render_surface() ? layer->render_surface()->layer_list() : layerList);
|
| -
|
| - // Any layers that are appended after this point are in the layer's subtree and should be included in the sorting process.
|
| - unsigned sortingStartIndex = descendants.size();
|
| -
|
| - if (!layerShouldBeSkipped(layer))
|
| - descendants.push_back(layer);
|
| -
|
| - gfx::Transform nextScrollCompensationMatrix = computeScrollCompensationMatrixForChildren(layer, parentMatrix, currentScrollCompensationMatrix);;
|
| -
|
| - gfx::Rect accumulatedDrawableContentRectOfChildren;
|
| - for (size_t i = 0; i < layer->children().size(); ++i) {
|
| - LayerType* child = LayerTreeHostCommon::getChildAsRawPtr(layer->children(), i);
|
| - gfx::Rect drawableContentRectOfChildSubtree;
|
| - calculateDrawPropertiesInternal<LayerType, LayerList, RenderSurfaceType>(child, sublayerMatrix, nextHierarchyMatrix, nextScrollCompensationMatrix,
|
| - clipRectForSubtree, clipRectForSubtreeInDescendantSpace, subtreeShouldBeClipped, nearestAncestorThatMovesPixels,
|
| - renderSurfaceLayerList, descendants, layerSorter, maxTextureSize, deviceScaleFactor, pageScaleFactor,
|
| - subtreeCanUseLCDText, drawableContentRectOfChildSubtree, updateTilePriorities);
|
| - if (!drawableContentRectOfChildSubtree.IsEmpty()) {
|
| - accumulatedDrawableContentRectOfChildren.Union(drawableContentRectOfChildSubtree);
|
| - if (child->render_surface())
|
| - descendants.push_back(child);
|
| - }
|
| + // The RenderSurfaceImpl backing texture cannot exceed the maximum supported
|
| + // texture size.
|
| + clipped_content_rect.set_width(
|
| + std::min(clipped_content_rect.width(), max_texture_size));
|
| + clipped_content_rect.set_height(
|
| + std::min(clipped_content_rect.height(), max_texture_size));
|
| +
|
| + if (clipped_content_rect.IsEmpty()) {
|
| + render_surface->ClearLayerLists();
|
| + RemoveSurfaceForEarlyExit(layer, render_surface_layer_list);
|
| + return;
|
| }
|
|
|
| - if (layer->render_surface() && !isRootLayer(layer) && !layer->render_surface()->layer_list().size()) {
|
| - removeSurfaceForEarlyExit(layer, renderSurfaceLayerList);
|
| - return;
|
| + render_surface->SetContentRect(clipped_content_rect);
|
| +
|
| + // The owning layer's screen_space_transform has a scale from content to
|
| + // layer space which we need to undo and replace with a scale from the
|
| + // surface's subtree into layer space.
|
| + gfx::Transform screen_space_transform = layer->screen_space_transform();
|
| + screen_space_transform.Scale(
|
| + layer->contents_scale_x() / render_surface_sublayer_scale.x(),
|
| + layer->contents_scale_y() / render_surface_sublayer_scale.y());
|
| + render_surface->SetScreenSpaceTransform(screen_space_transform);
|
| +
|
| + if (layer->replica_layer()) {
|
| + gfx::Transform surface_origin_to_replica_origin_transform;
|
| + surface_origin_to_replica_origin_transform.Scale(
|
| + render_surface_sublayer_scale.x(), render_surface_sublayer_scale.y());
|
| + surface_origin_to_replica_origin_transform.Translate(
|
| + layer->replica_layer()->position().x() +
|
| + layer->replica_layer()->anchor_point().x() * bounds.width(),
|
| + layer->replica_layer()->position().y() +
|
| + layer->replica_layer()->anchor_point().y() * bounds.height());
|
| + surface_origin_to_replica_origin_transform.PreconcatTransform(
|
| + layer->replica_layer()->transform());
|
| + surface_origin_to_replica_origin_transform.Translate(
|
| + -layer->replica_layer()->anchor_point().x() * bounds.width(),
|
| + -layer->replica_layer()->anchor_point().y() * bounds.height());
|
| + surface_origin_to_replica_origin_transform.Scale(
|
| + 1.0 / render_surface_sublayer_scale.x(),
|
| + 1.0 / render_surface_sublayer_scale.y());
|
| +
|
| + // Compute the replica's "originTransform" that maps from the replica's
|
| + // origin space to the target surface origin space.
|
| + gfx::Transform replica_origin_transform =
|
| + layer->render_surface()->draw_transform() *
|
| + surface_origin_to_replica_origin_transform;
|
| + render_surface->SetReplicaDrawTransform(replica_origin_transform);
|
| +
|
| + // Compute the replica's "screen_space_transform" that maps from the
|
| + // replica's origin space to the screen's origin space.
|
| + gfx::Transform replica_screen_space_transform =
|
| + layer->render_surface()->screen_space_transform() *
|
| + surface_origin_to_replica_origin_transform;
|
| + render_surface->SetReplicaScreenSpaceTransform(
|
| + replica_screen_space_transform);
|
| }
|
| -
|
| - // Compute the total drawableContentRect for this subtree (the rect is in targetSurface space)
|
| - gfx::Rect localDrawableContentRectOfSubtree = accumulatedDrawableContentRectOfChildren;
|
| - if (layer->DrawsContent())
|
| - localDrawableContentRectOfSubtree.Union(rectInTargetSpace);
|
| - if (subtreeShouldBeClipped)
|
| - localDrawableContentRectOfSubtree.Intersect(clipRectForSubtree);
|
| -
|
| - // Compute the layer's drawable content rect (the rect is in targetSurface space)
|
| - layerDrawProperties.drawable_content_rect = rectInTargetSpace;
|
| - if (subtreeShouldBeClipped)
|
| - layerDrawProperties.drawable_content_rect.Intersect(clipRectForSubtree);
|
| -
|
| - // Tell the layer the rect that is clipped by. In theory we could use a
|
| - // tighter clipRect here (drawableContentRect), but that actually does not
|
| - // reduce how much would be drawn, and instead it would create unnecessary
|
| - // changes to scissor state affecting GPU performance.
|
| - layerDrawProperties.is_clipped = subtreeShouldBeClipped;
|
| - if (subtreeShouldBeClipped)
|
| - layerDrawProperties.clip_rect = clipRectForSubtree;
|
| - else {
|
| - // Initialize the clipRect to a safe value that will not clip the
|
| - // layer, just in case clipping is still accidentally used.
|
| - layerDrawProperties.clip_rect = rectInTargetSpace;
|
| - }
|
| -
|
| - // Compute the layer's visible content rect (the rect is in content space)
|
| - layerDrawProperties.visible_content_rect = calculateVisibleContentRect(layer, clipRectForSubtreeInDescendantSpace, rectInTargetSpace);
|
| -
|
| - // Compute the remaining properties for the render surface, if the layer has one.
|
| - if (isRootLayer(layer)) {
|
| - // The root layer's surface's contentRect is always the entire viewport.
|
| - DCHECK(layer->render_surface());
|
| - layer->render_surface()->SetContentRect(clipRectFromAncestor);
|
| - } else if (layer->render_surface() && !isRootLayer(layer)) {
|
| - RenderSurfaceType* renderSurface = layer->render_surface();
|
| - gfx::Rect clippedContentRect = localDrawableContentRectOfSubtree;
|
| -
|
| - // Don't clip if the layer is reflected as the reflection shouldn't be
|
| - // clipped. If the layer is animating, then the surface's transform to
|
| - // its target is not known on the main thread, and we should not use it
|
| - // to clip.
|
| - if (!layer->replica_layer() && transformToParentIsKnown(layer)) {
|
| - // Note, it is correct to use ancestorClipsSubtree here, because we are looking at this layer's renderSurface, not the layer itself.
|
| - if (ancestorClipsSubtree && !clippedContentRect.IsEmpty()) {
|
| - gfx::Rect surfaceClipRect = LayerTreeHostCommon::calculateVisibleRect(renderSurface->clip_rect(), clippedContentRect, renderSurface->draw_transform());
|
| - clippedContentRect.Intersect(surfaceClipRect);
|
| - }
|
| - }
|
| -
|
| - // The RenderSurfaceImpl backing texture cannot exceed the maximum supported
|
| - // texture size.
|
| - clippedContentRect.set_width(std::min(clippedContentRect.width(), maxTextureSize));
|
| - clippedContentRect.set_height(std::min(clippedContentRect.height(), maxTextureSize));
|
| -
|
| - if (clippedContentRect.IsEmpty()) {
|
| - renderSurface->ClearLayerLists();
|
| - removeSurfaceForEarlyExit(layer, renderSurfaceLayerList);
|
| - return;
|
| - }
|
| -
|
| - renderSurface->SetContentRect(clippedContentRect);
|
| -
|
| - // The owning layer's screenSpaceTransform has a scale from content to layer space which we need to undo and
|
| - // replace with a scale from the surface's subtree into layer space.
|
| - gfx::Transform screenSpaceTransform = layer->screen_space_transform();
|
| - screenSpaceTransform.Scale(layer->contents_scale_x() / renderSurfaceSublayerScale.x(), layer->contents_scale_y() / renderSurfaceSublayerScale.y());
|
| - renderSurface->SetScreenSpaceTransform(screenSpaceTransform);
|
| -
|
| - if (layer->replica_layer()) {
|
| - gfx::Transform surfaceOriginToReplicaOriginTransform;
|
| - surfaceOriginToReplicaOriginTransform.Scale(renderSurfaceSublayerScale.x(), renderSurfaceSublayerScale.y());
|
| - surfaceOriginToReplicaOriginTransform.Translate(layer->replica_layer()->position().x() + layer->replica_layer()->anchor_point().x() * bounds.width(),
|
| - layer->replica_layer()->position().y() + layer->replica_layer()->anchor_point().y() * bounds.height());
|
| - surfaceOriginToReplicaOriginTransform.PreconcatTransform(layer->replica_layer()->transform());
|
| - surfaceOriginToReplicaOriginTransform.Translate(-layer->replica_layer()->anchor_point().x() * bounds.width(), -layer->replica_layer()->anchor_point().y() * bounds.height());
|
| - surfaceOriginToReplicaOriginTransform.Scale(1 / renderSurfaceSublayerScale.x(), 1 / renderSurfaceSublayerScale.y());
|
| -
|
| - // Compute the replica's "originTransform" that maps from the replica's origin space to the target surface origin space.
|
| - gfx::Transform replicaOriginTransform = layer->render_surface()->draw_transform() * surfaceOriginToReplicaOriginTransform;
|
| - renderSurface->SetReplicaDrawTransform(replicaOriginTransform);
|
| -
|
| - // Compute the replica's "screenSpaceTransform" that maps from the replica's origin space to the screen's origin space.
|
| - gfx::Transform replicaScreenSpaceTransform = layer->render_surface()->screen_space_transform() * surfaceOriginToReplicaOriginTransform;
|
| - renderSurface->SetReplicaScreenSpaceTransform(replicaScreenSpaceTransform);
|
| - }
|
| - }
|
| -
|
| - if (updateTilePriorities)
|
| - updateTilePrioritiesForLayer(layer);
|
| -
|
| - // If neither this layer nor any of its children were added, early out.
|
| - if (sortingStartIndex == descendants.size())
|
| - return;
|
| -
|
| - // If preserves-3d then sort all the descendants in 3D so that they can be
|
| - // drawn from back to front. If the preserves-3d property is also set on the parent then
|
| - // skip the sorting as the parent will sort all the descendants anyway.
|
| - if (layerSorter && descendants.size() && layer->preserves_3d() && (!layer->parent() || !layer->parent()->preserves_3d()))
|
| - sortLayers(descendants.begin() + sortingStartIndex, descendants.end(), layerSorter);
|
| -
|
| - if (layer->render_surface())
|
| - drawableContentRectOfSubtree = gfx::ToEnclosingRect(layer->render_surface()->DrawableContentRect());
|
| - else
|
| - drawableContentRectOfSubtree = localDrawableContentRectOfSubtree;
|
| -
|
| - if (layer->HasContributingDelegatedRenderPasses())
|
| - layer->render_target()->render_surface()->AddContributingDelegatedRenderPassLayer(layer);
|
| + }
|
| +
|
| + if (update_tile_priorities)
|
| + UpdateTilePrioritiesForLayer(layer);
|
| +
|
| + // If neither this layer nor any of its children were added, early out.
|
| + if (sorting_start_index == descendants.size())
|
| + return;
|
| +
|
| + // If preserves-3d then sort all the descendants in 3D so that they can be
|
| + // drawn from back to front. If the preserves-3d property is also set on the
|
| + // parent then skip the sorting as the parent will sort all the descendants
|
| + // anyway.
|
| + if (layer_sorter && descendants.size() && layer->preserves_3d() &&
|
| + (!layer->parent() || !layer->parent()->preserves_3d())) {
|
| + SortLayers(descendants.begin() + sorting_start_index,
|
| + descendants.end(),
|
| + layer_sorter);
|
| + }
|
| +
|
| + if (layer->render_surface()) {
|
| + *drawable_content_rect_of_subtree =
|
| + gfx::ToEnclosingRect(layer->render_surface()->DrawableContentRect());
|
| + } else {
|
| + *drawable_content_rect_of_subtree = local_drawable_content_rect_of_subtree;
|
| + }
|
| +
|
| + if (layer->HasContributingDelegatedRenderPasses()) {
|
| + layer->render_target()->render_surface()->
|
| + AddContributingDelegatedRenderPassLayer(layer);
|
| + }
|
| }
|
|
|
| -void LayerTreeHostCommon::calculateDrawProperties(Layer* rootLayer, const gfx::Size& deviceViewportSize, float deviceScaleFactor, float pageScaleFactor, int maxTextureSize, bool canUseLCDText, std::vector<scoped_refptr<Layer> >& renderSurfaceLayerList)
|
| -{
|
| - gfx::Rect totalDrawableContentRect;
|
| - gfx::Transform identityMatrix;
|
| - gfx::Transform deviceScaleTransform;
|
| - deviceScaleTransform.Scale(deviceScaleFactor, deviceScaleFactor);
|
| - std::vector<scoped_refptr<Layer> > dummyLayerList;
|
| -
|
| - // The root layer's renderSurface should receive the deviceViewport as the initial clipRect.
|
| - bool subtreeShouldBeClipped = true;
|
| - gfx::Rect deviceViewportRect(gfx::Point(), deviceViewportSize);
|
| - bool updateTilePriorities = false;
|
| -
|
| - // This function should have received a root layer.
|
| - DCHECK(isRootLayer(rootLayer));
|
| -
|
| - preCalculateMetaInformation<Layer>(rootLayer);
|
| - calculateDrawPropertiesInternal<Layer, std::vector<scoped_refptr<Layer> >, RenderSurface>(
|
| - rootLayer, deviceScaleTransform, identityMatrix, identityMatrix,
|
| - deviceViewportRect, deviceViewportRect, subtreeShouldBeClipped, 0, renderSurfaceLayerList,
|
| - dummyLayerList, 0, maxTextureSize,
|
| - deviceScaleFactor, pageScaleFactor, canUseLCDText, totalDrawableContentRect,
|
| - updateTilePriorities);
|
| -
|
| - // The dummy layer list should not have been used.
|
| - DCHECK(dummyLayerList.size() == 0);
|
| - // A root layer renderSurface should always exist after calculateDrawProperties.
|
| - DCHECK(rootLayer->render_surface());
|
| +void LayerTreeHostCommon::CalculateDrawProperties(
|
| + Layer* root_layer,
|
| + gfx::Size device_viewport_size,
|
| + float device_scale_factor,
|
| + float page_scale_factor,
|
| + int max_texture_size,
|
| + bool can_use_lcd_text,
|
| + std::vector<scoped_refptr<Layer> >* render_surface_layer_list) {
|
| + gfx::Rect total_drawable_content_rect;
|
| + gfx::Transform identity_matrix;
|
| + gfx::Transform device_scale_transform;
|
| + device_scale_transform.Scale(device_scale_factor, device_scale_factor);
|
| + std::vector<scoped_refptr<Layer> > dummy_layer_list;
|
| +
|
| + // The root layer's render_surface should receive the deviceViewport as the
|
| + // initial clipRect.
|
| + bool subtree_should_be_clipped = true;
|
| + gfx::Rect device_viewport_rect(gfx::Point(), device_viewport_size);
|
| + bool update_tile_priorities = false;
|
| +
|
| + // This function should have received a root layer.
|
| + DCHECK(IsRootLayer(root_layer));
|
| +
|
| + PreCalculateMetaInformation<Layer>(root_layer);
|
| + CalculateDrawPropertiesInternal<Layer,
|
| + std::vector<scoped_refptr<Layer> >,
|
| + RenderSurface>(root_layer,
|
| + device_scale_transform,
|
| + identity_matrix,
|
| + identity_matrix,
|
| + device_viewport_rect,
|
| + device_viewport_rect,
|
| + subtree_should_be_clipped,
|
| + NULL,
|
| + render_surface_layer_list,
|
| + &dummy_layer_list,
|
| + NULL,
|
| + max_texture_size,
|
| + device_scale_factor,
|
| + page_scale_factor,
|
| + can_use_lcd_text,
|
| + &total_drawable_content_rect,
|
| + update_tile_priorities);
|
| +
|
| + // The dummy layer list should not have been used.
|
| + DCHECK_EQ(dummy_layer_list.size(), 0);
|
| + // A root layer render_surface should always exist after
|
| + // calculateDrawProperties.
|
| + DCHECK(root_layer->render_surface());
|
| }
|
|
|
| -void LayerTreeHostCommon::calculateDrawProperties(LayerImpl* rootLayer, const gfx::Size& deviceViewportSize, float deviceScaleFactor, float pageScaleFactor, int maxTextureSize, bool canUseLCDText, std::vector<LayerImpl*>& renderSurfaceLayerList, bool updateTilePriorities)
|
| -{
|
| - gfx::Rect totalDrawableContentRect;
|
| - gfx::Transform identityMatrix;
|
| - gfx::Transform deviceScaleTransform;
|
| - deviceScaleTransform.Scale(deviceScaleFactor, deviceScaleFactor);
|
| - std::vector<LayerImpl*> dummyLayerList;
|
| - LayerSorter layerSorter;
|
| -
|
| - // The root layer's renderSurface should receive the deviceViewport as the initial clipRect.
|
| - bool subtreeShouldBeClipped = true;
|
| - gfx::Rect deviceViewportRect(gfx::Point(), deviceViewportSize);
|
| -
|
| - // This function should have received a root layer.
|
| - DCHECK(isRootLayer(rootLayer));
|
| -
|
| - preCalculateMetaInformation<LayerImpl>(rootLayer);
|
| - calculateDrawPropertiesInternal<LayerImpl, std::vector<LayerImpl*>, RenderSurfaceImpl>(
|
| - rootLayer, deviceScaleTransform, identityMatrix, identityMatrix,
|
| - deviceViewportRect, deviceViewportRect, subtreeShouldBeClipped, 0, renderSurfaceLayerList,
|
| - dummyLayerList, &layerSorter, maxTextureSize,
|
| - deviceScaleFactor, pageScaleFactor, canUseLCDText, totalDrawableContentRect,
|
| - updateTilePriorities);
|
| -
|
| - // The dummy layer list should not have been used.
|
| - DCHECK(dummyLayerList.size() == 0);
|
| - // A root layer renderSurface should always exist after calculateDrawProperties.
|
| - DCHECK(rootLayer->render_surface());
|
| +void LayerTreeHostCommon::CalculateDrawProperties(
|
| + LayerImpl* root_layer,
|
| + gfx::Size device_viewport_size,
|
| + float device_scale_factor,
|
| + float page_scale_factor,
|
| + int max_texture_size,
|
| + bool can_use_lcd_text,
|
| + std::vector<LayerImpl*>* render_surface_layer_list,
|
| + bool update_tile_priorities) {
|
| + gfx::Rect total_drawable_content_rect;
|
| + gfx::Transform identity_matrix;
|
| + gfx::Transform device_scale_transform;
|
| + device_scale_transform.Scale(device_scale_factor, device_scale_factor);
|
| + std::vector<LayerImpl*> dummy_layer_list;
|
| + LayerSorter layer_sorter;
|
| +
|
| + // The root layer's render_surface should receive the deviceViewport as the
|
| + // initial clipRect.
|
| + bool subtree_should_be_clipped = true;
|
| + gfx::Rect device_viewport_rect(gfx::Point(), device_viewport_size);
|
| +
|
| + // This function should have received a root layer.
|
| + DCHECK(IsRootLayer(root_layer));
|
| +
|
| + PreCalculateMetaInformation<LayerImpl>(root_layer);
|
| + CalculateDrawPropertiesInternal<LayerImpl,
|
| + std::vector<LayerImpl*>,
|
| + RenderSurfaceImpl>(
|
| + root_layer,
|
| + device_scale_transform,
|
| + identity_matrix,
|
| + identity_matrix,
|
| + device_viewport_rect,
|
| + device_viewport_rect,
|
| + subtree_should_be_clipped,
|
| + NULL,
|
| + render_surface_layer_list,
|
| + &dummy_layer_list,
|
| + &layer_sorter,
|
| + max_texture_size,
|
| + device_scale_factor,
|
| + page_scale_factor,
|
| + can_use_lcd_text,
|
| + &total_drawable_content_rect,
|
| + update_tile_priorities);
|
| +
|
| + // The dummy layer list should not have been used.
|
| + DCHECK_EQ(dummy_layer_list.size(), 0);
|
| + // A root layer render_surface should always exist after
|
| + // calculateDrawProperties.
|
| + DCHECK(root_layer->render_surface());
|
| }
|
|
|
| -static bool pointHitsRect(const gfx::PointF& screenSpacePoint, const gfx::Transform& localSpaceToScreenSpaceTransform, gfx::RectF localSpaceRect)
|
| -{
|
| - // If the transform is not invertible, then assume that this point doesn't hit this rect.
|
| - gfx::Transform inverseLocalSpaceToScreenSpace(gfx::Transform::kSkipInitialization);
|
| - if (!localSpaceToScreenSpaceTransform.GetInverse(&inverseLocalSpaceToScreenSpace))
|
| - return false;
|
| +static bool PointHitsRect(
|
| + gfx::PointF screen_space_point,
|
| + const gfx::Transform& local_space_to_screen_space_transform,
|
| + gfx::RectF local_space_rect) {
|
| + // If the transform is not invertible, then assume that this point doesn't hit
|
| + // this rect.
|
| + gfx::Transform inverse_local_space_to_screen_space(
|
| + gfx::Transform::kSkipInitialization);
|
| + if (!local_space_to_screen_space_transform.GetInverse(
|
| + &inverse_local_space_to_screen_space))
|
| + return false;
|
|
|
| - // Transform the hit test point from screen space to the local space of the given rect.
|
| - bool clipped = false;
|
| - gfx::PointF hitTestPointInLocalSpace = MathUtil::ProjectPoint(inverseLocalSpaceToScreenSpace, screenSpacePoint, &clipped);
|
| + // Transform the hit test point from screen space to the local space of the
|
| + // given rect.
|
| + bool clipped = false;
|
| + gfx::PointF hit_test_point_in_local_space = MathUtil::ProjectPoint(
|
| + inverse_local_space_to_screen_space, screen_space_point, &clipped);
|
|
|
| - // If projectPoint could not project to a valid value, then we assume that this point doesn't hit this rect.
|
| - if (clipped)
|
| - return false;
|
| + // If ProjectPoint could not project to a valid value, then we assume that
|
| + // this point doesn't hit this rect.
|
| + if (clipped)
|
| + return false;
|
|
|
| - return localSpaceRect.Contains(hitTestPointInLocalSpace);
|
| + return local_space_rect.Contains(hit_test_point_in_local_space);
|
| }
|
|
|
| -static bool pointHitsRegion(gfx::PointF screenSpacePoint, const gfx::Transform& screenSpaceTransform, const Region& layerSpaceRegion, float layerContentScaleX, float layerContentScaleY)
|
| -{
|
| - // If the transform is not invertible, then assume that this point doesn't hit this region.
|
| - gfx::Transform inverseScreenSpaceTransform(gfx::Transform::kSkipInitialization);
|
| - if (!screenSpaceTransform.GetInverse(&inverseScreenSpaceTransform))
|
| - return false;
|
| -
|
| - // Transform the hit test point from screen space to the local space of the given region.
|
| - bool clipped = false;
|
| - gfx::PointF hitTestPointInContentSpace = MathUtil::ProjectPoint(inverseScreenSpaceTransform, screenSpacePoint, &clipped);
|
| - gfx::PointF hitTestPointInLayerSpace = gfx::ScalePoint(hitTestPointInContentSpace, 1 / layerContentScaleX, 1 / layerContentScaleY);
|
| +static bool PointHitsRegion(gfx::PointF screen_space_point,
|
| + const gfx::Transform& screen_space_transform,
|
| + const Region& layer_space_region,
|
| + float layer_content_scale_x,
|
| + float layer_content_scale_y) {
|
| + // If the transform is not invertible, then assume that this point doesn't hit
|
| + // this region.
|
| + gfx::Transform inverse_screen_space_transform(
|
| + gfx::Transform::kSkipInitialization);
|
| + if (!screen_space_transform.GetInverse(&inverse_screen_space_transform))
|
| + return false;
|
|
|
| - // If projectPoint could not project to a valid value, then we assume that this point doesn't hit this region.
|
| - if (clipped)
|
| - return false;
|
| + // Transform the hit test point from screen space to the local space of the
|
| + // given region.
|
| + bool clipped = false;
|
| + gfx::PointF hit_test_point_in_content_space = MathUtil::ProjectPoint(
|
| + inverse_screen_space_transform, screen_space_point, &clipped);
|
| + gfx::PointF hit_test_point_in_layer_space =
|
| + gfx::ScalePoint(hit_test_point_in_content_space,
|
| + 1.f / layer_content_scale_x,
|
| + 1.f / layer_content_scale_y);
|
| +
|
| + // If ProjectPoint could not project to a valid value, then we assume that
|
| + // this point doesn't hit this region.
|
| + if (clipped)
|
| + return false;
|
|
|
| - return layerSpaceRegion.Contains(gfx::ToRoundedPoint(hitTestPointInLayerSpace));
|
| + return layer_space_region.Contains(
|
| + gfx::ToRoundedPoint(hit_test_point_in_layer_space));
|
| }
|
|
|
| -static bool pointIsClippedBySurfaceOrClipRect(const gfx::PointF& screenSpacePoint, LayerImpl* layer)
|
| -{
|
| - LayerImpl* current_layer = layer;
|
| -
|
| - // Walk up the layer tree and hit-test any renderSurfaces and any layer clipRects that are active.
|
| - while (current_layer) {
|
| - if (current_layer->render_surface() && !pointHitsRect(screenSpacePoint, current_layer->render_surface()->screen_space_transform(), current_layer->render_surface()->content_rect()))
|
| - return true;
|
| -
|
| - // Note that drawableContentRects are actually in targetSurface space, so the transform we
|
| - // have to provide is the target surface's screenSpaceTransform.
|
| - LayerImpl* renderTarget = current_layer->render_target();
|
| - if (layerClipsSubtree(current_layer) && !pointHitsRect(screenSpacePoint, renderTarget->render_surface()->screen_space_transform(), current_layer->drawable_content_rect()))
|
| - return true;
|
| -
|
| - current_layer = current_layer->parent();
|
| - }
|
| -
|
| - // If we have finished walking all ancestors without having already exited, then the point is not clipped by any ancestors.
|
| - return false;
|
| +static bool PointIsClippedBySurfaceOrClipRect(gfx::PointF screen_space_point,
|
| + LayerImpl* layer) {
|
| + LayerImpl* current_layer = layer;
|
| +
|
| + // Walk up the layer tree and hit-test any render_surfaces and any layer
|
| + // clip rects that are active.
|
| + while (current_layer) {
|
| + if (current_layer->render_surface() &&
|
| + !PointHitsRect(
|
| + screen_space_point,
|
| + current_layer->render_surface()->screen_space_transform(),
|
| + current_layer->render_surface()->content_rect()))
|
| + return true;
|
| +
|
| + // Note that drawable content rects are actually in target surface space, so
|
| + // the transform we have to provide is the target surface's
|
| + // screen_space_transform.
|
| + LayerImpl* render_target = current_layer->render_target();
|
| + if (LayerClipsSubtree(current_layer) &&
|
| + !PointHitsRect(
|
| + screen_space_point,
|
| + render_target->render_surface()->screen_space_transform(),
|
| + current_layer->drawable_content_rect()))
|
| + return true;
|
| +
|
| + current_layer = current_layer->parent();
|
| + }
|
| +
|
| + // If we have finished walking all ancestors without having already exited,
|
| + // then the point is not clipped by any ancestors.
|
| + return false;
|
| }
|
|
|
| -LayerImpl* LayerTreeHostCommon::findLayerThatIsHitByPoint(const gfx::PointF& screenSpacePoint, const std::vector<LayerImpl*>& renderSurfaceLayerList)
|
| -{
|
| - LayerImpl* foundLayer = 0;
|
| -
|
| - typedef LayerIterator<LayerImpl, std::vector<LayerImpl*>, RenderSurfaceImpl, LayerIteratorActions::FrontToBack> LayerIteratorType;
|
| - LayerIteratorType end = LayerIteratorType::End(&renderSurfaceLayerList);
|
| -
|
| - for (LayerIteratorType it = LayerIteratorType::Begin(&renderSurfaceLayerList); it != end; ++it) {
|
| - // We don't want to consider renderSurfaces for hit testing.
|
| - if (!it.represents_itself())
|
| - continue;
|
| -
|
| - LayerImpl* current_layer = (*it);
|
| -
|
| - gfx::RectF contentRect(gfx::PointF(), current_layer->content_bounds());
|
| - if (!pointHitsRect(screenSpacePoint, current_layer->screen_space_transform(), contentRect))
|
| - continue;
|
| -
|
| - // At this point, we think the point does hit the layer, but we need to walk up
|
| - // the parents to ensure that the layer was not clipped in such a way that the
|
| - // hit point actually should not hit the layer.
|
| - if (pointIsClippedBySurfaceOrClipRect(screenSpacePoint, current_layer))
|
| - continue;
|
| -
|
| - // Skip the HUD layer.
|
| - if (current_layer == current_layer->layer_tree_impl()->hud_layer())
|
| - continue;
|
| -
|
| - foundLayer = current_layer;
|
| - break;
|
| - }
|
| -
|
| - // This can potentially return 0, which means the screenSpacePoint did not successfully hit test any layers, not even the root layer.
|
| - return foundLayer;
|
| +LayerImpl* LayerTreeHostCommon::FindLayerThatIsHitByPoint(
|
| + gfx::PointF screen_space_point,
|
| + const std::vector<LayerImpl*>& render_surface_layer_list) {
|
| + LayerImpl* found_layer = NULL;
|
| +
|
| + typedef LayerIterator<LayerImpl,
|
| + std::vector<LayerImpl*>,
|
| + RenderSurfaceImpl,
|
| + LayerIteratorActions::FrontToBack> LayerIteratorType;
|
| + LayerIteratorType end = LayerIteratorType::End(&render_surface_layer_list);
|
| +
|
| + for (LayerIteratorType
|
| + it = LayerIteratorType::Begin(&render_surface_layer_list);
|
| + it != end;
|
| + ++it) {
|
| + // We don't want to consider render_surfaces for hit testing.
|
| + if (!it.represents_itself())
|
| + continue;
|
| +
|
| + LayerImpl* current_layer = (*it);
|
| +
|
| + gfx::RectF content_rect(gfx::PointF(), current_layer->content_bounds());
|
| + if (!PointHitsRect(screen_space_point,
|
| + current_layer->screen_space_transform(),
|
| + content_rect))
|
| + continue;
|
| +
|
| + // At this point, we think the point does hit the layer, but we need to walk
|
| + // up the parents to ensure that the layer was not clipped in such a way
|
| + // that the hit point actually should not hit the layer.
|
| + if (PointIsClippedBySurfaceOrClipRect(screen_space_point, current_layer))
|
| + continue;
|
| +
|
| + // Skip the HUD layer.
|
| + if (current_layer == current_layer->layer_tree_impl()->hud_layer())
|
| + continue;
|
| +
|
| + found_layer = current_layer;
|
| + break;
|
| + }
|
| +
|
| + // This can potentially return NULL, which means the screen_space_point did
|
| + // not successfully hit test any layers, not even the root layer.
|
| + return found_layer;
|
| }
|
|
|
| -LayerImpl* LayerTreeHostCommon::findLayerThatIsHitByPointInTouchHandlerRegion(const gfx::PointF& screenSpacePoint, const std::vector<LayerImpl*>& renderSurfaceLayerList)
|
| -{
|
| - LayerImpl* foundLayer = 0;
|
| -
|
| - typedef LayerIterator<LayerImpl, std::vector<LayerImpl*>, RenderSurfaceImpl, LayerIteratorActions::FrontToBack> LayerIteratorType;
|
| - LayerIteratorType end = LayerIteratorType::End(&renderSurfaceLayerList);
|
| -
|
| - for (LayerIteratorType it = LayerIteratorType::Begin(&renderSurfaceLayerList); it != end; ++it) {
|
| - // We don't want to consider renderSurfaces for hit testing.
|
| - if (!it.represents_itself())
|
| - continue;
|
| -
|
| - LayerImpl* current_layer = (*it);
|
| -
|
| - if (!layerHasTouchEventHandlersAt(screenSpacePoint, current_layer))
|
| - continue;
|
| -
|
| - foundLayer = current_layer;
|
| - break;
|
| - }
|
| -
|
| - // This can potentially return 0, which means the screenSpacePoint did not successfully hit test any layers, not even the root layer.
|
| - return foundLayer;
|
| +LayerImpl* LayerTreeHostCommon::FindLayerThatIsHitByPointInTouchHandlerRegion(
|
| + gfx::PointF screen_space_point,
|
| + const std::vector<LayerImpl*>& render_surface_layer_list) {
|
| + LayerImpl* found_layer = NULL;
|
| +
|
| + typedef LayerIterator<LayerImpl,
|
| + std::vector<LayerImpl*>,
|
| + RenderSurfaceImpl,
|
| + LayerIteratorActions::FrontToBack> LayerIteratorType;
|
| + LayerIteratorType end = LayerIteratorType::End(&render_surface_layer_list);
|
| +
|
| + for (LayerIteratorType
|
| + it = LayerIteratorType::Begin(&render_surface_layer_list);
|
| + it != end;
|
| + ++it) {
|
| + // We don't want to consider render_surfaces for hit testing.
|
| + if (!it.represents_itself())
|
| + continue;
|
| +
|
| + LayerImpl* current_layer = (*it);
|
| +
|
| + if (!LayerHasTouchEventHandlersAt(screen_space_point, current_layer))
|
| + continue;
|
| +
|
| + found_layer = current_layer;
|
| + break;
|
| + }
|
| +
|
| + // This can potentially return NULL, which means the screen_space_point did
|
| + // not successfully hit test any layers, not even the root layer.
|
| + return found_layer;
|
| }
|
|
|
| -bool LayerTreeHostCommon::layerHasTouchEventHandlersAt(const gfx::PointF& screenSpacePoint, LayerImpl* layerImpl) {
|
| - if (layerImpl->touch_event_handler_region().IsEmpty())
|
| - return false;
|
| +bool LayerTreeHostCommon::LayerHasTouchEventHandlersAt(
|
| + gfx::PointF screen_space_point,
|
| + LayerImpl* layer_impl) {
|
| + if (layer_impl->touch_event_handler_region().IsEmpty())
|
| + return false;
|
|
|
| - if (!pointHitsRegion(screenSpacePoint, layerImpl->screen_space_transform(), layerImpl->touch_event_handler_region(), layerImpl->contents_scale_x(), layerImpl->contents_scale_y()))
|
| - return false;;
|
| + if (!PointHitsRegion(screen_space_point,
|
| + layer_impl->screen_space_transform(),
|
| + layer_impl->touch_event_handler_region(),
|
| + layer_impl->contents_scale_x(),
|
| + layer_impl->contents_scale_y()))
|
| + return false;
|
|
|
| - // At this point, we think the point does hit the touch event handler region on the layer, but we need to walk up
|
| - // the parents to ensure that the layer was not clipped in such a way that the
|
| - // hit point actually should not hit the layer.
|
| - if (pointIsClippedBySurfaceOrClipRect(screenSpacePoint, layerImpl))
|
| - return false;
|
| + // At this point, we think the point does hit the touch event handler region
|
| + // on the layer, but we need to walk up the parents to ensure that the layer
|
| + // was not clipped in such a way that the hit point actually should not hit
|
| + // the layer.
|
| + if (PointIsClippedBySurfaceOrClipRect(screen_space_point, layer_impl))
|
| + return false;
|
|
|
| return true;
|
| }
|
|
|