OLD | NEW |
1 // Copyright 2011 The Chromium Authors. All rights reserved. | 1 // Copyright 2011 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "cc/trees/layer_tree_host_common.h" | 5 #include "cc/trees/layer_tree_host_common.h" |
6 | 6 |
7 #include <algorithm> | 7 #include <algorithm> |
8 | 8 |
9 #include "base/debug/trace_event.h" | 9 #include "base/debug/trace_event.h" |
10 #include "cc/base/math_util.h" | 10 #include "cc/base/math_util.h" |
11 #include "cc/layers/heads_up_display_layer_impl.h" | 11 #include "cc/layers/heads_up_display_layer_impl.h" |
12 #include "cc/layers/layer.h" | 12 #include "cc/layers/layer.h" |
13 #include "cc/layers/layer_impl.h" | 13 #include "cc/layers/layer_impl.h" |
14 #include "cc/layers/layer_iterator.h" | 14 #include "cc/layers/layer_iterator.h" |
15 #include "cc/layers/render_surface.h" | 15 #include "cc/layers/render_surface.h" |
16 #include "cc/layers/render_surface_impl.h" | 16 #include "cc/layers/render_surface_impl.h" |
17 #include "cc/trees/layer_sorter.h" | 17 #include "cc/trees/layer_sorter.h" |
18 #include "cc/trees/layer_tree_impl.h" | 18 #include "cc/trees/layer_tree_impl.h" |
19 #include "ui/gfx/point_conversions.h" | 19 #include "ui/gfx/point_conversions.h" |
20 #include "ui/gfx/rect_conversions.h" | 20 #include "ui/gfx/rect_conversions.h" |
21 #include "ui/gfx/transform.h" | 21 #include "ui/gfx/transform.h" |
22 | 22 |
23 namespace cc { | 23 namespace cc { |
24 | 24 |
25 ScrollAndScaleSet::ScrollAndScaleSet() | 25 ScrollAndScaleSet::ScrollAndScaleSet() {} |
26 { | 26 |
27 } | 27 ScrollAndScaleSet::~ScrollAndScaleSet() {} |
28 | 28 |
29 ScrollAndScaleSet::~ScrollAndScaleSet() | 29 static void SortLayers(std::vector<scoped_refptr<Layer> >::iterator forst, |
30 { | 30 std::vector<scoped_refptr<Layer> >::iterator end, |
31 } | 31 void* layer_sorter) { |
32 | 32 NOTREACHED(); |
33 static void sortLayers(std::vector<scoped_refptr<Layer> >::iterator forst, std::
vector<scoped_refptr<Layer> >::iterator end, void* layerSorter) | 33 } |
34 { | 34 |
35 NOTREACHED(); | 35 static void SortLayers(std::vector<LayerImpl*>::iterator first, |
36 } | 36 std::vector<LayerImpl*>::iterator end, |
37 | 37 LayerSorter* layer_sorter) { |
38 static void sortLayers(std::vector<LayerImpl*>::iterator first, std::vector<Laye
rImpl*>::iterator end, LayerSorter* layerSorter) | 38 DCHECK(layer_sorter); |
39 { | 39 TRACE_EVENT0("cc", "LayerTreeHostCommon::SortLayers"); |
40 DCHECK(layerSorter); | 40 layer_sorter->Sort(first, end); |
41 TRACE_EVENT0("cc", "layer_tree_host_common::sortLayers"); | 41 } |
42 layerSorter->Sort(first, end); | 42 |
43 } | 43 inline gfx::Rect CalculateVisibleRectWithCachedLayerRect( |
44 | 44 gfx::Rect target_surface_rect, |
45 inline gfx::Rect calculateVisibleRectWithCachedLayerRect(const gfx::Rect& target
SurfaceRect, const gfx::Rect& layerBoundRect, const gfx::Rect& layerRectInTarget
Space, const gfx::Transform& transform) | 45 gfx::Rect layer_bound_rect, |
46 { | 46 gfx::Rect layer_rect_in_target_space, |
47 // Is this layer fully contained within the target surface? | 47 const gfx::Transform& transform) { |
48 if (targetSurfaceRect.Contains(layerRectInTargetSpace)) | 48 // Is this layer fully contained within the target surface? |
49 return layerBoundRect; | 49 if (target_surface_rect.Contains(layer_rect_in_target_space)) |
50 | 50 return layer_bound_rect; |
51 // If the layer doesn't fill up the entire surface, then find the part of | 51 |
52 // the surface rect where the layer could be visible. This avoids trying to | 52 // If the layer doesn't fill up the entire surface, then find the part of |
53 // project surface rect points that are behind the projection point. | 53 // the surface rect where the layer could be visible. This avoids trying to |
54 gfx::Rect minimalSurfaceRect = targetSurfaceRect; | 54 // project surface rect points that are behind the projection point. |
55 minimalSurfaceRect.Intersect(layerRectInTargetSpace); | 55 gfx::Rect minimal_surface_rect = target_surface_rect; |
56 | 56 minimal_surface_rect.Intersect(layer_rect_in_target_space); |
57 // Project the corners of the target surface rect into the layer space. | 57 |
58 // This bounding rectangle may be larger than it needs to be (being | 58 // Project the corners of the target surface rect into the layer space. |
59 // axis-aligned), but is a reasonable filter on the space to consider. | 59 // This bounding rectangle may be larger than it needs to be (being |
60 // Non-invertible transforms will create an empty rect here. | 60 // axis-aligned), but is a reasonable filter on the space to consider. |
61 | 61 // Non-invertible transforms will create an empty rect here. |
62 gfx::Transform surfaceToLayer(gfx::Transform::kSkipInitialization); | 62 |
63 if (!transform.GetInverse(&surfaceToLayer)) { | 63 gfx::Transform surface_to_layer(gfx::Transform::kSkipInitialization); |
64 // TODO(shawnsingh): Either we need to handle uninvertible transforms | 64 if (!transform.GetInverse(&surface_to_layer)) { |
65 // here, or DCHECK that the transform is invertible. | 65 // TODO(shawnsingh): Either we need to handle uninvertible transforms |
66 } | 66 // here, or DCHECK that the transform is invertible. |
67 gfx::Rect layerRect = gfx::ToEnclosingRect(MathUtil::ProjectClippedRect(surf
aceToLayer, gfx::RectF(minimalSurfaceRect))); | 67 } |
68 layerRect.Intersect(layerBoundRect); | 68 gfx::Rect layer_rect = gfx::ToEnclosingRect(MathUtil::ProjectClippedRect( |
69 return layerRect; | 69 surface_to_layer, gfx::RectF(minimal_surface_rect))); |
70 } | 70 layer_rect.Intersect(layer_bound_rect); |
71 | 71 return layer_rect; |
72 gfx::Rect LayerTreeHostCommon::calculateVisibleRect(const gfx::Rect& targetSurfa
ceRect, const gfx::Rect& layerBoundRect, const gfx::Transform& transform) | 72 } |
73 { | 73 |
74 gfx::Rect layerInSurfaceSpace = MathUtil::MapClippedRect(transform, layerBou
ndRect); | 74 gfx::Rect LayerTreeHostCommon::CalculateVisibleRect( |
75 return calculateVisibleRectWithCachedLayerRect(targetSurfaceRect, layerBound
Rect, layerInSurfaceSpace, transform); | 75 gfx::Rect target_surface_rect, |
| 76 gfx::Rect layer_bound_rect, |
| 77 const gfx::Transform& transform) { |
| 78 gfx::Rect layer_in_surface_space = |
| 79 MathUtil::MapClippedRect(transform, layer_bound_rect); |
| 80 return CalculateVisibleRectWithCachedLayerRect( |
| 81 target_surface_rect, layer_bound_rect, layer_in_surface_space, transform); |
| 82 } |
| 83 |
| 84 template <typename LayerType> static inline bool IsRootLayer(LayerType* layer) { |
| 85 return !layer->parent(); |
76 } | 86 } |
77 | 87 |
78 template <typename LayerType> | 88 template <typename LayerType> |
79 static inline bool isRootLayer(LayerType* layer) | 89 static inline bool LayerIsInExisting3DRenderingContext(LayerType* layer) { |
80 { | 90 // According to current W3C spec on CSS transforms, a layer is part of an |
81 return !layer->parent(); | 91 // established 3d rendering context if its parent has transform-style of |
82 } | 92 // preserves-3d. |
83 | 93 return layer->parent() && layer->parent()->preserves_3d(); |
84 template<typename LayerType> | 94 } |
85 static inline bool layerIsInExisting3DRenderingContext(LayerType* layer) | 95 |
86 { | 96 template <typename LayerType> |
87 // According to current W3C spec on CSS transforms, a layer is part of an es
tablished | 97 static bool IsRootLayerOfNewRenderingContext(LayerType* layer) { |
88 // 3d rendering context if its parent has transform-style of preserves-3d. | 98 // According to current W3C spec on CSS transforms (Section 6.1), a layer is |
89 return layer->parent() && layer->parent()->preserves_3d(); | 99 // the beginning of 3d rendering context if its parent does not have |
90 } | 100 // transform-style: preserve-3d, but this layer itself does. |
91 | 101 if (layer->parent()) |
92 template<typename LayerType> | 102 return !layer->parent()->preserves_3d() && layer->preserves_3d(); |
93 static bool isRootLayerOfNewRenderingContext(LayerType* layer) | 103 |
94 { | 104 return layer->preserves_3d(); |
95 // According to current W3C spec on CSS transforms (Section 6.1), a layer is
the | 105 } |
96 // beginning of 3d rendering context if its parent does not have transform-s
tyle: | 106 |
97 // preserve-3d, but this layer itself does. | 107 template <typename LayerType> |
98 if (layer->parent()) | 108 static bool IsLayerBackFaceVisible(LayerType* layer) { |
99 return !layer->parent()->preserves_3d() && layer->preserves_3d(); | 109 // The current W3C spec on CSS transforms says that backface visibility should |
100 | 110 // be determined differently depending on whether the layer is in a "3d |
101 return layer->preserves_3d(); | 111 // rendering context" or not. For Chromium code, we can determine whether we |
102 } | 112 // are in a 3d rendering context by checking if the parent preserves 3d. |
103 | 113 |
104 template<typename LayerType> | 114 if (LayerIsInExisting3DRenderingContext(layer)) |
105 static bool isLayerBackFaceVisible(LayerType* layer) | 115 return layer->draw_transform().IsBackFaceVisible(); |
106 { | 116 |
107 // The current W3C spec on CSS transforms says that backface visibility shou
ld be | 117 // In this case, either the layer establishes a new 3d rendering context, or |
108 // determined differently depending on whether the layer is in a "3d renderi
ng | 118 // is not in a 3d rendering context at all. |
109 // context" or not. For Chromium code, we can determine whether we are in a
3d | 119 return layer->transform().IsBackFaceVisible(); |
110 // rendering context by checking if the parent preserves 3d. | 120 } |
111 | 121 |
112 if (layerIsInExisting3DRenderingContext(layer)) | 122 template <typename LayerType> |
113 return layer->draw_transform().IsBackFaceVisible(); | 123 static bool IsSurfaceBackFaceVisible(LayerType* layer, |
114 | 124 const gfx::Transform& draw_transform) { |
115 // In this case, either the layer establishes a new 3d rendering context, or
is not in | 125 if (LayerIsInExisting3DRenderingContext(layer)) |
116 // a 3d rendering context at all. | 126 return draw_transform.IsBackFaceVisible(); |
| 127 |
| 128 if (IsRootLayerOfNewRenderingContext(layer)) |
117 return layer->transform().IsBackFaceVisible(); | 129 return layer->transform().IsBackFaceVisible(); |
118 } | 130 |
119 | 131 // If the render_surface is not part of a new or existing rendering context, |
120 template<typename LayerType> | 132 // then the layers that contribute to this surface will decide back-face |
121 static bool isSurfaceBackFaceVisible(LayerType* layer, const gfx::Transform& dra
wTransform) | 133 // visibility for themselves. |
122 { | 134 return false; |
123 if (layerIsInExisting3DRenderingContext(layer)) | 135 } |
124 return drawTransform.IsBackFaceVisible(); | 136 |
125 | 137 template <typename LayerType> |
126 if (isRootLayerOfNewRenderingContext(layer)) | 138 static inline bool LayerClipsSubtree(LayerType* layer) { |
127 return layer->transform().IsBackFaceVisible(); | 139 return layer->masks_to_bounds() || layer->mask_layer(); |
128 | 140 } |
129 // If the renderSurface is not part of a new or existing rendering context,
then the | 141 |
130 // layers that contribute to this surface will decide back-face visibility f
or themselves. | 142 template <typename LayerType> |
131 return false; | 143 static gfx::Rect CalculateVisibleContentRect( |
132 } | 144 LayerType* layer, |
133 | 145 gfx::Rect ancestor_clip_rect_in_descendant_surface_space, |
134 template<typename LayerType> | 146 gfx::Rect layer_rect_in_target_space) { |
135 static inline bool layerClipsSubtree(LayerType* layer) | 147 DCHECK(layer->render_target()); |
136 { | 148 |
137 return layer->masks_to_bounds() || layer->mask_layer(); | 149 // Nothing is visible if the layer bounds are empty. |
138 } | 150 if (!layer->DrawsContent() || layer->content_bounds().IsEmpty() || |
139 | 151 layer->drawable_content_rect().IsEmpty()) |
140 template<typename LayerType> | 152 return gfx::Rect(); |
141 static gfx::Rect calculateVisibleContentRect(LayerType* layer, const gfx::Rect&
ancestorClipRectInDescendantSurfaceSpace, const gfx::Rect& layerRectInTargetSpac
e) | 153 |
142 { | 154 // Compute visible bounds in target surface space. |
143 DCHECK(layer->render_target()); | 155 gfx::Rect visible_rect_in_target_surface_space = |
144 | 156 layer->drawable_content_rect(); |
145 // Nothing is visible if the layer bounds are empty. | 157 |
146 if (!layer->DrawsContent() || layer->content_bounds().IsEmpty() || layer->dr
awable_content_rect().IsEmpty()) | 158 if (!layer->render_target()->render_surface()->clip_rect().IsEmpty()) { |
147 return gfx::Rect(); | 159 // In this case the target surface does clip layers that contribute to |
148 | 160 // it. So, we have to convert the current surface's clipRect from its |
149 // Compute visible bounds in target surface space. | 161 // ancestor surface space to the current (descendant) surface |
150 gfx::Rect visibleRectInTargetSurfaceSpace = layer->drawable_content_rect(); | 162 // space. This conversion is done outside this function so that it can |
151 | 163 // be cached instead of computing it redundantly for every layer. |
152 if (!layer->render_target()->render_surface()->clip_rect().IsEmpty()) { | 164 visible_rect_in_target_surface_space.Intersect( |
153 // In this case the target surface does clip layers that contribute to | 165 ancestor_clip_rect_in_descendant_surface_space); |
154 // it. So, we have to convert the current surface's clipRect from its | 166 } |
155 // ancestor surface space to the current (descendant) surface | 167 |
156 // space. This conversion is done outside this function so that it can | 168 if (visible_rect_in_target_surface_space.IsEmpty()) |
157 // be cached instead of computing it redundantly for every layer. | 169 return gfx::Rect(); |
158 visibleRectInTargetSurfaceSpace.Intersect(ancestorClipRectInDescendantSu
rfaceSpace); | 170 |
159 } | 171 return CalculateVisibleRectWithCachedLayerRect( |
160 | 172 visible_rect_in_target_surface_space, |
161 if (visibleRectInTargetSurfaceSpace.IsEmpty()) | 173 gfx::Rect(gfx::Point(), layer->content_bounds()), |
162 return gfx::Rect(); | 174 layer_rect_in_target_space, |
163 | 175 layer->draw_transform()); |
164 return calculateVisibleRectWithCachedLayerRect(visibleRectInTargetSurfaceSpa
ce, gfx::Rect(gfx::Point(), layer->content_bounds()), layerRectInTargetSpace, la
yer->draw_transform()); | 176 } |
165 } | 177 |
166 | 178 static inline bool TransformToParentIsKnown(LayerImpl* layer) { return true; } |
167 static inline bool transformToParentIsKnown(LayerImpl*) | 179 |
168 { | 180 static inline bool TransformToParentIsKnown(Layer* layer) { |
| 181 |
| 182 return !layer->TransformIsAnimating(); |
| 183 } |
| 184 |
| 185 static inline bool TransformToScreenIsKnown(LayerImpl* layer) { return true; } |
| 186 |
| 187 static inline bool TransformToScreenIsKnown(Layer* layer) { |
| 188 return !layer->screen_space_transform_is_animating(); |
| 189 } |
| 190 |
| 191 template <typename LayerType> |
| 192 static bool LayerShouldBeSkipped(LayerType* layer) { |
| 193 // Layers can be skipped if any of these conditions are met. |
| 194 // - does not draw content. |
| 195 // - is transparent |
| 196 // - has empty bounds |
| 197 // - the layer is not double-sided, but its back face is visible. |
| 198 // |
| 199 // Some additional conditions need to be computed at a later point after the |
| 200 // recursion is finished. |
| 201 // - the intersection of render surface content and layer clipRect is empty |
| 202 // - the visibleContentRect is empty |
| 203 // |
| 204 // Note, if the layer should not have been drawn due to being fully |
| 205 // transparent, we would have skipped the entire subtree and never made it |
| 206 // into this function, so it is safe to omit this check here. |
| 207 |
| 208 if (!layer->DrawsContent() || layer->bounds().IsEmpty()) |
169 return true; | 209 return true; |
170 } | 210 |
171 | 211 LayerType* backface_test_layer = layer; |
172 static inline bool transformToParentIsKnown(Layer* layer) | 212 if (layer->use_parent_backface_visibility()) { |
173 { | 213 DCHECK(layer->parent()); |
174 | 214 DCHECK(!layer->parent()->use_parent_backface_visibility()); |
175 return !layer->TransformIsAnimating(); | 215 backface_test_layer = layer->parent(); |
176 } | 216 } |
177 | 217 |
178 static inline bool transformToScreenIsKnown(LayerImpl*) | 218 // The layer should not be drawn if (1) it is not double-sided and (2) the |
179 { | 219 // back of the layer is known to be facing the screen. |
| 220 if (!backface_test_layer->double_sided() && |
| 221 TransformToScreenIsKnown(backface_test_layer) && |
| 222 IsLayerBackFaceVisible(backface_test_layer)) |
180 return true; | 223 return true; |
181 } | 224 |
182 | 225 return false; |
183 static inline bool transformToScreenIsKnown(Layer* layer) | 226 } |
184 { | 227 |
185 return !layer->screen_space_transform_is_animating(); | 228 static inline bool SubtreeShouldBeSkipped(LayerImpl* layer) { |
186 } | 229 // The opacity of a layer always applies to its children (either implicitly |
187 | 230 // via a render surface or explicitly if the parent preserves 3D), so the |
188 template<typename LayerType> | 231 // entire subtree can be skipped if this layer is fully transparent. |
189 static bool layerShouldBeSkipped(LayerType* layer) | 232 return !layer->opacity(); |
190 { | 233 } |
191 // Layers can be skipped if any of these conditions are met. | 234 |
192 // - does not draw content. | 235 static inline bool SubtreeShouldBeSkipped(Layer* layer) { |
193 // - is transparent | 236 // If the opacity is being animated then the opacity on the main thread is |
194 // - has empty bounds | 237 // unreliable (since the impl thread may be using a different opacity), so it |
195 // - the layer is not double-sided, but its back face is visible. | 238 // should not be trusted. |
196 // | 239 // In particular, it should not cause the subtree to be skipped. |
197 // Some additional conditions need to be computed at a later point after the
recursion is finished. | 240 // Similarly, for layers that might animate opacity using an impl-only |
198 // - the intersection of render surface content and layer clipRect is empt
y | 241 // animation, their subtree should also not be skipped. |
199 // - the visibleContentRect is empty | 242 return !layer->opacity() && !layer->OpacityIsAnimating() && |
200 // | 243 !layer->OpacityCanAnimateOnImplThread(); |
201 // Note, if the layer should not have been drawn due to being fully transpar
ent, | |
202 // we would have skipped the entire subtree and never made it into this func
tion, | |
203 // so it is safe to omit this check here. | |
204 | |
205 if (!layer->DrawsContent() || layer->bounds().IsEmpty()) | |
206 return true; | |
207 | |
208 LayerType* backfaceTestLayer = layer; | |
209 if (layer->use_parent_backface_visibility()) { | |
210 DCHECK(layer->parent()); | |
211 DCHECK(!layer->parent()->use_parent_backface_visibility()); | |
212 backfaceTestLayer = layer->parent(); | |
213 } | |
214 | |
215 // The layer should not be drawn if (1) it is not double-sided and (2) the b
ack of the layer is known to be facing the screen. | |
216 if (!backfaceTestLayer->double_sided() && transformToScreenIsKnown(backfaceT
estLayer) && isLayerBackFaceVisible(backfaceTestLayer)) | |
217 return true; | |
218 | |
219 return false; | |
220 } | |
221 | |
222 static inline bool subtreeShouldBeSkipped(LayerImpl* layer) | |
223 { | |
224 // The opacity of a layer always applies to its children (either implicitly | |
225 // via a render surface or explicitly if the parent preserves 3D), so the | |
226 // entire subtree can be skipped if this layer is fully transparent. | |
227 return !layer->opacity(); | |
228 } | |
229 | |
230 static inline bool subtreeShouldBeSkipped(Layer* layer) | |
231 { | |
232 // If the opacity is being animated then the opacity on the main thread is u
nreliable | |
233 // (since the impl thread may be using a different opacity), so it should no
t be trusted. | |
234 // In particular, it should not cause the subtree to be skipped. | |
235 // Similarly, for layers that might animate opacity using an impl-only | |
236 // animation, their subtree should also not be skipped. | |
237 return !layer->opacity() && !layer->OpacityIsAnimating() && | |
238 !layer->OpacityCanAnimateOnImplThread(); | |
239 } | 244 } |
240 | 245 |
241 // Called on each layer that could be drawn after all information from | 246 // Called on each layer that could be drawn after all information from |
242 // calcDrawProperties has been updated on that layer. May have some false | 247 // calcDrawProperties has been updated on that layer. May have some false |
243 // positives (e.g. layers get this called on them but don't actually get drawn). | 248 // positives (e.g. layers get this called on them but don't actually get drawn). |
244 static inline void updateTilePrioritiesForLayer(LayerImpl* layer) | 249 static inline void UpdateTilePrioritiesForLayer(LayerImpl* layer) { |
245 { | 250 layer->UpdateTilePriorities(); |
246 layer->UpdateTilePriorities(); | 251 |
247 | 252 // Mask layers don't get this call, so explicitly update them so they can |
248 // Mask layers don't get this call, so explicitly update them so they can | 253 // kick off tile rasterization. |
249 // kick off tile rasterization. | 254 if (layer->mask_layer()) |
250 if (layer->mask_layer()) | 255 layer->mask_layer()->UpdateTilePriorities(); |
251 layer->mask_layer()->UpdateTilePriorities(); | 256 if (layer->replica_layer() && layer->replica_layer()->mask_layer()) |
252 if (layer->replica_layer() && layer->replica_layer()->mask_layer()) | 257 layer->replica_layer()->mask_layer()->UpdateTilePriorities(); |
253 layer->replica_layer()->mask_layer()->UpdateTilePriorities(); | 258 } |
254 } | 259 |
255 | 260 static inline void UpdateTilePrioritiesForLayer(Layer* layer) {} |
256 static inline void updateTilePrioritiesForLayer(Layer* layer) | 261 |
257 { | 262 template <typename LayerType> |
258 } | 263 static bool SubtreeShouldRenderToSeparateSurface( |
259 | 264 LayerType* layer, |
260 template<typename LayerType> | 265 bool axis_aligned_with_respect_to_parent) { |
261 static bool subtreeShouldRenderToSeparateSurface(LayerType* layer, bool axisAlig
nedWithRespectToParent) | 266 // |
262 { | 267 // A layer and its descendants should render onto a new RenderSurfaceImpl if |
263 // | 268 // any of these rules hold: |
264 // A layer and its descendants should render onto a new RenderSurfaceImpl if
any of these rules hold: | 269 // |
265 // | 270 |
266 | 271 // The root layer should always have a render_surface. |
267 // The root layer should always have a renderSurface. | 272 if (IsRootLayer(layer)) |
268 if (isRootLayer(layer)) | 273 return true; |
269 return true; | 274 |
270 | 275 // If we force it. |
271 // If we force it. | 276 if (layer->force_render_surface()) |
272 if (layer->force_render_surface()) | 277 return true; |
273 return true; | 278 |
274 | 279 // If the layer uses a mask. |
275 // If the layer uses a mask. | 280 if (layer->mask_layer()) |
276 if (layer->mask_layer()) | 281 return true; |
277 return true; | 282 |
278 | 283 // If the layer has a reflection. |
279 // If the layer has a reflection. | 284 if (layer->replica_layer()) |
280 if (layer->replica_layer()) | 285 return true; |
281 return true; | 286 |
282 | 287 // If the layer uses a CSS filter. |
283 // If the layer uses a CSS filter. | 288 if (!layer->filters().isEmpty() || !layer->background_filters().isEmpty() || |
284 if (!layer->filters().isEmpty() || !layer->background_filters().isEmpty() ||
layer->filter()) | 289 layer->filter()) |
285 return true; | 290 return true; |
286 | 291 |
287 int numDescendantsThatDrawContent = layer->draw_properties().num_descendants
_that_draw_content; | 292 int num_descendants_that_draw_content = |
288 | 293 layer->draw_properties().num_descendants_that_draw_content; |
289 // If the layer flattens its subtree (i.e. the layer doesn't preserve-3d), b
ut it is | 294 |
290 // treated as a 3D object by its parent (i.e. parent does preserve-3d). | 295 // If the layer flattens its subtree (i.e. the layer doesn't preserve-3d), but |
291 if (layerIsInExisting3DRenderingContext(layer) && !layer->preserves_3d() &&
numDescendantsThatDrawContent > 0) { | 296 // it is treated as a 3D object by its parent (i.e. parent does preserve-3d). |
292 TRACE_EVENT_INSTANT0("cc", "LayerTreeHostCommon::requireSurface flatteni
ng"); | 297 if (LayerIsInExisting3DRenderingContext(layer) && !layer->preserves_3d() && |
293 return true; | 298 num_descendants_that_draw_content > 0) { |
| 299 TRACE_EVENT_INSTANT0( |
| 300 "cc", |
| 301 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface flattening"); |
| 302 return true; |
| 303 } |
| 304 |
| 305 // If the layer clips its descendants but it is not axis-aligned with respect |
| 306 // to its parent. |
| 307 bool layer_clips_external_content = |
| 308 LayerClipsSubtree(layer) || layer->HasDelegatedContent(); |
| 309 if (layer_clips_external_content && !axis_aligned_with_respect_to_parent && |
| 310 !layer->draw_properties().descendants_can_clip_selves) { |
| 311 TRACE_EVENT_INSTANT0( |
| 312 "cc", |
| 313 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface clipping"); |
| 314 return true; |
| 315 } |
| 316 |
| 317 // If the layer has some translucency and does not have a preserves-3d |
| 318 // transform style. This condition only needs a render surface if two or more |
| 319 // layers in the subtree overlap. But checking layer overlaps is unnecessarily |
| 320 // costly so instead we conservatively create a surface whenever at least two |
| 321 // layers draw content for this subtree. |
| 322 bool at_least_two_layers_in_subtree_draw_content = |
| 323 num_descendants_that_draw_content > 0 && |
| 324 (layer->DrawsContent() || num_descendants_that_draw_content > 1); |
| 325 |
| 326 if (layer->opacity() != 1.f && !layer->preserves_3d() && |
| 327 at_least_two_layers_in_subtree_draw_content) { |
| 328 TRACE_EVENT_INSTANT0( |
| 329 "cc", |
| 330 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface opacity"); |
| 331 return true; |
| 332 } |
| 333 |
| 334 return false; |
| 335 } |
| 336 |
| 337 gfx::Transform ComputeScrollCompensationForThisLayer( |
| 338 LayerImpl* scrolling_layer, |
| 339 const gfx::Transform& parent_matrix) { |
| 340 // For every layer that has non-zero scroll_delta, we have to compute a |
| 341 // transform that can undo the scroll_delta translation. In particular, we |
| 342 // want this matrix to premultiply a fixed-position layer's parent_matrix, so |
| 343 // we design this transform in three steps as follows. The steps described |
| 344 // here apply from right-to-left, so Step 1 would be the right-most matrix: |
| 345 // |
| 346 // Step 1. transform from target surface space to the exact space where |
| 347 // scroll_delta is actually applied. |
| 348 // -- this is inverse of the matrix in step 3 |
| 349 // Step 2. undo the scroll_delta |
| 350 // -- this is just a translation by scroll_delta. |
| 351 // Step 3. transform back to target surface space. |
| 352 // -- this transform is the "partial_layer_origin_transform" = |
| 353 // (parent_matrix * scale(layer->pageScaleDelta())); |
| 354 // |
| 355 // These steps create a matrix that both start and end in targetSurfaceSpace. |
| 356 // So this matrix can pre-multiply any fixed-position layer's draw_transform |
| 357 // to undo the scroll_deltas -- as long as that fixed position layer is fixed |
| 358 // onto the same render_target as this scrolling_layer. |
| 359 // |
| 360 |
| 361 gfx::Transform partial_layer_origin_transform = parent_matrix; |
| 362 partial_layer_origin_transform.PreconcatTransform( |
| 363 scrolling_layer->impl_transform()); |
| 364 |
| 365 gfx::Transform scroll_compensation_for_this_layer = |
| 366 partial_layer_origin_transform; // Step 3 |
| 367 scroll_compensation_for_this_layer.Translate( |
| 368 scrolling_layer->scroll_delta().x(), |
| 369 scrolling_layer->scroll_delta().y()); // Step 2 |
| 370 |
| 371 gfx::Transform inverse_partial_layer_origin_transform( |
| 372 gfx::Transform::kSkipInitialization); |
| 373 if (!partial_layer_origin_transform.GetInverse( |
| 374 &inverse_partial_layer_origin_transform)) { |
| 375 // TODO(shawnsingh): Either we need to handle uninvertible transforms |
| 376 // here, or DCHECK that the transform is invertible. |
| 377 } |
| 378 scroll_compensation_for_this_layer.PreconcatTransform( |
| 379 inverse_partial_layer_origin_transform); // Step 1 |
| 380 return scroll_compensation_for_this_layer; |
| 381 } |
| 382 |
| 383 gfx::Transform ComputeScrollCompensationMatrixForChildren( |
| 384 Layer* current_layer, |
| 385 const gfx::Transform& current_parent_matrix, |
| 386 const gfx::Transform& current_scroll_compensation) { |
| 387 // The main thread (i.e. Layer) does not need to worry about scroll |
| 388 // compensation. So we can just return an identity matrix here. |
| 389 return gfx::Transform(); |
| 390 } |
| 391 |
| 392 gfx::Transform ComputeScrollCompensationMatrixForChildren( |
| 393 LayerImpl* layer, |
| 394 const gfx::Transform& parent_matrix, |
| 395 const gfx::Transform& current_scroll_compensation_matrix) { |
| 396 // "Total scroll compensation" is the transform needed to cancel out all |
| 397 // scroll_delta translations that occurred since the nearest container layer, |
| 398 // even if there are render_surfaces in-between. |
| 399 // |
| 400 // There are some edge cases to be aware of, that are not explicit in the |
| 401 // code: |
| 402 // - A layer that is both a fixed-position and container should not be its |
| 403 // own container, instead, that means it is fixed to an ancestor, and is a |
| 404 // container for any fixed-position descendants. |
| 405 // - A layer that is a fixed-position container and has a render_surface |
| 406 // should behave the same as a container without a render_surface, the |
| 407 // render_surface is irrelevant in that case. |
| 408 // - A layer that does not have an explicit container is simply fixed to the |
| 409 // viewport. (i.e. the root render_surface.) |
| 410 // - If the fixed-position layer has its own render_surface, then the |
| 411 // render_surface is the one who gets fixed. |
| 412 // |
| 413 // This function needs to be called AFTER layers create their own |
| 414 // render_surfaces. |
| 415 // |
| 416 |
| 417 // Avoid the overheads (including stack allocation and matrix |
| 418 // initialization/copy) if we know that the scroll compensation doesn't need |
| 419 // to be reset or adjusted. |
| 420 if (!layer->is_container_for_fixed_position_layers() && |
| 421 layer->scroll_delta().IsZero() && !layer->render_surface()) |
| 422 return current_scroll_compensation_matrix; |
| 423 |
| 424 // Start as identity matrix. |
| 425 gfx::Transform next_scroll_compensation_matrix; |
| 426 |
| 427 // If this layer is not a container, then it inherits the existing scroll |
| 428 // compensations. |
| 429 if (!layer->is_container_for_fixed_position_layers()) |
| 430 next_scroll_compensation_matrix = current_scroll_compensation_matrix; |
| 431 |
| 432 // If the current layer has a non-zero scroll_delta, then we should compute |
| 433 // its local scrollCompensation and accumulate it to the |
| 434 // next_scroll_compensation_matrix. |
| 435 if (!layer->scroll_delta().IsZero()) { |
| 436 gfx::Transform scroll_compensation_for_this_layer = |
| 437 ComputeScrollCompensationForThisLayer(layer, parent_matrix); |
| 438 next_scroll_compensation_matrix.PreconcatTransform( |
| 439 scroll_compensation_for_this_layer); |
| 440 } |
| 441 |
| 442 // If the layer created its own render_surface, we have to adjust |
| 443 // next_scroll_compensation_matrix. The adjustment allows us to continue |
| 444 // using the scrollCompensation on the next surface. |
| 445 // Step 1 (right-most in the math): transform from the new surface to the |
| 446 // original ancestor surface |
| 447 // Step 2: apply the scroll compensation |
| 448 // Step 3: transform back to the new surface. |
| 449 if (layer->render_surface() && |
| 450 !next_scroll_compensation_matrix.IsIdentity()) { |
| 451 gfx::Transform inverse_surface_draw_transform( |
| 452 gfx::Transform::kSkipInitialization); |
| 453 if (!layer->render_surface()->draw_transform().GetInverse( |
| 454 &inverse_surface_draw_transform)) { |
| 455 // TODO(shawnsingh): Either we need to handle uninvertible transforms |
| 456 // here, or DCHECK that the transform is invertible. |
294 } | 457 } |
295 | 458 next_scroll_compensation_matrix = |
296 // If the layer clips its descendants but it is not axis-aligned with respec
t to its parent. | 459 inverse_surface_draw_transform * next_scroll_compensation_matrix * |
297 bool layerClipsExternalContent = layerClipsSubtree(layer) || layer->HasDeleg
atedContent(); | 460 layer->render_surface()->draw_transform(); |
298 if (layerClipsExternalContent && !axisAlignedWithRespectToParent && !layer->
draw_properties().descendants_can_clip_selves) | 461 } |
299 { | 462 |
300 TRACE_EVENT_INSTANT0("cc", "LayerTreeHostCommon::requireSurface clipping
"); | 463 return next_scroll_compensation_matrix; |
301 return true; | 464 } |
| 465 |
| 466 template <typename LayerType> |
| 467 static inline void CalculateContentsScale(LayerType* layer, |
| 468 float contents_scale, |
| 469 bool animating_transform_to_screen) { |
| 470 layer->CalculateContentsScale(contents_scale, |
| 471 animating_transform_to_screen, |
| 472 &layer->draw_properties().contents_scale_x, |
| 473 &layer->draw_properties().contents_scale_y, |
| 474 &layer->draw_properties().content_bounds); |
| 475 |
| 476 LayerType* mask_layer = layer->mask_layer(); |
| 477 if (mask_layer) { |
| 478 mask_layer->CalculateContentsScale( |
| 479 contents_scale, |
| 480 animating_transform_to_screen, |
| 481 &mask_layer->draw_properties().contents_scale_x, |
| 482 &mask_layer->draw_properties().contents_scale_y, |
| 483 &mask_layer->draw_properties().content_bounds); |
| 484 } |
| 485 |
| 486 LayerType* replica_mask_layer = |
| 487 layer->replica_layer() ? layer->replica_layer()->mask_layer() : NULL; |
| 488 if (replica_mask_layer) { |
| 489 replica_mask_layer->CalculateContentsScale( |
| 490 contents_scale, |
| 491 animating_transform_to_screen, |
| 492 &replica_mask_layer->draw_properties().contents_scale_x, |
| 493 &replica_mask_layer->draw_properties().contents_scale_y, |
| 494 &replica_mask_layer->draw_properties().content_bounds); |
| 495 } |
| 496 } |
| 497 |
| 498 static inline void UpdateLayerContentsScale( |
| 499 LayerImpl* layer, |
| 500 const gfx::Transform& combined_transform, |
| 501 float device_scale_factor, |
| 502 float page_scale_factor, |
| 503 bool animating_transform_to_screen) { |
| 504 gfx::Vector2dF transform_scale = MathUtil::ComputeTransform2dScaleComponents( |
| 505 combined_transform, device_scale_factor * page_scale_factor); |
| 506 float contents_scale = std::max(transform_scale.x(), transform_scale.y()); |
| 507 CalculateContentsScale(layer, contents_scale, animating_transform_to_screen); |
| 508 } |
| 509 |
| 510 static inline void UpdateLayerContentsScale( |
| 511 Layer* layer, |
| 512 const gfx::Transform& combined_transform, |
| 513 float device_scale_factor, |
| 514 float page_scale_factor, |
| 515 bool animating_transform_to_screen) { |
| 516 float raster_scale = layer->raster_scale(); |
| 517 |
| 518 if (layer->automatically_compute_raster_scale()) { |
| 519 gfx::Vector2dF transform_scale = |
| 520 MathUtil::ComputeTransform2dScaleComponents(combined_transform, 0.f); |
| 521 float combined_scale = std::max(transform_scale.x(), transform_scale.y()); |
| 522 float ideal_raster_scale = combined_scale / device_scale_factor; |
| 523 if (!layer->bounds_contain_page_scale()) |
| 524 ideal_raster_scale /= page_scale_factor; |
| 525 |
| 526 bool need_to_set_raster_scale = !raster_scale; |
| 527 |
| 528 // If we've previously saved a raster_scale but the ideal changes, things |
| 529 // are unpredictable and we should just use 1. |
| 530 if (raster_scale && raster_scale != 1.f && |
| 531 ideal_raster_scale != raster_scale) { |
| 532 ideal_raster_scale = 1.f; |
| 533 need_to_set_raster_scale = true; |
302 } | 534 } |
303 | 535 |
304 // If the layer has some translucency and does not have a preserves-3d trans
form style. | 536 if (need_to_set_raster_scale) { |
305 // This condition only needs a render surface if two or more layers in the | 537 bool use_and_save_ideal_scale = |
306 // subtree overlap. But checking layer overlaps is unnecessarily costly so | 538 ideal_raster_scale >= 1.f && !animating_transform_to_screen; |
307 // instead we conservatively create a surface whenever at least two layers | 539 if (use_and_save_ideal_scale) { |
308 // draw content for this subtree. | 540 raster_scale = ideal_raster_scale; |
309 bool atLeastTwoLayersInSubtreeDrawContent = numDescendantsThatDrawContent >
0 && (layer->DrawsContent() || numDescendantsThatDrawContent > 1); | 541 layer->SetRasterScale(raster_scale); |
310 | 542 } |
311 if (layer->opacity() != 1.f && !layer->preserves_3d() && atLeastTwoLayersInS
ubtreeDrawContent) { | |
312 TRACE_EVENT_INSTANT0("cc", "LayerTreeHostCommon::requireSurface opacity"
); | |
313 return true; | |
314 } | 543 } |
315 | 544 } |
316 return false; | 545 |
317 } | 546 if (!raster_scale) |
318 | 547 raster_scale = 1.f; |
319 gfx::Transform computeScrollCompensationForThisLayer(LayerImpl* scrollingLayer,
const gfx::Transform& parentMatrix) | 548 |
320 { | 549 float contents_scale = raster_scale * device_scale_factor; |
321 // For every layer that has non-zero scrollDelta, we have to compute a trans
form that can undo the | 550 if (!layer->bounds_contain_page_scale()) |
322 // scrollDelta translation. In particular, we want this matrix to premultipl
y a fixed-position layer's | 551 contents_scale *= page_scale_factor; |
323 // parentMatrix, so we design this transform in three steps as follows. The
steps described here apply | 552 |
324 // from right-to-left, so Step 1 would be the right-most matrix: | 553 CalculateContentsScale(layer, contents_scale, animating_transform_to_screen); |
325 // | 554 } |
326 // Step 1. transform from target surface space to the exact space where
scrollDelta is actually applied. | 555 |
327 // -- this is inverse of the matrix in step 3 | 556 template <typename LayerType, typename LayerList> |
328 // Step 2. undo the scrollDelta | 557 static inline void RemoveSurfaceForEarlyExit( |
329 // -- this is just a translation by scrollDelta. | 558 LayerType* layer_to_remove, |
330 // Step 3. transform back to target surface space. | 559 LayerList& render_surface_layer_list) { |
331 // -- this transform is the "partialLayerOriginTransform" = (paren
tMatrix * scale(layer->pageScaleDelta())); | 560 DCHECK(layer_to_remove->render_surface()); |
332 // | 561 // Technically, we know that the layer we want to remove should be |
333 // These steps create a matrix that both start and end in targetSurfaceSpace
. So this matrix can | 562 // at the back of the render_surface_layer_list. However, we have had |
334 // pre-multiply any fixed-position layer's drawTransform to undo the scrollD
eltas -- as long as | 563 // bugs before that added unnecessary layers here |
335 // that fixed position layer is fixed onto the same renderTarget as this scr
ollingLayer. | 564 // (https://bugs.webkit.org/show_bug.cgi?id=74147), but that causes |
336 // | 565 // things to crash. So here we proactively remove any additional |
337 | 566 // layers from the end of the list. |
338 gfx::Transform partialLayerOriginTransform = parentMatrix; | 567 while (render_surface_layer_list->back() != layer_to_remove) { |
339 partialLayerOriginTransform.PreconcatTransform(scrollingLayer->impl_transfor
m()); | 568 render_surface_layer_list->back()->ClearRenderSurface(); |
340 | 569 render_surface_layer_list->pop_back(); |
341 gfx::Transform scrollCompensationForThisLayer = partialLayerOriginTransform;
// Step 3 | 570 } |
342 scrollCompensationForThisLayer.Translate(scrollingLayer->scroll_delta().x(),
scrollingLayer->scroll_delta().y()); // Step 2 | 571 DCHECK_EQ(render_surface_layer_list->back(), layer_to_remove); |
343 | 572 render_surface_layer_list->pop_back(); |
344 gfx::Transform inversePartialLayerOriginTransform(gfx::Transform::kSkipIniti
alization); | 573 layer_to_remove->ClearRenderSurface(); |
345 if (!partialLayerOriginTransform.GetInverse(&inversePartialLayerOriginTransf
orm)) { | 574 } |
| 575 |
| 576 // Recursively walks the layer tree to compute any information that is needed |
| 577 // before doing the main recursion. |
| 578 template <typename LayerType> |
| 579 static void PreCalculateMetaInformation(LayerType* layer) { |
| 580 if (layer->HasDelegatedContent()) { |
| 581 // Layers with delegated content need to be treated as if they have as many |
| 582 // children as the number of layers they own delegated quads for. Since we |
| 583 // don't know this number right now, we choose one that acts like infinity |
| 584 // for our purposes. |
| 585 layer->draw_properties().num_descendants_that_draw_content = 1000; |
| 586 layer->draw_properties().descendants_can_clip_selves = false; |
| 587 return; |
| 588 } |
| 589 |
| 590 int num_descendants_that_draw_content = 0; |
| 591 bool descendants_can_clip_selves = true; |
| 592 bool sublayer_transform_prevents_clip = |
| 593 !layer->sublayer_transform().IsPositiveScaleOrTranslation(); |
| 594 |
| 595 for (size_t i = 0; i < layer->children().size(); ++i) { |
| 596 LayerType* child_layer = layer->children()[i]; |
| 597 PreCalculateMetaInformation<LayerType>(child_layer); |
| 598 |
| 599 num_descendants_that_draw_content += child_layer->DrawsContent() ? 1 : 0; |
| 600 num_descendants_that_draw_content += |
| 601 child_layer->draw_properties().num_descendants_that_draw_content; |
| 602 |
| 603 if ((child_layer->DrawsContent() && !child_layer->CanClipSelf()) || |
| 604 !child_layer->draw_properties().descendants_can_clip_selves || |
| 605 sublayer_transform_prevents_clip || |
| 606 !child_layer->transform().IsPositiveScaleOrTranslation()) |
| 607 descendants_can_clip_selves = false; |
| 608 } |
| 609 |
| 610 layer->draw_properties().num_descendants_that_draw_content = |
| 611 num_descendants_that_draw_content; |
| 612 layer->draw_properties().descendants_can_clip_selves = |
| 613 descendants_can_clip_selves; |
| 614 } |
| 615 |
| 616 static void RoundTranslationComponents(gfx::Transform* transform) { |
| 617 transform->matrix(). |
| 618 setDouble(0, 3, MathUtil::Round(transform->matrix().getDouble(0, 3))); |
| 619 transform->matrix(). |
| 620 setDouble(1, 3, MathUtil::Round(transform->matrix().getDouble(1, 3))); |
| 621 } |
| 622 |
| 623 // Recursively walks the layer tree starting at the given node and computes all |
| 624 // the necessary transformations, clipRects, render surfaces, etc. |
| 625 template <typename LayerType, typename LayerList, typename RenderSurfaceType> |
| 626 static void CalculateDrawPropertiesInternal( |
| 627 LayerType* layer, |
| 628 const gfx::Transform& parent_matrix, |
| 629 const gfx::Transform& full_hierarchy_matrix, |
| 630 const gfx::Transform& current_scroll_compensation_matrix, |
| 631 gfx::Rect clip_rect_from_ancestor, |
| 632 gfx::Rect clip_rect_from_ancestor_in_descendant_space, |
| 633 bool ancestor_clips_subtree, |
| 634 RenderSurfaceType* nearest_ancestor_that_moves_pixels, |
| 635 LayerList* render_surface_layer_list, |
| 636 LayerList* layer_list, |
| 637 LayerSorter* layer_sorter, |
| 638 int max_texture_size, |
| 639 float device_scale_factor, |
| 640 float page_scale_factor, |
| 641 bool subtree_can_use_lcd_text, |
| 642 gfx::Rect* drawable_content_rect_of_subtree, |
| 643 bool update_tile_priorities) { |
| 644 // This function computes the new matrix transformations recursively for this |
| 645 // layer and all its descendants. It also computes the appropriate render |
| 646 // surfaces. |
| 647 // Some important points to remember: |
| 648 // |
| 649 // 0. Here, transforms are notated in Matrix x Vector order, and in words we |
| 650 // describe what the transform does from left to right. |
| 651 // |
| 652 // 1. In our terminology, the "layer origin" refers to the top-left corner of |
| 653 // a layer, and the positive Y-axis points downwards. This interpretation is |
| 654 // valid because the orthographic projection applied at draw time flips the Y |
| 655 // axis appropriately. |
| 656 // |
| 657 // 2. The anchor point, when given as a PointF object, is specified in "unit |
| 658 // layer space", where the bounds of the layer map to [0, 1]. However, as a |
| 659 // Transform object, the transform to the anchor point is specified in "layer |
| 660 // space", where the bounds of the layer map to [bounds.width(), |
| 661 // bounds.height()]. |
| 662 // |
| 663 // 3. Definition of various transforms used: |
| 664 // M[parent] is the parent matrix, with respect to the nearest render |
| 665 // surface, passed down recursively. |
| 666 // |
| 667 // M[root] is the full hierarchy, with respect to the root, passed down |
| 668 // recursively. |
| 669 // |
| 670 // Tr[origin] is the translation matrix from the parent's origin to |
| 671 // this layer's origin. |
| 672 // |
| 673 // Tr[origin2anchor] is the translation from the layer's origin to its |
| 674 // anchor point |
| 675 // |
| 676 // Tr[origin2center] is the translation from the layer's origin to its |
| 677 // center |
| 678 // |
| 679 // M[layer] is the layer's matrix (applied at the anchor point) |
| 680 // |
| 681 // M[sublayer] is the layer's sublayer transform (also applied at the |
| 682 // layer's anchor point) |
| 683 // |
| 684 // S[layer2content] is the ratio of a layer's ContentBounds() to its |
| 685 // Bounds(). |
| 686 // |
| 687 // Some composite transforms can help in understanding the sequence of |
| 688 // transforms: |
| 689 // compositeLayerTransform = Tr[origin2anchor] * M[layer] * |
| 690 // Tr[origin2anchor].inverse() |
| 691 // |
| 692 // compositeSublayerTransform = Tr[origin2anchor] * M[sublayer] * |
| 693 // Tr[origin2anchor].inverse() |
| 694 // |
| 695 // 4. When a layer (or render surface) is drawn, it is drawn into a "target |
| 696 // render surface". Therefore the draw transform does not necessarily |
| 697 // transform from screen space to local layer space. Instead, the draw |
| 698 // transform is the transform between the "target render surface space" and |
| 699 // local layer space. Note that render surfaces, except for the root, also |
| 700 // draw themselves into a different target render surface, and so their draw |
| 701 // transform and origin transforms are also described with respect to the |
| 702 // target. |
| 703 // |
| 704 // Using these definitions, then: |
| 705 // |
| 706 // The draw transform for the layer is: |
| 707 // M[draw] = M[parent] * Tr[origin] * compositeLayerTransform * |
| 708 // S[layer2content] = M[parent] * Tr[layer->Position() + anchor] * |
| 709 // M[layer] * Tr[anchor2origin] * S[layer2content] |
| 710 // |
| 711 // Interpreting the math left-to-right, this transforms from the |
| 712 // layer's render surface to the origin of the layer in content space. |
| 713 // |
| 714 // The screen space transform is: |
| 715 // M[screenspace] = M[root] * Tr[origin] * compositeLayerTransform * |
| 716 // S[layer2content] |
| 717 // = M[root] * Tr[layer->Position() + anchor] * M[layer] |
| 718 // * Tr[anchor2origin] * S[layer2content] |
| 719 // |
| 720 // Interpreting the math left-to-right, this transforms from the root |
| 721 // render surface's content space to the origin of the layer in content |
| 722 // space. |
| 723 // |
| 724 // The transform hierarchy that is passed on to children (i.e. the child's |
| 725 // parent_matrix) is: |
| 726 // M[parent]_for_child = M[parent] * Tr[origin] * |
| 727 // compositeLayerTransform * compositeSublayerTransform |
| 728 // = M[parent] * Tr[layer->Position() + anchor] * |
| 729 // M[layer] * Tr[anchor2origin] * |
| 730 // compositeSublayerTransform |
| 731 // |
| 732 // and a similar matrix for the full hierarchy with respect to the |
| 733 // root. |
| 734 // |
| 735 // Finally, note that the final matrix used by the shader for the layer is P * |
| 736 // M[draw] * S . This final product is computed in drawTexturedQuad(), where: |
| 737 // P is the projection matrix |
| 738 // S is the scale adjustment (to scale up a canonical quad to the |
| 739 // layer's size) |
| 740 // |
| 741 // When a render surface has a replica layer, that layer's transform is used |
| 742 // to draw a second copy of the surface. gfx::Transforms named here are |
| 743 // relative to the surface, unless they specify they are relative to the |
| 744 // replica layer. |
| 745 // |
| 746 // We will denote a scale by device scale S[deviceScale] |
| 747 // |
| 748 // The render surface draw transform to its target surface origin is: |
| 749 // M[surfaceDraw] = M[owningLayer->Draw] |
| 750 // |
| 751 // The render surface origin transform to its the root (screen space) origin |
| 752 // is: |
| 753 // M[surface2root] = M[owningLayer->screenspace] * |
| 754 // S[deviceScale].inverse() |
| 755 // |
| 756 // The replica draw transform to its target surface origin is: |
| 757 // M[replicaDraw] = S[deviceScale] * M[surfaceDraw] * |
| 758 // Tr[replica->Position() + replica->anchor()] * Tr[replica] * |
| 759 // Tr[origin2anchor].inverse() * S[contents_scale].inverse() |
| 760 // |
| 761 // The replica draw transform to the root (screen space) origin is: |
| 762 // M[replica2root] = M[surface2root] * Tr[replica->Position()] * |
| 763 // Tr[replica] * Tr[origin2anchor].inverse() |
| 764 // |
| 765 |
| 766 // If we early-exit anywhere in this function, the drawableContentRect of this |
| 767 // subtree should be considered empty. |
| 768 *drawable_content_rect_of_subtree = gfx::Rect(); |
| 769 |
| 770 // The root layer cannot skip calcDrawProperties. |
| 771 if (!IsRootLayer(layer) && SubtreeShouldBeSkipped(layer)) |
| 772 return; |
| 773 |
| 774 // As this function proceeds, these are the properties for the current |
| 775 // layer that actually get computed. To avoid unnecessary copies |
| 776 // (particularly for matrices), we do computations directly on these values |
| 777 // when possible. |
| 778 DrawProperties<LayerType, RenderSurfaceType>& layer_draw_properties = |
| 779 layer->draw_properties(); |
| 780 |
| 781 gfx::Rect clip_rect_for_subtree; |
| 782 bool subtree_should_be_clipped = false; |
| 783 |
| 784 // This value is cached on the stack so that we don't have to inverse-project |
| 785 // the surface's clipRect redundantly for every layer. This value is the |
| 786 // same as the surface's clipRect, except that instead of being described |
| 787 // in the target surface space (i.e. the ancestor surface space), it is |
| 788 // described in the current surface space. |
| 789 gfx::Rect clip_rect_for_subtree_in_descendant_space; |
| 790 |
| 791 float accumulated_draw_opacity = layer->opacity(); |
| 792 bool animating_opacity_to_target = layer->OpacityIsAnimating(); |
| 793 bool animating_opacity_to_screen = animating_opacity_to_target; |
| 794 if (layer->parent()) { |
| 795 accumulated_draw_opacity *= layer->parent()->draw_opacity(); |
| 796 animating_opacity_to_target |= layer->parent()->draw_opacity_is_animating(); |
| 797 animating_opacity_to_screen |= |
| 798 layer->parent()->screen_space_opacity_is_animating(); |
| 799 } |
| 800 |
| 801 bool animating_transform_to_target = layer->TransformIsAnimating(); |
| 802 bool animating_transform_to_screen = animating_transform_to_target; |
| 803 if (layer->parent()) { |
| 804 animating_transform_to_target |= |
| 805 layer->parent()->draw_transform_is_animating(); |
| 806 animating_transform_to_screen |= |
| 807 layer->parent()->screen_space_transform_is_animating(); |
| 808 } |
| 809 |
| 810 gfx::Size bounds = layer->bounds(); |
| 811 gfx::PointF anchor_point = layer->anchor_point(); |
| 812 gfx::PointF position = layer->position() - layer->scroll_delta(); |
| 813 |
| 814 gfx::Transform combined_transform = parent_matrix; |
| 815 if (!layer->transform().IsIdentity()) { |
| 816 // LT = Tr[origin] * Tr[origin2anchor] |
| 817 combined_transform.Translate3d( |
| 818 position.x() + anchor_point.x() * bounds.width(), |
| 819 position.y() + anchor_point.y() * bounds.height(), |
| 820 layer->anchor_point_z()); |
| 821 // LT = Tr[origin] * Tr[origin2anchor] * M[layer] |
| 822 combined_transform.PreconcatTransform(layer->transform()); |
| 823 // LT = Tr[origin] * Tr[origin2anchor] * M[layer] * Tr[anchor2origin] |
| 824 combined_transform.Translate3d(-anchor_point.x() * bounds.width(), |
| 825 -anchor_point.y() * bounds.height(), |
| 826 -layer->anchor_point_z()); |
| 827 } else { |
| 828 combined_transform.Translate(position.x(), position.y()); |
| 829 } |
| 830 |
| 831 // The layer's contentsSize is determined from the combined_transform, which |
| 832 // then informs the layer's draw_transform. |
| 833 UpdateLayerContentsScale(layer, |
| 834 combined_transform, |
| 835 device_scale_factor, |
| 836 page_scale_factor, |
| 837 animating_transform_to_screen); |
| 838 |
| 839 // If there is a transformation from the impl thread then it should be at |
| 840 // the start of the combined_transform, but we don't want it to affect the |
| 841 // computation of contents_scale above. |
| 842 // Note carefully: this is Concat, not Preconcat (implTransform * |
| 843 // combined_transform). |
| 844 combined_transform.ConcatTransform(layer->impl_transform()); |
| 845 |
| 846 if (!animating_transform_to_target && layer->scrollable() && |
| 847 combined_transform.IsScaleOrTranslation()) { |
| 848 // Align the scrollable layer's position to screen space pixels to avoid |
| 849 // blurriness. To avoid side-effects, do this only if the transform is |
| 850 // simple. |
| 851 RoundTranslationComponents(&combined_transform); |
| 852 } |
| 853 |
| 854 if (layer->fixed_to_container_layer()) { |
| 855 // Special case: this layer is a composited fixed-position layer; we need to |
| 856 // explicitly compensate for all ancestors' nonzero scroll_deltas to keep |
| 857 // this layer fixed correctly. |
| 858 // Note carefully: this is Concat, not Preconcat |
| 859 // (current_scroll_compensation * combined_transform). |
| 860 combined_transform.ConcatTransform(current_scroll_compensation_matrix); |
| 861 } |
| 862 |
| 863 // The draw_transform that gets computed below is effectively the layer's |
| 864 // draw_transform, unless the layer itself creates a render_surface. In that |
| 865 // case, the render_surface re-parents the transforms. |
| 866 layer_draw_properties.target_space_transform = combined_transform; |
| 867 // M[draw] = M[parent] * LT * S[layer2content] |
| 868 layer_draw_properties.target_space_transform.Scale |
| 869 (1.f / layer->contents_scale_x(), 1.f / layer->contents_scale_y()); |
| 870 |
| 871 // layerScreenSpaceTransform represents the transform between root layer's |
| 872 // "screen space" and local content space. |
| 873 layer_draw_properties.screen_space_transform = full_hierarchy_matrix; |
| 874 if (!layer->preserves_3d()) |
| 875 layer_draw_properties.screen_space_transform.FlattenTo2d(); |
| 876 layer_draw_properties.screen_space_transform.PreconcatTransform |
| 877 (layer_draw_properties.target_space_transform); |
| 878 |
| 879 // Adjusting text AA method during animation may cause repaints, which in-turn |
| 880 // causes jank. |
| 881 bool adjust_text_aa = |
| 882 !animating_opacity_to_screen && !animating_transform_to_screen; |
| 883 // To avoid color fringing, LCD text should only be used on opaque layers with |
| 884 // just integral translation. |
| 885 bool layer_can_use_lcd_text = |
| 886 subtree_can_use_lcd_text && (accumulated_draw_opacity == 1.f) && |
| 887 layer_draw_properties.target_space_transform. |
| 888 IsIdentityOrIntegerTranslation(); |
| 889 |
| 890 gfx::RectF content_rect(gfx::PointF(), layer->content_bounds()); |
| 891 |
| 892 // full_hierarchy_matrix is the matrix that transforms objects between screen |
| 893 // space (except projection matrix) and the most recent RenderSurfaceImpl's |
| 894 // space. next_hierarchy_matrix will only change if this layer uses a new |
| 895 // RenderSurfaceImpl, otherwise remains the same. |
| 896 gfx::Transform next_hierarchy_matrix = full_hierarchy_matrix; |
| 897 gfx::Transform sublayer_matrix; |
| 898 |
| 899 gfx::Vector2dF render_surface_sublayer_scale = |
| 900 MathUtil::ComputeTransform2dScaleComponents( |
| 901 combined_transform, device_scale_factor * page_scale_factor); |
| 902 |
| 903 if (SubtreeShouldRenderToSeparateSurface( |
| 904 layer, combined_transform.IsScaleOrTranslation())) { |
| 905 // Check back-face visibility before continuing with this surface and its |
| 906 // subtree |
| 907 if (!layer->double_sided() && TransformToParentIsKnown(layer) && |
| 908 IsSurfaceBackFaceVisible(layer, combined_transform)) |
| 909 return; |
| 910 |
| 911 if (!layer->render_surface()) |
| 912 layer->CreateRenderSurface(); |
| 913 |
| 914 RenderSurfaceType* render_surface = layer->render_surface(); |
| 915 render_surface->ClearLayerLists(); |
| 916 |
| 917 // The owning layer's draw transform has a scale from content to layer |
| 918 // space which we do not want; so here we use the combined_transform |
| 919 // instead of the draw_transform. However, we do need to add a different |
| 920 // scale factor that accounts for the surface's pixel dimensions. |
| 921 combined_transform.Scale(1.0 / render_surface_sublayer_scale.x(), |
| 922 1.0 / render_surface_sublayer_scale.y()); |
| 923 render_surface->SetDrawTransform(combined_transform); |
| 924 |
| 925 // The owning layer's transform was re-parented by the surface, so the |
| 926 // layer's new draw_transform only needs to scale the layer to surface |
| 927 // space. |
| 928 layer_draw_properties.target_space_transform.MakeIdentity(); |
| 929 layer_draw_properties.target_space_transform. |
| 930 Scale(render_surface_sublayer_scale.x() / layer->contents_scale_x(), |
| 931 render_surface_sublayer_scale.y() / layer->contents_scale_y()); |
| 932 |
| 933 // Inside the surface's subtree, we scale everything to the owning layer's |
| 934 // scale. The sublayer matrix transforms layer rects into target surface |
| 935 // content space. |
| 936 DCHECK(sublayer_matrix.IsIdentity()); |
| 937 sublayer_matrix.Scale(render_surface_sublayer_scale.x(), |
| 938 render_surface_sublayer_scale.y()); |
| 939 |
| 940 // The opacity value is moved from the layer to its surface, so that the |
| 941 // entire subtree properly inherits opacity. |
| 942 render_surface->SetDrawOpacity(accumulated_draw_opacity); |
| 943 render_surface->SetDrawOpacityIsAnimating(animating_opacity_to_target); |
| 944 animating_opacity_to_target = false; |
| 945 layer_draw_properties.opacity = 1.f; |
| 946 layer_draw_properties.opacity_is_animating = animating_opacity_to_target; |
| 947 layer_draw_properties.screen_space_opacity_is_animating = |
| 948 animating_opacity_to_screen; |
| 949 |
| 950 render_surface->SetTargetSurfaceTransformsAreAnimating( |
| 951 animating_transform_to_target); |
| 952 render_surface->SetScreenSpaceTransformsAreAnimating( |
| 953 animating_transform_to_screen); |
| 954 animating_transform_to_target = false; |
| 955 layer_draw_properties.target_space_transform_is_animating = |
| 956 animating_transform_to_target; |
| 957 layer_draw_properties.screen_space_transform_is_animating = |
| 958 animating_transform_to_screen; |
| 959 |
| 960 // Update the aggregate hierarchy matrix to include the transform of the |
| 961 // newly created RenderSurfaceImpl. |
| 962 next_hierarchy_matrix.PreconcatTransform(render_surface->draw_transform()); |
| 963 |
| 964 // The new render_surface here will correctly clip the entire subtree. So, |
| 965 // we do not need to continue propagating the clipping state further down |
| 966 // the tree. This way, we can avoid transforming clipRects from ancestor |
| 967 // target surface space to current target surface space that could cause |
| 968 // more w < 0 headaches. |
| 969 subtree_should_be_clipped = false; |
| 970 |
| 971 if (layer->mask_layer()) { |
| 972 DrawProperties<LayerType, RenderSurfaceType>& mask_layer_draw_properties = |
| 973 layer->mask_layer()->draw_properties(); |
| 974 mask_layer_draw_properties.render_target = layer; |
| 975 mask_layer_draw_properties.visible_content_rect = |
| 976 gfx::Rect(gfx::Point(), layer->content_bounds()); |
| 977 } |
| 978 |
| 979 if (layer->replica_layer() && layer->replica_layer()->mask_layer()) { |
| 980 DrawProperties<LayerType, RenderSurfaceType>& |
| 981 replica_mask_draw_properties = |
| 982 layer->replica_layer()->mask_layer()->draw_properties(); |
| 983 replica_mask_draw_properties.render_target = layer; |
| 984 replica_mask_draw_properties.visible_content_rect = |
| 985 gfx::Rect(gfx::Point(), layer->content_bounds()); |
| 986 } |
| 987 |
| 988 // TODO(senorblanco): make this smarter for the SkImageFilter case (check |
| 989 // for pixel-moving filters) |
| 990 if (layer->filters().hasFilterThatMovesPixels() || layer->filter()) |
| 991 nearest_ancestor_that_moves_pixels = render_surface; |
| 992 |
| 993 // The render surface clipRect is expressed in the space where this surface |
| 994 // draws, i.e. the same space as clip_rect_from_ancestor. |
| 995 render_surface->SetIsClipped(ancestor_clips_subtree); |
| 996 if (ancestor_clips_subtree) { |
| 997 render_surface->SetClipRect(clip_rect_from_ancestor); |
| 998 |
| 999 gfx::Transform inverse_surface_draw_transform( |
| 1000 gfx::Transform::kSkipInitialization); |
| 1001 if (!render_surface->draw_transform().GetInverse( |
| 1002 &inverse_surface_draw_transform)) { |
346 // TODO(shawnsingh): Either we need to handle uninvertible transforms | 1003 // TODO(shawnsingh): Either we need to handle uninvertible transforms |
347 // here, or DCHECK that the transform is invertible. | 1004 // here, or DCHECK that the transform is invertible. |
| 1005 } |
| 1006 clip_rect_for_subtree_in_descendant_space = |
| 1007 gfx::ToEnclosingRect(MathUtil::ProjectClippedRect( |
| 1008 inverse_surface_draw_transform, render_surface->clip_rect())); |
| 1009 } else { |
| 1010 render_surface->SetClipRect(gfx::Rect()); |
| 1011 clip_rect_for_subtree_in_descendant_space = |
| 1012 clip_rect_from_ancestor_in_descendant_space; |
348 } | 1013 } |
349 scrollCompensationForThisLayer.PreconcatTransform(inversePartialLayerOriginT
ransform); // Step 1 | 1014 |
350 return scrollCompensationForThisLayer; | 1015 render_surface->SetNearestAncestorThatMovesPixels( |
351 } | 1016 nearest_ancestor_that_moves_pixels); |
352 | 1017 |
353 gfx::Transform computeScrollCompensationMatrixForChildren(Layer* current_layer,
const gfx::Transform& currentParentMatrix, const gfx::Transform& currentScrollCo
mpensation) | 1018 // If the new render surface is drawn translucent or with a non-integral |
354 { | 1019 // translation then the subtree that gets drawn on this render surface |
355 // The main thread (i.e. Layer) does not need to worry about scroll compensa
tion. | 1020 // cannot use LCD text. |
356 // So we can just return an identity matrix here. | 1021 subtree_can_use_lcd_text = layer_can_use_lcd_text; |
357 return gfx::Transform(); | 1022 |
358 } | 1023 render_surface_layer_list->push_back(layer); |
359 | 1024 } else { |
360 gfx::Transform computeScrollCompensationMatrixForChildren(LayerImpl* layer, cons
t gfx::Transform& parentMatrix, const gfx::Transform& currentScrollCompensationM
atrix) | 1025 DCHECK(layer->parent()); |
361 { | 1026 |
362 // "Total scroll compensation" is the transform needed to cancel out all scr
ollDelta translations that | 1027 // Note: layer_draw_properties.target_space_transform is computed above, |
363 // occurred since the nearest container layer, even if there are renderSurfa
ces in-between. | 1028 // before this if-else statement. |
364 // | 1029 layer_draw_properties.target_space_transform_is_animating = |
365 // There are some edge cases to be aware of, that are not explicit in the co
de: | 1030 animating_transform_to_target; |
366 // - A layer that is both a fixed-position and container should not be its
own container, instead, that means | 1031 layer_draw_properties.screen_space_transform_is_animating = |
367 // it is fixed to an ancestor, and is a container for any fixed-position
descendants. | 1032 animating_transform_to_screen; |
368 // - A layer that is a fixed-position container and has a renderSurface sho
uld behave the same as a container | 1033 layer_draw_properties.opacity = accumulated_draw_opacity; |
369 // without a renderSurface, the renderSurface is irrelevant in that case. | 1034 layer_draw_properties.opacity_is_animating = animating_opacity_to_target; |
370 // - A layer that does not have an explicit container is simply fixed to th
e viewport. | 1035 layer_draw_properties.screen_space_opacity_is_animating = |
371 // (i.e. the root renderSurface.) | 1036 animating_opacity_to_screen; |
372 // - If the fixed-position layer has its own renderSurface, then the render
Surface is | 1037 sublayer_matrix = combined_transform; |
373 // the one who gets fixed. | 1038 |
374 // | 1039 layer->ClearRenderSurface(); |
375 // This function needs to be called AFTER layers create their own renderSurf
aces. | 1040 |
376 // | 1041 // Layers without render_surfaces directly inherit the ancestor's clip |
377 | 1042 // status. |
378 // Avoid the overheads (including stack allocation and matrix initialization
/copy) if we know that the scroll compensation doesn't need to be reset or adjus
ted. | 1043 subtree_should_be_clipped = ancestor_clips_subtree; |
379 if (!layer->is_container_for_fixed_position_layers() && layer->scroll_delta(
).IsZero() && !layer->render_surface()) | 1044 if (ancestor_clips_subtree) |
380 return currentScrollCompensationMatrix; | 1045 clip_rect_for_subtree = clip_rect_from_ancestor; |
381 | 1046 |
382 // Start as identity matrix. | 1047 // The surface's cached clipRect value propagates regardless of what |
383 gfx::Transform nextScrollCompensationMatrix; | 1048 // clipping goes on between layers here. |
384 | 1049 clip_rect_for_subtree_in_descendant_space = |
385 // If this layer is not a container, then it inherits the existing scroll co
mpensations. | 1050 clip_rect_from_ancestor_in_descendant_space; |
386 if (!layer->is_container_for_fixed_position_layers()) | 1051 |
387 nextScrollCompensationMatrix = currentScrollCompensationMatrix; | 1052 // Layers that are not their own render_target will render into the target |
388 | 1053 // of their nearest ancestor. |
389 // If the current layer has a non-zero scrollDelta, then we should compute i
ts local scrollCompensation | 1054 layer_draw_properties.render_target = layer->parent()->render_target(); |
390 // and accumulate it to the nextScrollCompensationMatrix. | 1055 } |
391 if (!layer->scroll_delta().IsZero()) { | 1056 |
392 gfx::Transform scrollCompensationForThisLayer = computeScrollCompensatio
nForThisLayer(layer, parentMatrix); | 1057 if (adjust_text_aa) |
393 nextScrollCompensationMatrix.PreconcatTransform(scrollCompensationForThi
sLayer); | 1058 layer_draw_properties.can_use_lcd_text = layer_can_use_lcd_text; |
| 1059 |
| 1060 gfx::Rect rect_in_target_space = ToEnclosingRect( |
| 1061 MathUtil::MapClippedRect(layer->draw_transform(), content_rect)); |
| 1062 |
| 1063 if (LayerClipsSubtree(layer)) { |
| 1064 subtree_should_be_clipped = true; |
| 1065 if (ancestor_clips_subtree && !layer->render_surface()) { |
| 1066 clip_rect_for_subtree = clip_rect_from_ancestor; |
| 1067 clip_rect_for_subtree.Intersect(rect_in_target_space); |
| 1068 } else { |
| 1069 clip_rect_for_subtree = rect_in_target_space; |
394 } | 1070 } |
395 | 1071 } |
396 // If the layer created its own renderSurface, we have to adjust nextScrollC
ompensationMatrix. | 1072 |
397 // The adjustment allows us to continue using the scrollCompensation on the
next surface. | 1073 // Flatten to 2D if the layer doesn't preserve 3D. |
398 // Step 1 (right-most in the math): transform from the new surface to the o
riginal ancestor surface | 1074 if (!layer->preserves_3d()) |
399 // Step 2: apply the scroll compensation | 1075 sublayer_matrix.FlattenTo2d(); |
400 // Step 3: transform back to the new surface. | 1076 |
401 if (layer->render_surface() && !nextScrollCompensationMatrix.IsIdentity()) { | 1077 // Apply the sublayer transform at the anchor point of the layer. |
402 gfx::Transform inverseSurfaceDrawTransform(gfx::Transform::kSkipInitiali
zation); | 1078 if (!layer->sublayer_transform().IsIdentity()) { |
403 if (!layer->render_surface()->draw_transform().GetInverse(&inverseSurfac
eDrawTransform)) { | 1079 sublayer_matrix.Translate(layer->anchor_point().x() * bounds.width(), |
404 // TODO(shawnsingh): Either we need to handle uninvertible transform
s | 1080 layer->anchor_point().y() * bounds.height()); |
405 // here, or DCHECK that the transform is invertible. | 1081 sublayer_matrix.PreconcatTransform(layer->sublayer_transform()); |
406 } | 1082 sublayer_matrix.Translate(-layer->anchor_point().x() * bounds.width(), |
407 nextScrollCompensationMatrix = inverseSurfaceDrawTransform * nextScrollC
ompensationMatrix * layer->render_surface()->draw_transform(); | 1083 -layer->anchor_point().y() * bounds.height()); |
| 1084 } |
| 1085 |
| 1086 LayerList& descendants = |
| 1087 (layer->render_surface() ? layer->render_surface()->layer_list() |
| 1088 : *layer_list); |
| 1089 |
| 1090 // Any layers that are appended after this point are in the layer's subtree |
| 1091 // and should be included in the sorting process. |
| 1092 size_t sorting_start_index = descendants.size(); |
| 1093 |
| 1094 if (!LayerShouldBeSkipped(layer)) |
| 1095 descendants.push_back(layer); |
| 1096 |
| 1097 gfx::Transform next_scroll_compensation_matrix = |
| 1098 ComputeScrollCompensationMatrixForChildren( |
| 1099 layer, parent_matrix, current_scroll_compensation_matrix); |
| 1100 |
| 1101 gfx::Rect accumulated_drawable_content_rect_of_children; |
| 1102 for (size_t i = 0; i < layer->children().size(); ++i) { |
| 1103 LayerType* child = |
| 1104 LayerTreeHostCommon::get_child_as_raw_ptr(layer->children(), i); |
| 1105 gfx::Rect drawable_content_rect_of_child_subtree; |
| 1106 CalculateDrawPropertiesInternal<LayerType, LayerList, RenderSurfaceType>( |
| 1107 child, |
| 1108 sublayer_matrix, |
| 1109 next_hierarchy_matrix, |
| 1110 next_scroll_compensation_matrix, |
| 1111 clip_rect_for_subtree, |
| 1112 clip_rect_for_subtree_in_descendant_space, |
| 1113 subtree_should_be_clipped, |
| 1114 nearest_ancestor_that_moves_pixels, |
| 1115 render_surface_layer_list, |
| 1116 &descendants, |
| 1117 layer_sorter, |
| 1118 max_texture_size, |
| 1119 device_scale_factor, |
| 1120 page_scale_factor, |
| 1121 subtree_can_use_lcd_text, |
| 1122 &drawable_content_rect_of_child_subtree, |
| 1123 update_tile_priorities); |
| 1124 if (!drawable_content_rect_of_child_subtree.IsEmpty()) { |
| 1125 accumulated_drawable_content_rect_of_children.Union( |
| 1126 drawable_content_rect_of_child_subtree); |
| 1127 if (child->render_surface()) |
| 1128 descendants.push_back(child); |
408 } | 1129 } |
409 | 1130 } |
410 return nextScrollCompensationMatrix; | 1131 |
411 } | 1132 if (layer->render_surface() && !IsRootLayer(layer) && |
412 | 1133 layer->render_surface()->layer_list().empty()) { |
413 template<typename LayerType> | 1134 RemoveSurfaceForEarlyExit(layer, render_surface_layer_list); |
414 static inline void CalculateContentsScale(LayerType* layer, float contentsScale,
bool animating_transform_to_screen) | 1135 return; |
415 { | 1136 } |
416 layer->CalculateContentsScale( | 1137 |
417 contentsScale, | 1138 // Compute the total drawableContentRect for this subtree (the rect is in |
418 animating_transform_to_screen, | 1139 // targetSurface space). |
419 &layer->draw_properties().contents_scale_x, | 1140 gfx::Rect local_drawable_content_rect_of_subtree = |
420 &layer->draw_properties().contents_scale_y, | 1141 accumulated_drawable_content_rect_of_children; |
421 &layer->draw_properties().content_bounds); | 1142 if (layer->DrawsContent()) |
422 | 1143 local_drawable_content_rect_of_subtree.Union(rect_in_target_space); |
423 LayerType* maskLayer = layer->mask_layer(); | 1144 if (subtree_should_be_clipped) |
424 if (maskLayer) | 1145 local_drawable_content_rect_of_subtree.Intersect(clip_rect_for_subtree); |
425 { | 1146 |
426 maskLayer->CalculateContentsScale( | 1147 // Compute the layer's drawable content rect (the rect is in targetSurface |
427 contentsScale, | 1148 // space). |
428 animating_transform_to_screen, | 1149 layer_draw_properties.drawable_content_rect = rect_in_target_space; |
429 &maskLayer->draw_properties().contents_scale_x, | 1150 if (subtree_should_be_clipped) { |
430 &maskLayer->draw_properties().contents_scale_y, | 1151 layer_draw_properties.drawable_content_rect. |
431 &maskLayer->draw_properties().content_bounds); | 1152 Intersect(clip_rect_for_subtree); |
| 1153 } |
| 1154 |
| 1155 // Tell the layer the rect that is clipped by. In theory we could use a |
| 1156 // tighter clipRect here (drawableContentRect), but that actually does not |
| 1157 // reduce how much would be drawn, and instead it would create unnecessary |
| 1158 // changes to scissor state affecting GPU performance. |
| 1159 layer_draw_properties.is_clipped = subtree_should_be_clipped; |
| 1160 if (subtree_should_be_clipped) { |
| 1161 layer_draw_properties.clip_rect = clip_rect_for_subtree; |
| 1162 } else { |
| 1163 // Initialize the clipRect to a safe value that will not clip the |
| 1164 // layer, just in case clipping is still accidentally used. |
| 1165 layer_draw_properties.clip_rect = rect_in_target_space; |
| 1166 } |
| 1167 |
| 1168 // Compute the layer's visible content rect (the rect is in content space) |
| 1169 layer_draw_properties.visible_content_rect = CalculateVisibleContentRect( |
| 1170 layer, clip_rect_for_subtree_in_descendant_space, rect_in_target_space); |
| 1171 |
| 1172 // Compute the remaining properties for the render surface, if the layer has |
| 1173 // one. |
| 1174 if (IsRootLayer(layer)) { |
| 1175 // The root layer's surface's content_rect is always the entire viewport. |
| 1176 DCHECK(layer->render_surface()); |
| 1177 layer->render_surface()->SetContentRect(clip_rect_from_ancestor); |
| 1178 } else if (layer->render_surface() && !IsRootLayer(layer)) { |
| 1179 RenderSurfaceType* render_surface = layer->render_surface(); |
| 1180 gfx::Rect clipped_content_rect = local_drawable_content_rect_of_subtree; |
| 1181 |
| 1182 // Don't clip if the layer is reflected as the reflection shouldn't be |
| 1183 // clipped. If the layer is animating, then the surface's transform to |
| 1184 // its target is not known on the main thread, and we should not use it |
| 1185 // to clip. |
| 1186 if (!layer->replica_layer() && TransformToParentIsKnown(layer)) { |
| 1187 // Note, it is correct to use ancestor_clips_subtree here, because we are |
| 1188 // looking at this layer's render_surface, not the layer itself. |
| 1189 if (ancestor_clips_subtree && !clipped_content_rect.IsEmpty()) { |
| 1190 gfx::Rect surface_clip_rect = LayerTreeHostCommon::CalculateVisibleRect( |
| 1191 render_surface->clip_rect(), |
| 1192 clipped_content_rect, |
| 1193 render_surface->draw_transform()); |
| 1194 clipped_content_rect.Intersect(surface_clip_rect); |
| 1195 } |
432 } | 1196 } |
433 | 1197 |
434 LayerType* replicaMaskLayer = layer->replica_layer() ? layer->replica_layer(
)->mask_layer() : 0; | 1198 // The RenderSurfaceImpl backing texture cannot exceed the maximum supported |
435 if (replicaMaskLayer) | 1199 // texture size. |
436 { | 1200 clipped_content_rect.set_width( |
437 replicaMaskLayer->CalculateContentsScale( | 1201 std::min(clipped_content_rect.width(), max_texture_size)); |
438 contentsScale, | 1202 clipped_content_rect.set_height( |
439 animating_transform_to_screen, | 1203 std::min(clipped_content_rect.height(), max_texture_size)); |
440 &replicaMaskLayer->draw_properties().contents_scale_x, | 1204 |
441 &replicaMaskLayer->draw_properties().contents_scale_y, | 1205 if (clipped_content_rect.IsEmpty()) { |
442 &replicaMaskLayer->draw_properties().content_bounds); | 1206 render_surface->ClearLayerLists(); |
| 1207 RemoveSurfaceForEarlyExit(layer, render_surface_layer_list); |
| 1208 return; |
443 } | 1209 } |
444 } | 1210 |
445 | 1211 render_surface->SetContentRect(clipped_content_rect); |
446 static inline void updateLayerContentsScale(LayerImpl* layer, const gfx::Transfo
rm& combinedTransform, float deviceScaleFactor, float pageScaleFactor, bool anim
ating_transform_to_screen) | 1212 |
447 { | 1213 // The owning layer's screen_space_transform has a scale from content to |
448 gfx::Vector2dF transformScale = MathUtil::ComputeTransform2dScaleComponents(
combinedTransform, deviceScaleFactor * pageScaleFactor); | 1214 // layer space which we need to undo and replace with a scale from the |
449 float contentsScale = std::max(transformScale.x(), transformScale.y()); | 1215 // surface's subtree into layer space. |
450 CalculateContentsScale(layer, contentsScale, animating_transform_to_screen); | 1216 gfx::Transform screen_space_transform = layer->screen_space_transform(); |
451 } | 1217 screen_space_transform.Scale( |
452 | 1218 layer->contents_scale_x() / render_surface_sublayer_scale.x(), |
453 static inline void updateLayerContentsScale(Layer* layer, const gfx::Transform&
combinedTransform, float deviceScaleFactor, float pageScaleFactor, bool animatin
g_transform_to_screen) | 1219 layer->contents_scale_y() / render_surface_sublayer_scale.y()); |
454 { | 1220 render_surface->SetScreenSpaceTransform(screen_space_transform); |
455 float rasterScale = layer->raster_scale(); | 1221 |
456 | 1222 if (layer->replica_layer()) { |
457 if (layer->automatically_compute_raster_scale()) { | 1223 gfx::Transform surface_origin_to_replica_origin_transform; |
458 gfx::Vector2dF transformScale = MathUtil::ComputeTransform2dScaleCompone
nts(combinedTransform, 0.f); | 1224 surface_origin_to_replica_origin_transform.Scale( |
459 float combinedScale = std::max(transformScale.x(), transformScale.y()); | 1225 render_surface_sublayer_scale.x(), render_surface_sublayer_scale.y()); |
460 float idealRasterScale = combinedScale / deviceScaleFactor; | 1226 surface_origin_to_replica_origin_transform.Translate( |
461 if (!layer->bounds_contain_page_scale()) | 1227 layer->replica_layer()->position().x() + |
462 idealRasterScale /= pageScaleFactor; | 1228 layer->replica_layer()->anchor_point().x() * bounds.width(), |
463 | 1229 layer->replica_layer()->position().y() + |
464 bool needToSetRasterScale = !rasterScale; | 1230 layer->replica_layer()->anchor_point().y() * bounds.height()); |
465 | 1231 surface_origin_to_replica_origin_transform.PreconcatTransform( |
466 // If we've previously saved a rasterScale but the ideal changes, things
are unpredictable and we should just use 1. | 1232 layer->replica_layer()->transform()); |
467 if (rasterScale && rasterScale != 1.f && idealRasterScale != rasterScale
) { | 1233 surface_origin_to_replica_origin_transform.Translate( |
468 idealRasterScale = 1.f; | 1234 -layer->replica_layer()->anchor_point().x() * bounds.width(), |
469 needToSetRasterScale = true; | 1235 -layer->replica_layer()->anchor_point().y() * bounds.height()); |
470 } | 1236 surface_origin_to_replica_origin_transform.Scale( |
471 | 1237 1.0 / render_surface_sublayer_scale.x(), |
472 if (needToSetRasterScale) { | 1238 1.0 / render_surface_sublayer_scale.y()); |
473 bool useAndSaveIdealScale = idealRasterScale >= 1.f && !animating_tr
ansform_to_screen; | 1239 |
474 if (useAndSaveIdealScale) { | 1240 // Compute the replica's "originTransform" that maps from the replica's |
475 rasterScale = idealRasterScale; | 1241 // origin space to the target surface origin space. |
476 layer->SetRasterScale(rasterScale); | 1242 gfx::Transform replica_origin_transform = |
477 } | 1243 layer->render_surface()->draw_transform() * |
478 } | 1244 surface_origin_to_replica_origin_transform; |
| 1245 render_surface->SetReplicaDrawTransform(replica_origin_transform); |
| 1246 |
| 1247 // Compute the replica's "screen_space_transform" that maps from the |
| 1248 // replica's origin space to the screen's origin space. |
| 1249 gfx::Transform replica_screen_space_transform = |
| 1250 layer->render_surface()->screen_space_transform() * |
| 1251 surface_origin_to_replica_origin_transform; |
| 1252 render_surface->SetReplicaScreenSpaceTransform( |
| 1253 replica_screen_space_transform); |
479 } | 1254 } |
480 | 1255 } |
481 if (!rasterScale) | 1256 |
482 rasterScale = 1.f; | 1257 if (update_tile_priorities) |
483 | 1258 UpdateTilePrioritiesForLayer(layer); |
484 float contentsScale = rasterScale * deviceScaleFactor; | 1259 |
485 if (!layer->bounds_contain_page_scale()) | 1260 // If neither this layer nor any of its children were added, early out. |
486 contentsScale *= pageScaleFactor; | 1261 if (sorting_start_index == descendants.size()) |
487 | 1262 return; |
488 CalculateContentsScale(layer, contentsScale, animating_transform_to_screen); | 1263 |
489 } | 1264 // If preserves-3d then sort all the descendants in 3D so that they can be |
490 | 1265 // drawn from back to front. If the preserves-3d property is also set on the |
491 template<typename LayerType, typename LayerList> | 1266 // parent then skip the sorting as the parent will sort all the descendants |
492 static inline void removeSurfaceForEarlyExit(LayerType* layerToRemove, LayerList
& renderSurfaceLayerList) | 1267 // anyway. |
493 { | 1268 if (layer_sorter && descendants.size() && layer->preserves_3d() && |
494 DCHECK(layerToRemove->render_surface()); | 1269 (!layer->parent() || !layer->parent()->preserves_3d())) { |
495 // Technically, we know that the layer we want to remove should be | 1270 SortLayers(descendants.begin() + sorting_start_index, |
496 // at the back of the renderSurfaceLayerList. However, we have had | 1271 descendants.end(), |
497 // bugs before that added unnecessary layers here | 1272 layer_sorter); |
498 // (https://bugs.webkit.org/show_bug.cgi?id=74147), but that causes | 1273 } |
499 // things to crash. So here we proactively remove any additional | 1274 |
500 // layers from the end of the list. | 1275 if (layer->render_surface()) { |
501 while (renderSurfaceLayerList.back() != layerToRemove) { | 1276 *drawable_content_rect_of_subtree = |
502 renderSurfaceLayerList.back()->ClearRenderSurface(); | 1277 gfx::ToEnclosingRect(layer->render_surface()->DrawableContentRect()); |
503 renderSurfaceLayerList.pop_back(); | 1278 } else { |
504 } | 1279 *drawable_content_rect_of_subtree = local_drawable_content_rect_of_subtree; |
505 DCHECK(renderSurfaceLayerList.back() == layerToRemove); | 1280 } |
506 renderSurfaceLayerList.pop_back(); | 1281 |
507 layerToRemove->ClearRenderSurface(); | 1282 if (layer->HasContributingDelegatedRenderPasses()) { |
508 } | 1283 layer->render_target()->render_surface()-> |
509 | 1284 AddContributingDelegatedRenderPassLayer(layer); |
510 // Recursively walks the layer tree to compute any information that is needed | 1285 } |
511 // before doing the main recursion. | 1286 } |
512 template<typename LayerType> | 1287 |
513 static void preCalculateMetaInformation(LayerType* layer) | 1288 void LayerTreeHostCommon::CalculateDrawProperties( |
514 { | 1289 Layer* root_layer, |
515 if (layer->HasDelegatedContent()) { | 1290 gfx::Size device_viewport_size, |
516 // Layers with delegated content need to be treated as if they have as m
any children as the number | 1291 float device_scale_factor, |
517 // of layers they own delegated quads for. Since we don't know this numb
er right now, we choose | 1292 float page_scale_factor, |
518 // one that acts like infinity for our purposes. | 1293 int max_texture_size, |
519 layer->draw_properties().num_descendants_that_draw_content = 1000; | 1294 bool can_use_lcd_text, |
520 layer->draw_properties().descendants_can_clip_selves = false; | 1295 std::vector<scoped_refptr<Layer> >* render_surface_layer_list) { |
521 return; | 1296 gfx::Rect total_drawable_content_rect; |
522 } | 1297 gfx::Transform identity_matrix; |
523 | 1298 gfx::Transform device_scale_transform; |
524 int numDescendantsThatDrawContent = 0; | 1299 device_scale_transform.Scale(device_scale_factor, device_scale_factor); |
525 bool descendantsCanClipSelves = true; | 1300 std::vector<scoped_refptr<Layer> > dummy_layer_list; |
526 bool sublayerTransformPreventsClip = !layer->sublayer_transform().IsPositive
ScaleOrTranslation(); | 1301 |
527 | 1302 // The root layer's render_surface should receive the deviceViewport as the |
528 for (size_t i = 0; i < layer->children().size(); ++i) { | 1303 // initial clipRect. |
529 LayerType* childLayer = layer->children()[i]; | 1304 bool subtree_should_be_clipped = true; |
530 preCalculateMetaInformation<LayerType>(childLayer); | 1305 gfx::Rect device_viewport_rect(gfx::Point(), device_viewport_size); |
531 | 1306 bool update_tile_priorities = false; |
532 numDescendantsThatDrawContent += childLayer->DrawsContent() ? 1 : 0; | 1307 |
533 numDescendantsThatDrawContent += childLayer->draw_properties().num_desce
ndants_that_draw_content; | 1308 // This function should have received a root layer. |
534 | 1309 DCHECK(IsRootLayer(root_layer)); |
535 if ((childLayer->DrawsContent() && !childLayer->CanClipSelf()) || | 1310 |
536 !childLayer->draw_properties().descendants_can_clip_selves || | 1311 PreCalculateMetaInformation<Layer>(root_layer); |
537 sublayerTransformPreventsClip || | 1312 CalculateDrawPropertiesInternal<Layer, |
538 !childLayer->transform().IsPositiveScaleOrTranslation()) | 1313 std::vector<scoped_refptr<Layer> >, |
539 descendantsCanClipSelves = false; | 1314 RenderSurface>(root_layer, |
540 } | 1315 device_scale_transform, |
541 | 1316 identity_matrix, |
542 layer->draw_properties().num_descendants_that_draw_content = numDescendantsT
hatDrawContent; | 1317 identity_matrix, |
543 layer->draw_properties().descendants_can_clip_selves = descendantsCanClipSel
ves; | 1318 device_viewport_rect, |
544 } | 1319 device_viewport_rect, |
545 | 1320 subtree_should_be_clipped, |
546 static void roundTranslationComponents(gfx::Transform* transform) | 1321 NULL, |
547 { | 1322 render_surface_layer_list, |
548 transform->matrix().setDouble(0, 3, MathUtil::Round(transform->matrix().getD
ouble(0, 3))); | 1323 &dummy_layer_list, |
549 transform->matrix().setDouble(1, 3, MathUtil::Round(transform->matrix().getD
ouble(1, 3))); | 1324 NULL, |
550 } | 1325 max_texture_size, |
551 | 1326 device_scale_factor, |
552 // Recursively walks the layer tree starting at the given node and computes all
the | 1327 page_scale_factor, |
553 // necessary transformations, clipRects, render surfaces, etc. | 1328 can_use_lcd_text, |
554 template<typename LayerType, typename LayerList, typename RenderSurfaceType> | 1329 &total_drawable_content_rect, |
555 static void calculateDrawPropertiesInternal(LayerType* layer, const gfx::Transfo
rm& parentMatrix, | 1330 update_tile_priorities); |
556 const gfx::Transform& fullHierarchyMatrix, const gfx::Transform& currentScro
llCompensationMatrix, | 1331 |
557 const gfx::Rect& clipRectFromAncestor, const gfx::Rect& clipRectFromAncestor
InDescendantSpace, bool ancestorClipsSubtree, | 1332 // The dummy layer list should not have been used. |
558 RenderSurfaceType* nearestAncestorThatMovesPixels, LayerList& renderSurfaceL
ayerList, LayerList& layerList, | 1333 DCHECK_EQ(dummy_layer_list.size(), 0); |
559 LayerSorter* layerSorter, int maxTextureSize, float deviceScaleFactor, float
pageScaleFactor, bool subtreeCanUseLCDText, | 1334 // A root layer render_surface should always exist after |
560 gfx::Rect& drawableContentRectOfSubtree, bool updateTilePriorities) | 1335 // calculateDrawProperties. |
561 { | 1336 DCHECK(root_layer->render_surface()); |
562 // This function computes the new matrix transformations recursively for thi
s | 1337 } |
563 // layer and all its descendants. It also computes the appropriate render su
rfaces. | 1338 |
564 // Some important points to remember: | 1339 void LayerTreeHostCommon::CalculateDrawProperties( |
565 // | 1340 LayerImpl* root_layer, |
566 // 0. Here, transforms are notated in Matrix x Vector order, and in words we
describe what | 1341 gfx::Size device_viewport_size, |
567 // the transform does from left to right. | 1342 float device_scale_factor, |
568 // | 1343 float page_scale_factor, |
569 // 1. In our terminology, the "layer origin" refers to the top-left corner o
f a layer, and the | 1344 int max_texture_size, |
570 // positive Y-axis points downwards. This interpretation is valid because
the orthographic | 1345 bool can_use_lcd_text, |
571 // projection applied at draw time flips the Y axis appropriately. | 1346 std::vector<LayerImpl*>* render_surface_layer_list, |
572 // | 1347 bool update_tile_priorities) { |
573 // 2. The anchor point, when given as a PointF object, is specified in "unit
layer space", | 1348 gfx::Rect total_drawable_content_rect; |
574 // where the bounds of the layer map to [0, 1]. However, as a Transform o
bject, | 1349 gfx::Transform identity_matrix; |
575 // the transform to the anchor point is specified in "layer space", where
the bounds | 1350 gfx::Transform device_scale_transform; |
576 // of the layer map to [bounds.width(), bounds.height()]. | 1351 device_scale_transform.Scale(device_scale_factor, device_scale_factor); |
577 // | 1352 std::vector<LayerImpl*> dummy_layer_list; |
578 // 3. Definition of various transforms used: | 1353 LayerSorter layer_sorter; |
579 // M[parent] is the parent matrix, with respect to the nearest render
surface, passed down recursively. | 1354 |
580 // M[root] is the full hierarchy, with respect to the root, passed do
wn recursively. | 1355 // The root layer's render_surface should receive the deviceViewport as the |
581 // Tr[origin] is the translation matrix from the parent's origin to t
his layer's origin. | 1356 // initial clipRect. |
582 // Tr[origin2anchor] is the translation from the layer's origin to it
s anchor point | 1357 bool subtree_should_be_clipped = true; |
583 // Tr[origin2center] is the translation from the layer's origin to it
s center | 1358 gfx::Rect device_viewport_rect(gfx::Point(), device_viewport_size); |
584 // M[layer] is the layer's matrix (applied at the anchor point) | 1359 |
585 // M[sublayer] is the layer's sublayer transform (also applied at the
layer's anchor point) | 1360 // This function should have received a root layer. |
586 // S[layer2content] is the ratio of a layer's ContentBounds() to its
Bounds(). | 1361 DCHECK(IsRootLayer(root_layer)); |
587 // | 1362 |
588 // Some composite transforms can help in understanding the sequence of tr
ansforms: | 1363 PreCalculateMetaInformation<LayerImpl>(root_layer); |
589 // compositeLayerTransform = Tr[origin2anchor] * M[layer] * Tr[origin
2anchor].inverse() | 1364 CalculateDrawPropertiesInternal<LayerImpl, |
590 // compositeSublayerTransform = Tr[origin2anchor] * M[sublayer] * Tr[
origin2anchor].inverse() | 1365 std::vector<LayerImpl*>, |
591 // | 1366 RenderSurfaceImpl>( |
592 // 4. When a layer (or render surface) is drawn, it is drawn into a "target
render surface". Therefore the draw | 1367 root_layer, |
593 // transform does not necessarily transform from screen space to local la
yer space. Instead, the draw transform | 1368 device_scale_transform, |
594 // is the transform between the "target render surface space" and local l
ayer space. Note that render surfaces, | 1369 identity_matrix, |
595 // except for the root, also draw themselves into a different target rend
er surface, and so their draw | 1370 identity_matrix, |
596 // transform and origin transforms are also described with respect to the
target. | 1371 device_viewport_rect, |
597 // | 1372 device_viewport_rect, |
598 // Using these definitions, then: | 1373 subtree_should_be_clipped, |
599 // | 1374 NULL, |
600 // The draw transform for the layer is: | 1375 render_surface_layer_list, |
601 // M[draw] = M[parent] * Tr[origin] * compositeLayerTransform * S[lay
er2content] | 1376 &dummy_layer_list, |
602 // = M[parent] * Tr[layer->Position() + anchor] * M[layer] *
Tr[anchor2origin] * S[layer2content] | 1377 &layer_sorter, |
603 // | 1378 max_texture_size, |
604 // Interpreting the math left-to-right, this transforms from the laye
r's render surface to the origin of the layer in content space. | 1379 device_scale_factor, |
605 // | 1380 page_scale_factor, |
606 // The screen space transform is: | 1381 can_use_lcd_text, |
607 // M[screenspace] = M[root] * Tr[origin] * compositeLayerTransform *
S[layer2content] | 1382 &total_drawable_content_rect, |
608 // = M[root] * Tr[layer->Position() + anchor] * M[laye
r] * Tr[anchor2origin] * S[layer2content] | 1383 update_tile_priorities); |
609 // | 1384 |
610 // Interpreting the math left-to-right, this transforms from the root
render surface's content space to the origin of the layer in content space. | 1385 // The dummy layer list should not have been used. |
611 // | 1386 DCHECK_EQ(dummy_layer_list.size(), 0); |
612 // The transform hierarchy that is passed on to children (i.e. the child's p
arentMatrix) is: | 1387 // A root layer render_surface should always exist after |
613 // M[parent]_for_child = M[parent] * Tr[origin] * compositeLayerTrans
form * compositeSublayerTransform | 1388 // calculateDrawProperties. |
614 // = M[parent] * Tr[layer->Position() + anchor] *
M[layer] * Tr[anchor2origin] * compositeSublayerTransform | 1389 DCHECK(root_layer->render_surface()); |
615 // | 1390 } |
616 // and a similar matrix for the full hierarchy with respect to the ro
ot. | 1391 |
617 // | 1392 static bool PointHitsRect( |
618 // Finally, note that the final matrix used by the shader for the layer is P
* M[draw] * S . This final product | 1393 gfx::PointF screen_space_point, |
619 // is computed in drawTexturedQuad(), where: | 1394 const gfx::Transform& local_space_to_screen_space_transform, |
620 // P is the projection matrix | 1395 gfx::RectF local_space_rect) { |
621 // S is the scale adjustment (to scale up a canonical quad to the lay
er's size) | 1396 // If the transform is not invertible, then assume that this point doesn't hit |
622 // | 1397 // this rect. |
623 // When a render surface has a replica layer, that layer's transform is used
to draw a second copy of the surface. | 1398 gfx::Transform inverse_local_space_to_screen_space( |
624 // gfx::Transforms named here are relative to the surface, unless they speci
fy they are relative to the replica layer. | 1399 gfx::Transform::kSkipInitialization); |
625 // | 1400 if (!local_space_to_screen_space_transform.GetInverse( |
626 // We will denote a scale by device scale S[deviceScale] | 1401 &inverse_local_space_to_screen_space)) |
627 // | |
628 // The render surface draw transform to its target surface origin is: | |
629 // M[surfaceDraw] = M[owningLayer->Draw] | |
630 // | |
631 // The render surface origin transform to its the root (screen space) origin
is: | |
632 // M[surface2root] = M[owningLayer->screenspace] * S[deviceScale].in
verse() | |
633 // | |
634 // The replica draw transform to its target surface origin is: | |
635 // M[replicaDraw] = S[deviceScale] * M[surfaceDraw] * Tr[replica->Pos
ition() + replica->anchor()] * Tr[replica] * Tr[origin2anchor].inverse() * S[con
tentsScale].inverse() | |
636 // | |
637 // The replica draw transform to the root (screen space) origin is: | |
638 // M[replica2root] = M[surface2root] * Tr[replica->Position()] * Tr[r
eplica] * Tr[origin2anchor].inverse() | |
639 // | |
640 | |
641 // If we early-exit anywhere in this function, the drawableContentRect of th
is subtree should be considered empty. | |
642 drawableContentRectOfSubtree = gfx::Rect(); | |
643 | |
644 // The root layer cannot skip calcDrawProperties. | |
645 if (!isRootLayer(layer) && subtreeShouldBeSkipped(layer)) | |
646 return; | |
647 | |
648 // As this function proceeds, these are the properties for the current | |
649 // layer that actually get computed. To avoid unnecessary copies | |
650 // (particularly for matrices), we do computations directly on these values | |
651 // when possible. | |
652 DrawProperties<LayerType, RenderSurfaceType>& layerDrawProperties = layer->d
raw_properties(); | |
653 | |
654 gfx::Rect clipRectForSubtree; | |
655 bool subtreeShouldBeClipped = false; | |
656 | |
657 // This value is cached on the stack so that we don't have to inverse-projec
t | |
658 // the surface's clipRect redundantly for every layer. This value is the | |
659 // same as the surface's clipRect, except that instead of being described | |
660 // in the target surface space (i.e. the ancestor surface space), it is | |
661 // described in the current surface space. | |
662 gfx::Rect clipRectForSubtreeInDescendantSpace; | |
663 | |
664 float accumulatedDrawOpacity = layer->opacity(); | |
665 bool animatingOpacityToTarget = layer->OpacityIsAnimating(); | |
666 bool animatingOpacityToScreen = animatingOpacityToTarget; | |
667 if (layer->parent()) { | |
668 accumulatedDrawOpacity *= layer->parent()->draw_opacity(); | |
669 animatingOpacityToTarget |= layer->parent()->draw_opacity_is_animating()
; | |
670 animatingOpacityToScreen |= layer->parent()->screen_space_opacity_is_ani
mating(); | |
671 } | |
672 | |
673 bool animatingTransformToTarget = layer->TransformIsAnimating(); | |
674 bool animating_transform_to_screen = animatingTransformToTarget; | |
675 if (layer->parent()) { | |
676 animatingTransformToTarget |= layer->parent()->draw_transform_is_animati
ng(); | |
677 animating_transform_to_screen |= layer->parent()->screen_space_transform
_is_animating(); | |
678 } | |
679 | |
680 gfx::Size bounds = layer->bounds(); | |
681 gfx::PointF anchorPoint = layer->anchor_point(); | |
682 gfx::PointF position = layer->position() - layer->scroll_delta(); | |
683 | |
684 gfx::Transform combinedTransform = parentMatrix; | |
685 if (!layer->transform().IsIdentity()) { | |
686 // LT = Tr[origin] * Tr[origin2anchor] | |
687 combinedTransform.Translate3d(position.x() + anchorPoint.x() * bounds.wi
dth(), position.y() + anchorPoint.y() * bounds.height(), layer->anchor_point_z()
); | |
688 // LT = Tr[origin] * Tr[origin2anchor] * M[layer] | |
689 combinedTransform.PreconcatTransform(layer->transform()); | |
690 // LT = Tr[origin] * Tr[origin2anchor] * M[layer] * Tr[anchor2origin] | |
691 combinedTransform.Translate3d(-anchorPoint.x() * bounds.width(), -anchor
Point.y() * bounds.height(), -layer->anchor_point_z()); | |
692 } else { | |
693 combinedTransform.Translate(position.x(), position.y()); | |
694 } | |
695 | |
696 // The layer's contentsSize is determined from the combinedTransform, which
then informs the | |
697 // layer's drawTransform. | |
698 updateLayerContentsScale(layer, combinedTransform, deviceScaleFactor, pageSc
aleFactor, animating_transform_to_screen); | |
699 | |
700 // If there is a transformation from the impl thread then it should be at | |
701 // the start of the combinedTransform, but we don't want it to affect the | |
702 // computation of contentsScale above. | |
703 // Note carefully: this is Concat, not Preconcat (implTransform * combinedTr
ansform). | |
704 combinedTransform.ConcatTransform(layer->impl_transform()); | |
705 | |
706 if (!animatingTransformToTarget && layer->scrollable() && combinedTransform.
IsScaleOrTranslation()) { | |
707 // Align the scrollable layer's position to screen space pixels to avoid
blurriness. | |
708 // To avoid side-effects, do this only if the transform is simple. | |
709 roundTranslationComponents(&combinedTransform); | |
710 } | |
711 | |
712 if (layer->fixed_to_container_layer()) { | |
713 // Special case: this layer is a composited fixed-position layer; we nee
d to | |
714 // explicitly compensate for all ancestors' nonzero scrollDeltas to keep
this layer | |
715 // fixed correctly. | |
716 // Note carefully: this is Concat, not Preconcat (currentScrollCompensat
ion * combinedTransform). | |
717 combinedTransform.ConcatTransform(currentScrollCompensationMatrix); | |
718 } | |
719 | |
720 // The drawTransform that gets computed below is effectively the layer's dra
wTransform, unless | |
721 // the layer itself creates a renderSurface. In that case, the renderSurface
re-parents the transforms. | |
722 layerDrawProperties.target_space_transform = combinedTransform; | |
723 // M[draw] = M[parent] * LT * S[layer2content] | |
724 layerDrawProperties.target_space_transform.Scale(1.0 / layer->contents_scale
_x(), 1.0 / layer->contents_scale_y()); | |
725 | |
726 // layerScreenSpaceTransform represents the transform between root layer's "
screen space" and local content space. | |
727 layerDrawProperties.screen_space_transform = fullHierarchyMatrix; | |
728 if (!layer->preserves_3d()) | |
729 layerDrawProperties.screen_space_transform.FlattenTo2d(); | |
730 layerDrawProperties.screen_space_transform.PreconcatTransform(layerDrawPrope
rties.target_space_transform); | |
731 | |
732 // Adjusting text AA method during animation may cause repaints, which in-tu
rn causes jank. | |
733 bool adjustTextAA = !animatingOpacityToScreen && !animating_transform_to_scr
een; | |
734 // To avoid color fringing, LCD text should only be used on opaque layers wi
th just integral translation. | |
735 bool layerCanUseLCDText = subtreeCanUseLCDText && | |
736 (accumulatedDrawOpacity == 1.0) && | |
737 layerDrawProperties.target_space_transform.IsIdent
ityOrIntegerTranslation(); | |
738 | |
739 gfx::RectF contentRect(gfx::PointF(), layer->content_bounds()); | |
740 | |
741 // fullHierarchyMatrix is the matrix that transforms objects between screen
space (except projection matrix) and the most recent RenderSurfaceImpl's space. | |
742 // nextHierarchyMatrix will only change if this layer uses a new RenderSurfa
ceImpl, otherwise remains the same. | |
743 gfx::Transform nextHierarchyMatrix = fullHierarchyMatrix; | |
744 gfx::Transform sublayerMatrix; | |
745 | |
746 gfx::Vector2dF renderSurfaceSublayerScale = MathUtil::ComputeTransform2dScal
eComponents(combinedTransform, deviceScaleFactor * pageScaleFactor); | |
747 | |
748 if (subtreeShouldRenderToSeparateSurface(layer, combinedTransform.IsScaleOrT
ranslation())) { | |
749 // Check back-face visibility before continuing with this surface and it
s subtree | |
750 if (!layer->double_sided() && transformToParentIsKnown(layer) && isSurfa
ceBackFaceVisible(layer, combinedTransform)) | |
751 return; | |
752 | |
753 if (!layer->render_surface()) | |
754 layer->CreateRenderSurface(); | |
755 | |
756 RenderSurfaceType* renderSurface = layer->render_surface(); | |
757 renderSurface->ClearLayerLists(); | |
758 | |
759 // The owning layer's draw transform has a scale from content to layer | |
760 // space which we do not want; so here we use the combinedTransform | |
761 // instead of the drawTransform. However, we do need to add a different | |
762 // scale factor that accounts for the surface's pixel dimensions. | |
763 combinedTransform.Scale(1 / renderSurfaceSublayerScale.x(), 1 / renderSu
rfaceSublayerScale.y()); | |
764 renderSurface->SetDrawTransform(combinedTransform); | |
765 | |
766 // The owning layer's transform was re-parented by the surface, so the l
ayer's new drawTransform | |
767 // only needs to scale the layer to surface space. | |
768 layerDrawProperties.target_space_transform.MakeIdentity(); | |
769 layerDrawProperties.target_space_transform.Scale(renderSurfaceSublayerSc
ale.x() / layer->contents_scale_x(), renderSurfaceSublayerScale.y() / layer->con
tents_scale_y()); | |
770 | |
771 // Inside the surface's subtree, we scale everything to the owning layer
's scale. | |
772 // The sublayer matrix transforms layer rects into target | |
773 // surface content space. | |
774 DCHECK(sublayerMatrix.IsIdentity()); | |
775 sublayerMatrix.Scale(renderSurfaceSublayerScale.x(), renderSurfaceSublay
erScale.y()); | |
776 | |
777 // The opacity value is moved from the layer to its surface, so that the
entire subtree properly inherits opacity. | |
778 renderSurface->SetDrawOpacity(accumulatedDrawOpacity); | |
779 renderSurface->SetDrawOpacityIsAnimating(animatingOpacityToTarget); | |
780 animatingOpacityToTarget = false; | |
781 layerDrawProperties.opacity = 1; | |
782 layerDrawProperties.opacity_is_animating = animatingOpacityToTarget; | |
783 layerDrawProperties.screen_space_opacity_is_animating = animatingOpacity
ToScreen; | |
784 | |
785 renderSurface->SetTargetSurfaceTransformsAreAnimating(animatingTransform
ToTarget); | |
786 renderSurface->SetScreenSpaceTransformsAreAnimating(animating_transform_
to_screen); | |
787 animatingTransformToTarget = false; | |
788 layerDrawProperties.target_space_transform_is_animating = animatingTrans
formToTarget; | |
789 layerDrawProperties.screen_space_transform_is_animating = animating_tran
sform_to_screen; | |
790 | |
791 // Update the aggregate hierarchy matrix to include the transform of the | |
792 // newly created RenderSurfaceImpl. | |
793 nextHierarchyMatrix.PreconcatTransform(renderSurface->draw_transform()); | |
794 | |
795 // The new renderSurface here will correctly clip the entire subtree. So
, we do | |
796 // not need to continue propagating the clipping state further down the
tree. This | |
797 // way, we can avoid transforming clipRects from ancestor target surface
space to | |
798 // current target surface space that could cause more w < 0 headaches. | |
799 subtreeShouldBeClipped = false; | |
800 | |
801 if (layer->mask_layer()) { | |
802 DrawProperties<LayerType, RenderSurfaceType>& maskLayerDrawPropertie
s = layer->mask_layer()->draw_properties(); | |
803 maskLayerDrawProperties.render_target = layer; | |
804 maskLayerDrawProperties.visible_content_rect = gfx::Rect(gfx::Point(
), layer->content_bounds()); | |
805 } | |
806 | |
807 if (layer->replica_layer() && layer->replica_layer()->mask_layer()) { | |
808 DrawProperties<LayerType, RenderSurfaceType>& replicaMaskDrawPropert
ies = layer->replica_layer()->mask_layer()->draw_properties(); | |
809 replicaMaskDrawProperties.render_target = layer; | |
810 replicaMaskDrawProperties.visible_content_rect = gfx::Rect(gfx::Poin
t(), layer->content_bounds()); | |
811 } | |
812 | |
813 // FIXME: make this smarter for the SkImageFilter case (check for | |
814 // pixel-moving filters) | |
815 if (layer->filters().hasFilterThatMovesPixels() || layer->filter()) | |
816 nearestAncestorThatMovesPixels = renderSurface; | |
817 | |
818 // The render surface clipRect is expressed in the space where this surf
ace draws, i.e. the same space as clipRectFromAncestor. | |
819 renderSurface->SetIsClipped(ancestorClipsSubtree); | |
820 if (ancestorClipsSubtree) { | |
821 renderSurface->SetClipRect(clipRectFromAncestor); | |
822 | |
823 gfx::Transform inverseSurfaceDrawTransform(gfx::Transform::kSkipInit
ialization); | |
824 if (!renderSurface->draw_transform().GetInverse(&inverseSurfaceDrawT
ransform)) { | |
825 // TODO(shawnsingh): Either we need to handle uninvertible trans
forms | |
826 // here, or DCHECK that the transform is invertible. | |
827 } | |
828 clipRectForSubtreeInDescendantSpace = gfx::ToEnclosingRect(MathUtil:
:ProjectClippedRect(inverseSurfaceDrawTransform, renderSurface->clip_rect())); | |
829 } else { | |
830 renderSurface->SetClipRect(gfx::Rect()); | |
831 clipRectForSubtreeInDescendantSpace = clipRectFromAncestorInDescenda
ntSpace; | |
832 } | |
833 | |
834 renderSurface->SetNearestAncestorThatMovesPixels(nearestAncestorThatMove
sPixels); | |
835 | |
836 // If the new render surface is drawn translucent or with a non-integral
translation | |
837 // then the subtree that gets drawn on this render surface cannot use LC
D text. | |
838 subtreeCanUseLCDText = layerCanUseLCDText; | |
839 | |
840 renderSurfaceLayerList.push_back(layer); | |
841 } else { | |
842 DCHECK(layer->parent()); | |
843 | |
844 // Note: layerDrawProperties.target_space_transform is computed above, | |
845 // before this if-else statement. | |
846 layerDrawProperties.target_space_transform_is_animating = animatingTrans
formToTarget; | |
847 layerDrawProperties.screen_space_transform_is_animating = animating_tran
sform_to_screen; | |
848 layerDrawProperties.opacity = accumulatedDrawOpacity; | |
849 layerDrawProperties.opacity_is_animating = animatingOpacityToTarget; | |
850 layerDrawProperties.screen_space_opacity_is_animating = animatingOpacity
ToScreen; | |
851 sublayerMatrix = combinedTransform; | |
852 | |
853 layer->ClearRenderSurface(); | |
854 | |
855 // Layers without renderSurfaces directly inherit the ancestor's clip st
atus. | |
856 subtreeShouldBeClipped = ancestorClipsSubtree; | |
857 if (ancestorClipsSubtree) | |
858 clipRectForSubtree = clipRectFromAncestor; | |
859 | |
860 // The surface's cached clipRect value propagates regardless of what cli
pping goes on between layers here. | |
861 clipRectForSubtreeInDescendantSpace = clipRectFromAncestorInDescendantSp
ace; | |
862 | |
863 // Layers that are not their own renderTarget will render into the targe
t of their nearest ancestor. | |
864 layerDrawProperties.render_target = layer->parent()->render_target(); | |
865 } | |
866 | |
867 if (adjustTextAA) | |
868 layerDrawProperties.can_use_lcd_text = layerCanUseLCDText; | |
869 | |
870 gfx::Rect rectInTargetSpace = ToEnclosingRect(MathUtil::MapClippedRect(layer
->draw_transform(), contentRect)); | |
871 | |
872 if (layerClipsSubtree(layer)) { | |
873 subtreeShouldBeClipped = true; | |
874 if (ancestorClipsSubtree && !layer->render_surface()) { | |
875 clipRectForSubtree = clipRectFromAncestor; | |
876 clipRectForSubtree.Intersect(rectInTargetSpace); | |
877 } else | |
878 clipRectForSubtree = rectInTargetSpace; | |
879 } | |
880 | |
881 // Flatten to 2D if the layer doesn't preserve 3D. | |
882 if (!layer->preserves_3d()) | |
883 sublayerMatrix.FlattenTo2d(); | |
884 | |
885 // Apply the sublayer transform at the anchor point of the layer. | |
886 if (!layer->sublayer_transform().IsIdentity()) { | |
887 sublayerMatrix.Translate(layer->anchor_point().x() * bounds.width(), lay
er->anchor_point().y() * bounds.height()); | |
888 sublayerMatrix.PreconcatTransform(layer->sublayer_transform()); | |
889 sublayerMatrix.Translate(-layer->anchor_point().x() * bounds.width(), -l
ayer->anchor_point().y() * bounds.height()); | |
890 } | |
891 | |
892 LayerList& descendants = (layer->render_surface() ? layer->render_surface()-
>layer_list() : layerList); | |
893 | |
894 // Any layers that are appended after this point are in the layer's subtree
and should be included in the sorting process. | |
895 unsigned sortingStartIndex = descendants.size(); | |
896 | |
897 if (!layerShouldBeSkipped(layer)) | |
898 descendants.push_back(layer); | |
899 | |
900 gfx::Transform nextScrollCompensationMatrix = computeScrollCompensationMatri
xForChildren(layer, parentMatrix, currentScrollCompensationMatrix);; | |
901 | |
902 gfx::Rect accumulatedDrawableContentRectOfChildren; | |
903 for (size_t i = 0; i < layer->children().size(); ++i) { | |
904 LayerType* child = LayerTreeHostCommon::getChildAsRawPtr(layer->children
(), i); | |
905 gfx::Rect drawableContentRectOfChildSubtree; | |
906 calculateDrawPropertiesInternal<LayerType, LayerList, RenderSurfaceType>
(child, sublayerMatrix, nextHierarchyMatrix, nextScrollCompensationMatrix, | |
907
clipRectForSubtree, clipRectForSubtreeInDescendantSpace, subtreeShouldBeClipped
, nearestAncestorThatMovesPixels, | |
908
renderSurfaceLayerList, descendants, layerSorter, maxTextureSize, deviceScaleFa
ctor, pageScaleFactor, | |
909
subtreeCanUseLCDText, drawableContentRectOfChildSubtree, updateTilePriorities); | |
910 if (!drawableContentRectOfChildSubtree.IsEmpty()) { | |
911 accumulatedDrawableContentRectOfChildren.Union(drawableContentRectOf
ChildSubtree); | |
912 if (child->render_surface()) | |
913 descendants.push_back(child); | |
914 } | |
915 } | |
916 | |
917 if (layer->render_surface() && !isRootLayer(layer) && !layer->render_surface
()->layer_list().size()) { | |
918 removeSurfaceForEarlyExit(layer, renderSurfaceLayerList); | |
919 return; | |
920 } | |
921 | |
922 // Compute the total drawableContentRect for this subtree (the rect is in ta
rgetSurface space) | |
923 gfx::Rect localDrawableContentRectOfSubtree = accumulatedDrawableContentRect
OfChildren; | |
924 if (layer->DrawsContent()) | |
925 localDrawableContentRectOfSubtree.Union(rectInTargetSpace); | |
926 if (subtreeShouldBeClipped) | |
927 localDrawableContentRectOfSubtree.Intersect(clipRectForSubtree); | |
928 | |
929 // Compute the layer's drawable content rect (the rect is in targetSurface s
pace) | |
930 layerDrawProperties.drawable_content_rect = rectInTargetSpace; | |
931 if (subtreeShouldBeClipped) | |
932 layerDrawProperties.drawable_content_rect.Intersect(clipRectForSubtree); | |
933 | |
934 // Tell the layer the rect that is clipped by. In theory we could use a | |
935 // tighter clipRect here (drawableContentRect), but that actually does not | |
936 // reduce how much would be drawn, and instead it would create unnecessary | |
937 // changes to scissor state affecting GPU performance. | |
938 layerDrawProperties.is_clipped = subtreeShouldBeClipped; | |
939 if (subtreeShouldBeClipped) | |
940 layerDrawProperties.clip_rect = clipRectForSubtree; | |
941 else { | |
942 // Initialize the clipRect to a safe value that will not clip the | |
943 // layer, just in case clipping is still accidentally used. | |
944 layerDrawProperties.clip_rect = rectInTargetSpace; | |
945 } | |
946 | |
947 // Compute the layer's visible content rect (the rect is in content space) | |
948 layerDrawProperties.visible_content_rect = calculateVisibleContentRect(layer
, clipRectForSubtreeInDescendantSpace, rectInTargetSpace); | |
949 | |
950 // Compute the remaining properties for the render surface, if the layer has
one. | |
951 if (isRootLayer(layer)) { | |
952 // The root layer's surface's contentRect is always the entire viewport. | |
953 DCHECK(layer->render_surface()); | |
954 layer->render_surface()->SetContentRect(clipRectFromAncestor); | |
955 } else if (layer->render_surface() && !isRootLayer(layer)) { | |
956 RenderSurfaceType* renderSurface = layer->render_surface(); | |
957 gfx::Rect clippedContentRect = localDrawableContentRectOfSubtree; | |
958 | |
959 // Don't clip if the layer is reflected as the reflection shouldn't be | |
960 // clipped. If the layer is animating, then the surface's transform to | |
961 // its target is not known on the main thread, and we should not use it | |
962 // to clip. | |
963 if (!layer->replica_layer() && transformToParentIsKnown(layer)) { | |
964 // Note, it is correct to use ancestorClipsSubtree here, because we
are looking at this layer's renderSurface, not the layer itself. | |
965 if (ancestorClipsSubtree && !clippedContentRect.IsEmpty()) { | |
966 gfx::Rect surfaceClipRect = LayerTreeHostCommon::calculateVisibl
eRect(renderSurface->clip_rect(), clippedContentRect, renderSurface->draw_transf
orm()); | |
967 clippedContentRect.Intersect(surfaceClipRect); | |
968 } | |
969 } | |
970 | |
971 // The RenderSurfaceImpl backing texture cannot exceed the maximum suppo
rted | |
972 // texture size. | |
973 clippedContentRect.set_width(std::min(clippedContentRect.width(), maxTex
tureSize)); | |
974 clippedContentRect.set_height(std::min(clippedContentRect.height(), maxT
extureSize)); | |
975 | |
976 if (clippedContentRect.IsEmpty()) { | |
977 renderSurface->ClearLayerLists(); | |
978 removeSurfaceForEarlyExit(layer, renderSurfaceLayerList); | |
979 return; | |
980 } | |
981 | |
982 renderSurface->SetContentRect(clippedContentRect); | |
983 | |
984 // The owning layer's screenSpaceTransform has a scale from content to l
ayer space which we need to undo and | |
985 // replace with a scale from the surface's subtree into layer space. | |
986 gfx::Transform screenSpaceTransform = layer->screen_space_transform(); | |
987 screenSpaceTransform.Scale(layer->contents_scale_x() / renderSurfaceSubl
ayerScale.x(), layer->contents_scale_y() / renderSurfaceSublayerScale.y()); | |
988 renderSurface->SetScreenSpaceTransform(screenSpaceTransform); | |
989 | |
990 if (layer->replica_layer()) { | |
991 gfx::Transform surfaceOriginToReplicaOriginTransform; | |
992 surfaceOriginToReplicaOriginTransform.Scale(renderSurfaceSublayerSca
le.x(), renderSurfaceSublayerScale.y()); | |
993 surfaceOriginToReplicaOriginTransform.Translate(layer->replica_layer
()->position().x() + layer->replica_layer()->anchor_point().x() * bounds.width()
, | |
994 layer->replica_layer
()->position().y() + layer->replica_layer()->anchor_point().y() * bounds.height(
)); | |
995 surfaceOriginToReplicaOriginTransform.PreconcatTransform(layer->repl
ica_layer()->transform()); | |
996 surfaceOriginToReplicaOriginTransform.Translate(-layer->replica_laye
r()->anchor_point().x() * bounds.width(), -layer->replica_layer()->anchor_point(
).y() * bounds.height()); | |
997 surfaceOriginToReplicaOriginTransform.Scale(1 / renderSurfaceSublaye
rScale.x(), 1 / renderSurfaceSublayerScale.y()); | |
998 | |
999 // Compute the replica's "originTransform" that maps from the replic
a's origin space to the target surface origin space. | |
1000 gfx::Transform replicaOriginTransform = layer->render_surface()->dra
w_transform() * surfaceOriginToReplicaOriginTransform; | |
1001 renderSurface->SetReplicaDrawTransform(replicaOriginTransform); | |
1002 | |
1003 // Compute the replica's "screenSpaceTransform" that maps from the r
eplica's origin space to the screen's origin space. | |
1004 gfx::Transform replicaScreenSpaceTransform = layer->render_surface()
->screen_space_transform() * surfaceOriginToReplicaOriginTransform; | |
1005 renderSurface->SetReplicaScreenSpaceTransform(replicaScreenSpaceTran
sform); | |
1006 } | |
1007 } | |
1008 | |
1009 if (updateTilePriorities) | |
1010 updateTilePrioritiesForLayer(layer); | |
1011 | |
1012 // If neither this layer nor any of its children were added, early out. | |
1013 if (sortingStartIndex == descendants.size()) | |
1014 return; | |
1015 | |
1016 // If preserves-3d then sort all the descendants in 3D so that they can be | |
1017 // drawn from back to front. If the preserves-3d property is also set on the
parent then | |
1018 // skip the sorting as the parent will sort all the descendants anyway. | |
1019 if (layerSorter && descendants.size() && layer->preserves_3d() && (!layer->p
arent() || !layer->parent()->preserves_3d())) | |
1020 sortLayers(descendants.begin() + sortingStartIndex, descendants.end(), l
ayerSorter); | |
1021 | |
1022 if (layer->render_surface()) | |
1023 drawableContentRectOfSubtree = gfx::ToEnclosingRect(layer->render_surfac
e()->DrawableContentRect()); | |
1024 else | |
1025 drawableContentRectOfSubtree = localDrawableContentRectOfSubtree; | |
1026 | |
1027 if (layer->HasContributingDelegatedRenderPasses()) | |
1028 layer->render_target()->render_surface()->AddContributingDelegatedRender
PassLayer(layer); | |
1029 } | |
1030 | |
1031 void LayerTreeHostCommon::calculateDrawProperties(Layer* rootLayer, const gfx::S
ize& deviceViewportSize, float deviceScaleFactor, float pageScaleFactor, int max
TextureSize, bool canUseLCDText, std::vector<scoped_refptr<Layer> >& renderSurfa
ceLayerList) | |
1032 { | |
1033 gfx::Rect totalDrawableContentRect; | |
1034 gfx::Transform identityMatrix; | |
1035 gfx::Transform deviceScaleTransform; | |
1036 deviceScaleTransform.Scale(deviceScaleFactor, deviceScaleFactor); | |
1037 std::vector<scoped_refptr<Layer> > dummyLayerList; | |
1038 | |
1039 // The root layer's renderSurface should receive the deviceViewport as the i
nitial clipRect. | |
1040 bool subtreeShouldBeClipped = true; | |
1041 gfx::Rect deviceViewportRect(gfx::Point(), deviceViewportSize); | |
1042 bool updateTilePriorities = false; | |
1043 | |
1044 // This function should have received a root layer. | |
1045 DCHECK(isRootLayer(rootLayer)); | |
1046 | |
1047 preCalculateMetaInformation<Layer>(rootLayer); | |
1048 calculateDrawPropertiesInternal<Layer, std::vector<scoped_refptr<Layer> >, R
enderSurface>( | |
1049 rootLayer, deviceScaleTransform, identityMatrix, identityMatrix, | |
1050 deviceViewportRect, deviceViewportRect, subtreeShouldBeClipped, 0, rende
rSurfaceLayerList, | |
1051 dummyLayerList, 0, maxTextureSize, | |
1052 deviceScaleFactor, pageScaleFactor, canUseLCDText, totalDrawableContentR
ect, | |
1053 updateTilePriorities); | |
1054 | |
1055 // The dummy layer list should not have been used. | |
1056 DCHECK(dummyLayerList.size() == 0); | |
1057 // A root layer renderSurface should always exist after calculateDrawPropert
ies. | |
1058 DCHECK(rootLayer->render_surface()); | |
1059 } | |
1060 | |
1061 void LayerTreeHostCommon::calculateDrawProperties(LayerImpl* rootLayer, const gf
x::Size& deviceViewportSize, float deviceScaleFactor, float pageScaleFactor, int
maxTextureSize, bool canUseLCDText, std::vector<LayerImpl*>& renderSurfaceLayer
List, bool updateTilePriorities) | |
1062 { | |
1063 gfx::Rect totalDrawableContentRect; | |
1064 gfx::Transform identityMatrix; | |
1065 gfx::Transform deviceScaleTransform; | |
1066 deviceScaleTransform.Scale(deviceScaleFactor, deviceScaleFactor); | |
1067 std::vector<LayerImpl*> dummyLayerList; | |
1068 LayerSorter layerSorter; | |
1069 | |
1070 // The root layer's renderSurface should receive the deviceViewport as the i
nitial clipRect. | |
1071 bool subtreeShouldBeClipped = true; | |
1072 gfx::Rect deviceViewportRect(gfx::Point(), deviceViewportSize); | |
1073 | |
1074 // This function should have received a root layer. | |
1075 DCHECK(isRootLayer(rootLayer)); | |
1076 | |
1077 preCalculateMetaInformation<LayerImpl>(rootLayer); | |
1078 calculateDrawPropertiesInternal<LayerImpl, std::vector<LayerImpl*>, RenderSu
rfaceImpl>( | |
1079 rootLayer, deviceScaleTransform, identityMatrix, identityMatrix, | |
1080 deviceViewportRect, deviceViewportRect, subtreeShouldBeClipped, 0, rende
rSurfaceLayerList, | |
1081 dummyLayerList, &layerSorter, maxTextureSize, | |
1082 deviceScaleFactor, pageScaleFactor, canUseLCDText, totalDrawableContentR
ect, | |
1083 updateTilePriorities); | |
1084 | |
1085 // The dummy layer list should not have been used. | |
1086 DCHECK(dummyLayerList.size() == 0); | |
1087 // A root layer renderSurface should always exist after calculateDrawPropert
ies. | |
1088 DCHECK(rootLayer->render_surface()); | |
1089 } | |
1090 | |
1091 static bool pointHitsRect(const gfx::PointF& screenSpacePoint, const gfx::Transf
orm& localSpaceToScreenSpaceTransform, gfx::RectF localSpaceRect) | |
1092 { | |
1093 // If the transform is not invertible, then assume that this point doesn't h
it this rect. | |
1094 gfx::Transform inverseLocalSpaceToScreenSpace(gfx::Transform::kSkipInitializ
ation); | |
1095 if (!localSpaceToScreenSpaceTransform.GetInverse(&inverseLocalSpaceToScreenS
pace)) | |
1096 return false; | |
1097 | |
1098 // Transform the hit test point from screen space to the local space of the
given rect. | |
1099 bool clipped = false; | |
1100 gfx::PointF hitTestPointInLocalSpace = MathUtil::ProjectPoint(inverseLocalSp
aceToScreenSpace, screenSpacePoint, &clipped); | |
1101 | |
1102 // If projectPoint could not project to a valid value, then we assume that t
his point doesn't hit this rect. | |
1103 if (clipped) | |
1104 return false; | |
1105 | |
1106 return localSpaceRect.Contains(hitTestPointInLocalSpace); | |
1107 } | |
1108 | |
1109 static bool pointHitsRegion(gfx::PointF screenSpacePoint, const gfx::Transform&
screenSpaceTransform, const Region& layerSpaceRegion, float layerContentScaleX,
float layerContentScaleY) | |
1110 { | |
1111 // If the transform is not invertible, then assume that this point doesn't h
it this region. | |
1112 gfx::Transform inverseScreenSpaceTransform(gfx::Transform::kSkipInitializati
on); | |
1113 if (!screenSpaceTransform.GetInverse(&inverseScreenSpaceTransform)) | |
1114 return false; | |
1115 | |
1116 // Transform the hit test point from screen space to the local space of the
given region. | |
1117 bool clipped = false; | |
1118 gfx::PointF hitTestPointInContentSpace = MathUtil::ProjectPoint(inverseScree
nSpaceTransform, screenSpacePoint, &clipped); | |
1119 gfx::PointF hitTestPointInLayerSpace = gfx::ScalePoint(hitTestPointInContent
Space, 1 / layerContentScaleX, 1 / layerContentScaleY); | |
1120 | |
1121 // If projectPoint could not project to a valid value, then we assume that t
his point doesn't hit this region. | |
1122 if (clipped) | |
1123 return false; | |
1124 | |
1125 return layerSpaceRegion.Contains(gfx::ToRoundedPoint(hitTestPointInLayerSpac
e)); | |
1126 } | |
1127 | |
1128 static bool pointIsClippedBySurfaceOrClipRect(const gfx::PointF& screenSpacePoin
t, LayerImpl* layer) | |
1129 { | |
1130 LayerImpl* current_layer = layer; | |
1131 | |
1132 // Walk up the layer tree and hit-test any renderSurfaces and any layer clip
Rects that are active. | |
1133 while (current_layer) { | |
1134 if (current_layer->render_surface() && !pointHitsRect(screenSpacePoint,
current_layer->render_surface()->screen_space_transform(), current_layer->render
_surface()->content_rect())) | |
1135 return true; | |
1136 | |
1137 // Note that drawableContentRects are actually in targetSurface space, s
o the transform we | |
1138 // have to provide is the target surface's screenSpaceTransform. | |
1139 LayerImpl* renderTarget = current_layer->render_target(); | |
1140 if (layerClipsSubtree(current_layer) && !pointHitsRect(screenSpacePoint,
renderTarget->render_surface()->screen_space_transform(), current_layer->drawab
le_content_rect())) | |
1141 return true; | |
1142 | |
1143 current_layer = current_layer->parent(); | |
1144 } | |
1145 | |
1146 // If we have finished walking all ancestors without having already exited,
then the point is not clipped by any ancestors. | |
1147 return false; | 1402 return false; |
1148 } | 1403 |
1149 | 1404 // Transform the hit test point from screen space to the local space of the |
1150 LayerImpl* LayerTreeHostCommon::findLayerThatIsHitByPoint(const gfx::PointF& scr
eenSpacePoint, const std::vector<LayerImpl*>& renderSurfaceLayerList) | 1405 // given rect. |
1151 { | 1406 bool clipped = false; |
1152 LayerImpl* foundLayer = 0; | 1407 gfx::PointF hit_test_point_in_local_space = MathUtil::ProjectPoint( |
1153 | 1408 inverse_local_space_to_screen_space, screen_space_point, &clipped); |
1154 typedef LayerIterator<LayerImpl, std::vector<LayerImpl*>, RenderSurfaceImpl,
LayerIteratorActions::FrontToBack> LayerIteratorType; | 1409 |
1155 LayerIteratorType end = LayerIteratorType::End(&renderSurfaceLayerList); | 1410 // If ProjectPoint could not project to a valid value, then we assume that |
1156 | 1411 // this point doesn't hit this rect. |
1157 for (LayerIteratorType it = LayerIteratorType::Begin(&renderSurfaceLayerList
); it != end; ++it) { | 1412 if (clipped) |
1158 // We don't want to consider renderSurfaces for hit testing. | 1413 return false; |
1159 if (!it.represents_itself()) | 1414 |
1160 continue; | 1415 return local_space_rect.Contains(hit_test_point_in_local_space); |
1161 | 1416 } |
1162 LayerImpl* current_layer = (*it); | 1417 |
1163 | 1418 static bool PointHitsRegion(gfx::PointF screen_space_point, |
1164 gfx::RectF contentRect(gfx::PointF(), current_layer->content_bounds()); | 1419 const gfx::Transform& screen_space_transform, |
1165 if (!pointHitsRect(screenSpacePoint, current_layer->screen_space_transfo
rm(), contentRect)) | 1420 const Region& layer_space_region, |
1166 continue; | 1421 float layer_content_scale_x, |
1167 | 1422 float layer_content_scale_y) { |
1168 // At this point, we think the point does hit the layer, but we need to
walk up | 1423 // If the transform is not invertible, then assume that this point doesn't hit |
1169 // the parents to ensure that the layer was not clipped in such a way th
at the | 1424 // this region. |
1170 // hit point actually should not hit the layer. | 1425 gfx::Transform inverse_screen_space_transform( |
1171 if (pointIsClippedBySurfaceOrClipRect(screenSpacePoint, current_layer)) | 1426 gfx::Transform::kSkipInitialization); |
1172 continue; | 1427 if (!screen_space_transform.GetInverse(&inverse_screen_space_transform)) |
1173 | 1428 return false; |
1174 // Skip the HUD layer. | 1429 |
1175 if (current_layer == current_layer->layer_tree_impl()->hud_layer()) | 1430 // Transform the hit test point from screen space to the local space of the |
1176 continue; | 1431 // given region. |
1177 | 1432 bool clipped = false; |
1178 foundLayer = current_layer; | 1433 gfx::PointF hit_test_point_in_content_space = MathUtil::ProjectPoint( |
1179 break; | 1434 inverse_screen_space_transform, screen_space_point, &clipped); |
1180 } | 1435 gfx::PointF hit_test_point_in_layer_space = |
1181 | 1436 gfx::ScalePoint(hit_test_point_in_content_space, |
1182 // This can potentially return 0, which means the screenSpacePoint did not s
uccessfully hit test any layers, not even the root layer. | 1437 1.f / layer_content_scale_x, |
1183 return foundLayer; | 1438 1.f / layer_content_scale_y); |
1184 } | 1439 |
1185 | 1440 // If ProjectPoint could not project to a valid value, then we assume that |
1186 LayerImpl* LayerTreeHostCommon::findLayerThatIsHitByPointInTouchHandlerRegion(co
nst gfx::PointF& screenSpacePoint, const std::vector<LayerImpl*>& renderSurfaceL
ayerList) | 1441 // this point doesn't hit this region. |
1187 { | 1442 if (clipped) |
1188 LayerImpl* foundLayer = 0; | 1443 return false; |
1189 | 1444 |
1190 typedef LayerIterator<LayerImpl, std::vector<LayerImpl*>, RenderSurfaceImpl,
LayerIteratorActions::FrontToBack> LayerIteratorType; | 1445 return layer_space_region.Contains( |
1191 LayerIteratorType end = LayerIteratorType::End(&renderSurfaceLayerList); | 1446 gfx::ToRoundedPoint(hit_test_point_in_layer_space)); |
1192 | 1447 } |
1193 for (LayerIteratorType it = LayerIteratorType::Begin(&renderSurfaceLayerList
); it != end; ++it) { | 1448 |
1194 // We don't want to consider renderSurfaces for hit testing. | 1449 static bool PointIsClippedBySurfaceOrClipRect(gfx::PointF screen_space_point, |
1195 if (!it.represents_itself()) | 1450 LayerImpl* layer) { |
1196 continue; | 1451 LayerImpl* current_layer = layer; |
1197 | 1452 |
1198 LayerImpl* current_layer = (*it); | 1453 // Walk up the layer tree and hit-test any render_surfaces and any layer |
1199 | 1454 // clip rects that are active. |
1200 if (!layerHasTouchEventHandlersAt(screenSpacePoint, current_layer)) | 1455 while (current_layer) { |
1201 continue; | 1456 if (current_layer->render_surface() && |
1202 | 1457 !PointHitsRect( |
1203 foundLayer = current_layer; | 1458 screen_space_point, |
1204 break; | 1459 current_layer->render_surface()->screen_space_transform(), |
1205 } | 1460 current_layer->render_surface()->content_rect())) |
1206 | 1461 return true; |
1207 // This can potentially return 0, which means the screenSpacePoint did not s
uccessfully hit test any layers, not even the root layer. | 1462 |
1208 return foundLayer; | 1463 // Note that drawable content rects are actually in target surface space, so |
1209 } | 1464 // the transform we have to provide is the target surface's |
1210 | 1465 // screen_space_transform. |
1211 bool LayerTreeHostCommon::layerHasTouchEventHandlersAt(const gfx::PointF& screen
SpacePoint, LayerImpl* layerImpl) { | 1466 LayerImpl* render_target = current_layer->render_target(); |
1212 if (layerImpl->touch_event_handler_region().IsEmpty()) | 1467 if (LayerClipsSubtree(current_layer) && |
1213 return false; | 1468 !PointHitsRect( |
1214 | 1469 screen_space_point, |
1215 if (!pointHitsRegion(screenSpacePoint, layerImpl->screen_space_transform(), la
yerImpl->touch_event_handler_region(), layerImpl->contents_scale_x(), layerImpl-
>contents_scale_y())) | 1470 render_target->render_surface()->screen_space_transform(), |
1216 return false;; | 1471 current_layer->drawable_content_rect())) |
1217 | 1472 return true; |
1218 // At this point, we think the point does hit the touch event handler region o
n the layer, but we need to walk up | 1473 |
1219 // the parents to ensure that the layer was not clipped in such a way that the | 1474 current_layer = current_layer->parent(); |
1220 // hit point actually should not hit the layer. | 1475 } |
1221 if (pointIsClippedBySurfaceOrClipRect(screenSpacePoint, layerImpl)) | 1476 |
1222 return false; | 1477 // If we have finished walking all ancestors without having already exited, |
| 1478 // then the point is not clipped by any ancestors. |
| 1479 return false; |
| 1480 } |
| 1481 |
| 1482 LayerImpl* LayerTreeHostCommon::FindLayerThatIsHitByPoint( |
| 1483 gfx::PointF screen_space_point, |
| 1484 const std::vector<LayerImpl*>& render_surface_layer_list) { |
| 1485 LayerImpl* found_layer = NULL; |
| 1486 |
| 1487 typedef LayerIterator<LayerImpl, |
| 1488 std::vector<LayerImpl*>, |
| 1489 RenderSurfaceImpl, |
| 1490 LayerIteratorActions::FrontToBack> LayerIteratorType; |
| 1491 LayerIteratorType end = LayerIteratorType::End(&render_surface_layer_list); |
| 1492 |
| 1493 for (LayerIteratorType |
| 1494 it = LayerIteratorType::Begin(&render_surface_layer_list); |
| 1495 it != end; |
| 1496 ++it) { |
| 1497 // We don't want to consider render_surfaces for hit testing. |
| 1498 if (!it.represents_itself()) |
| 1499 continue; |
| 1500 |
| 1501 LayerImpl* current_layer = (*it); |
| 1502 |
| 1503 gfx::RectF content_rect(gfx::PointF(), current_layer->content_bounds()); |
| 1504 if (!PointHitsRect(screen_space_point, |
| 1505 current_layer->screen_space_transform(), |
| 1506 content_rect)) |
| 1507 continue; |
| 1508 |
| 1509 // At this point, we think the point does hit the layer, but we need to walk |
| 1510 // up the parents to ensure that the layer was not clipped in such a way |
| 1511 // that the hit point actually should not hit the layer. |
| 1512 if (PointIsClippedBySurfaceOrClipRect(screen_space_point, current_layer)) |
| 1513 continue; |
| 1514 |
| 1515 // Skip the HUD layer. |
| 1516 if (current_layer == current_layer->layer_tree_impl()->hud_layer()) |
| 1517 continue; |
| 1518 |
| 1519 found_layer = current_layer; |
| 1520 break; |
| 1521 } |
| 1522 |
| 1523 // This can potentially return NULL, which means the screen_space_point did |
| 1524 // not successfully hit test any layers, not even the root layer. |
| 1525 return found_layer; |
| 1526 } |
| 1527 |
| 1528 LayerImpl* LayerTreeHostCommon::FindLayerThatIsHitByPointInTouchHandlerRegion( |
| 1529 gfx::PointF screen_space_point, |
| 1530 const std::vector<LayerImpl*>& render_surface_layer_list) { |
| 1531 LayerImpl* found_layer = NULL; |
| 1532 |
| 1533 typedef LayerIterator<LayerImpl, |
| 1534 std::vector<LayerImpl*>, |
| 1535 RenderSurfaceImpl, |
| 1536 LayerIteratorActions::FrontToBack> LayerIteratorType; |
| 1537 LayerIteratorType end = LayerIteratorType::End(&render_surface_layer_list); |
| 1538 |
| 1539 for (LayerIteratorType |
| 1540 it = LayerIteratorType::Begin(&render_surface_layer_list); |
| 1541 it != end; |
| 1542 ++it) { |
| 1543 // We don't want to consider render_surfaces for hit testing. |
| 1544 if (!it.represents_itself()) |
| 1545 continue; |
| 1546 |
| 1547 LayerImpl* current_layer = (*it); |
| 1548 |
| 1549 if (!LayerHasTouchEventHandlersAt(screen_space_point, current_layer)) |
| 1550 continue; |
| 1551 |
| 1552 found_layer = current_layer; |
| 1553 break; |
| 1554 } |
| 1555 |
| 1556 // This can potentially return NULL, which means the screen_space_point did |
| 1557 // not successfully hit test any layers, not even the root layer. |
| 1558 return found_layer; |
| 1559 } |
| 1560 |
| 1561 bool LayerTreeHostCommon::LayerHasTouchEventHandlersAt( |
| 1562 gfx::PointF screen_space_point, |
| 1563 LayerImpl* layer_impl) { |
| 1564 if (layer_impl->touch_event_handler_region().IsEmpty()) |
| 1565 return false; |
| 1566 |
| 1567 if (!PointHitsRegion(screen_space_point, |
| 1568 layer_impl->screen_space_transform(), |
| 1569 layer_impl->touch_event_handler_region(), |
| 1570 layer_impl->contents_scale_x(), |
| 1571 layer_impl->contents_scale_y())) |
| 1572 return false; |
| 1573 |
| 1574 // At this point, we think the point does hit the touch event handler region |
| 1575 // on the layer, but we need to walk up the parents to ensure that the layer |
| 1576 // was not clipped in such a way that the hit point actually should not hit |
| 1577 // the layer. |
| 1578 if (PointIsClippedBySurfaceOrClipRect(screen_space_point, layer_impl)) |
| 1579 return false; |
1223 | 1580 |
1224 return true; | 1581 return true; |
1225 } | 1582 } |
1226 } // namespace cc | 1583 } // namespace cc |
OLD | NEW |