| Index: third_party/re2/re2/regexp.cc
|
| diff --git a/third_party/re2/re2/regexp.cc b/third_party/re2/re2/regexp.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..9486b3c14c6571c8333e381eb235f6765f7131d7
|
| --- /dev/null
|
| +++ b/third_party/re2/re2/regexp.cc
|
| @@ -0,0 +1,920 @@
|
| +// Copyright 2006 The RE2 Authors. All Rights Reserved.
|
| +// Use of this source code is governed by a BSD-style
|
| +// license that can be found in the LICENSE file.
|
| +
|
| +// Regular expression representation.
|
| +// Tested by parse_test.cc
|
| +
|
| +#include "util/util.h"
|
| +#include "re2/regexp.h"
|
| +#include "re2/stringpiece.h"
|
| +#include "re2/walker-inl.h"
|
| +
|
| +namespace re2 {
|
| +
|
| +// Constructor. Allocates vectors as appropriate for operator.
|
| +Regexp::Regexp(RegexpOp op, ParseFlags parse_flags)
|
| + : op_(op),
|
| + simple_(false),
|
| + parse_flags_(static_cast<uint16>(parse_flags)),
|
| + ref_(1),
|
| + nsub_(0),
|
| + down_(NULL) {
|
| + subone_ = NULL;
|
| + memset(the_union_, 0, sizeof the_union_);
|
| +}
|
| +
|
| +// Destructor. Assumes already cleaned up children.
|
| +// Private: use Decref() instead of delete to destroy Regexps.
|
| +// Can't call Decref on the sub-Regexps here because
|
| +// that could cause arbitrarily deep recursion, so
|
| +// required Decref() to have handled them for us.
|
| +Regexp::~Regexp() {
|
| + if (nsub_ > 0)
|
| + LOG(DFATAL) << "Regexp not destroyed.";
|
| +
|
| + switch (op_) {
|
| + default:
|
| + break;
|
| + case kRegexpCapture:
|
| + delete name_;
|
| + break;
|
| + case kRegexpLiteralString:
|
| + delete[] runes_;
|
| + break;
|
| + case kRegexpCharClass:
|
| + cc_->Delete();
|
| + delete ccb_;
|
| + break;
|
| + }
|
| +}
|
| +
|
| +// If it's possible to destroy this regexp without recurring,
|
| +// do so and return true. Else return false.
|
| +bool Regexp::QuickDestroy() {
|
| + if (nsub_ == 0) {
|
| + delete this;
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +static map<Regexp*, int> ref_map;
|
| +static Mutex ref_mutex;
|
| +
|
| +int Regexp::Ref() {
|
| + if (ref_ < kMaxRef)
|
| + return ref_;
|
| +
|
| + MutexLock l(&ref_mutex);
|
| + return ref_map[this];
|
| +}
|
| +
|
| +// Increments reference count, returns object as convenience.
|
| +Regexp* Regexp::Incref() {
|
| + if (ref_ >= kMaxRef-1) {
|
| + // Store ref count in overflow map.
|
| + MutexLock l(&ref_mutex);
|
| + if (ref_ == kMaxRef) { // already overflowed
|
| + ref_map[this]++;
|
| + return this;
|
| + }
|
| + // overflowing now
|
| + ref_map[this] = kMaxRef;
|
| + ref_ = kMaxRef;
|
| + return this;
|
| + }
|
| +
|
| + ref_++;
|
| + return this;
|
| +}
|
| +
|
| +// Decrements reference count and deletes this object if count reaches 0.
|
| +void Regexp::Decref() {
|
| + if (ref_ == kMaxRef) {
|
| + // Ref count is stored in overflow map.
|
| + MutexLock l(&ref_mutex);
|
| + int r = ref_map[this] - 1;
|
| + if (r < kMaxRef) {
|
| + ref_ = r;
|
| + ref_map.erase(this);
|
| + } else {
|
| + ref_map[this] = r;
|
| + }
|
| + return;
|
| + }
|
| + ref_--;
|
| + if (ref_ == 0)
|
| + Destroy();
|
| +}
|
| +
|
| +// Deletes this object; ref count has count reached 0.
|
| +void Regexp::Destroy() {
|
| + if (QuickDestroy())
|
| + return;
|
| +
|
| + // Handle recursive Destroy with explicit stack
|
| + // to avoid arbitrarily deep recursion on process stack [sigh].
|
| + down_ = NULL;
|
| + Regexp* stack = this;
|
| + while (stack != NULL) {
|
| + Regexp* re = stack;
|
| + stack = re->down_;
|
| + if (re->ref_ != 0)
|
| + LOG(DFATAL) << "Bad reference count " << re->ref_;
|
| + if (re->nsub_ > 0) {
|
| + Regexp** subs = re->sub();
|
| + for (int i = 0; i < re->nsub_; i++) {
|
| + Regexp* sub = subs[i];
|
| + if (sub == NULL)
|
| + continue;
|
| + if (sub->ref_ == kMaxRef)
|
| + sub->Decref();
|
| + else
|
| + --sub->ref_;
|
| + if (sub->ref_ == 0 && !sub->QuickDestroy()) {
|
| + sub->down_ = stack;
|
| + stack = sub;
|
| + }
|
| + }
|
| + if (re->nsub_ > 1)
|
| + delete[] subs;
|
| + re->nsub_ = 0;
|
| + }
|
| + delete re;
|
| + }
|
| +}
|
| +
|
| +void Regexp::AddRuneToString(Rune r) {
|
| + DCHECK(op_ == kRegexpLiteralString);
|
| + if (nrunes_ == 0) {
|
| + // start with 8
|
| + runes_ = new Rune[8];
|
| + } else if (nrunes_ >= 8 && (nrunes_ & (nrunes_ - 1)) == 0) {
|
| + // double on powers of two
|
| + Rune *old = runes_;
|
| + runes_ = new Rune[nrunes_ * 2];
|
| + for (int i = 0; i < nrunes_; i++)
|
| + runes_[i] = old[i];
|
| + delete[] old;
|
| + }
|
| +
|
| + runes_[nrunes_++] = r;
|
| +}
|
| +
|
| +Regexp* Regexp::HaveMatch(int match_id, ParseFlags flags) {
|
| + Regexp* re = new Regexp(kRegexpHaveMatch, flags);
|
| + re->match_id_ = match_id;
|
| + return re;
|
| +}
|
| +
|
| +Regexp* Regexp::Plus(Regexp* sub, ParseFlags flags) {
|
| + if (sub->op() == kRegexpPlus && sub->parse_flags() == flags)
|
| + return sub;
|
| + Regexp* re = new Regexp(kRegexpPlus, flags);
|
| + re->AllocSub(1);
|
| + re->sub()[0] = sub;
|
| + return re;
|
| +}
|
| +
|
| +Regexp* Regexp::Star(Regexp* sub, ParseFlags flags) {
|
| + if (sub->op() == kRegexpStar && sub->parse_flags() == flags)
|
| + return sub;
|
| + Regexp* re = new Regexp(kRegexpStar, flags);
|
| + re->AllocSub(1);
|
| + re->sub()[0] = sub;
|
| + return re;
|
| +}
|
| +
|
| +Regexp* Regexp::Quest(Regexp* sub, ParseFlags flags) {
|
| + if (sub->op() == kRegexpQuest && sub->parse_flags() == flags)
|
| + return sub;
|
| + Regexp* re = new Regexp(kRegexpQuest, flags);
|
| + re->AllocSub(1);
|
| + re->sub()[0] = sub;
|
| + return re;
|
| +}
|
| +
|
| +Regexp* Regexp::ConcatOrAlternate(RegexpOp op, Regexp** sub, int nsub,
|
| + ParseFlags flags, bool can_factor) {
|
| + if (nsub == 1)
|
| + return sub[0];
|
| +
|
| + Regexp** subcopy = NULL;
|
| + if (op == kRegexpAlternate && can_factor) {
|
| + // Going to edit sub; make a copy so we don't step on caller.
|
| + subcopy = new Regexp*[nsub];
|
| + memmove(subcopy, sub, nsub * sizeof sub[0]);
|
| + sub = subcopy;
|
| + nsub = FactorAlternation(sub, nsub, flags);
|
| + if (nsub == 1) {
|
| + Regexp* re = sub[0];
|
| + delete[] subcopy;
|
| + return re;
|
| + }
|
| + }
|
| +
|
| + if (nsub > kMaxNsub) {
|
| + // Too many subexpressions to fit in a single Regexp.
|
| + // Make a two-level tree. Two levels gets us to 65535^2.
|
| + int nbigsub = (nsub+kMaxNsub-1)/kMaxNsub;
|
| + Regexp* re = new Regexp(op, flags);
|
| + re->AllocSub(nbigsub);
|
| + Regexp** subs = re->sub();
|
| + for (int i = 0; i < nbigsub - 1; i++)
|
| + subs[i] = ConcatOrAlternate(op, sub+i*kMaxNsub, kMaxNsub, flags, false);
|
| + subs[nbigsub - 1] = ConcatOrAlternate(op, sub+(nbigsub-1)*kMaxNsub,
|
| + nsub - (nbigsub-1)*kMaxNsub, flags,
|
| + false);
|
| + delete[] subcopy;
|
| + return re;
|
| + }
|
| +
|
| + Regexp* re = new Regexp(op, flags);
|
| + re->AllocSub(nsub);
|
| + Regexp** subs = re->sub();
|
| + for (int i = 0; i < nsub; i++)
|
| + subs[i] = sub[i];
|
| +
|
| + delete[] subcopy;
|
| + return re;
|
| +}
|
| +
|
| +Regexp* Regexp::Concat(Regexp** sub, int nsub, ParseFlags flags) {
|
| + return ConcatOrAlternate(kRegexpConcat, sub, nsub, flags, false);
|
| +}
|
| +
|
| +Regexp* Regexp::Alternate(Regexp** sub, int nsub, ParseFlags flags) {
|
| + return ConcatOrAlternate(kRegexpAlternate, sub, nsub, flags, true);
|
| +}
|
| +
|
| +Regexp* Regexp::AlternateNoFactor(Regexp** sub, int nsub, ParseFlags flags) {
|
| + return ConcatOrAlternate(kRegexpAlternate, sub, nsub, flags, false);
|
| +}
|
| +
|
| +Regexp* Regexp::Capture(Regexp* sub, ParseFlags flags, int cap) {
|
| + Regexp* re = new Regexp(kRegexpCapture, flags);
|
| + re->AllocSub(1);
|
| + re->sub()[0] = sub;
|
| + re->cap_ = cap;
|
| + return re;
|
| +}
|
| +
|
| +Regexp* Regexp::Repeat(Regexp* sub, ParseFlags flags, int min, int max) {
|
| + Regexp* re = new Regexp(kRegexpRepeat, flags);
|
| + re->AllocSub(1);
|
| + re->sub()[0] = sub;
|
| + re->min_ = min;
|
| + re->max_ = max;
|
| + return re;
|
| +}
|
| +
|
| +Regexp* Regexp::NewLiteral(Rune rune, ParseFlags flags) {
|
| + Regexp* re = new Regexp(kRegexpLiteral, flags);
|
| + re->rune_ = rune;
|
| + return re;
|
| +}
|
| +
|
| +Regexp* Regexp::LiteralString(Rune* runes, int nrunes, ParseFlags flags) {
|
| + if (nrunes <= 0)
|
| + return new Regexp(kRegexpEmptyMatch, flags);
|
| + if (nrunes == 1)
|
| + return NewLiteral(runes[0], flags);
|
| + Regexp* re = new Regexp(kRegexpLiteralString, flags);
|
| + for (int i = 0; i < nrunes; i++)
|
| + re->AddRuneToString(runes[i]);
|
| + return re;
|
| +}
|
| +
|
| +Regexp* Regexp::NewCharClass(CharClass* cc, ParseFlags flags) {
|
| + Regexp* re = new Regexp(kRegexpCharClass, flags);
|
| + re->cc_ = cc;
|
| + return re;
|
| +}
|
| +
|
| +// Swaps this and that in place.
|
| +void Regexp::Swap(Regexp* that) {
|
| + // Can use memmove because Regexp is just a struct (no vtable).
|
| + char tmp[sizeof *this];
|
| + memmove(tmp, this, sizeof tmp);
|
| + memmove(this, that, sizeof tmp);
|
| + memmove(that, tmp, sizeof tmp);
|
| +}
|
| +
|
| +// Tests equality of all top-level structure but not subregexps.
|
| +static bool TopEqual(Regexp* a, Regexp* b) {
|
| + if (a->op() != b->op())
|
| + return false;
|
| +
|
| + switch (a->op()) {
|
| + case kRegexpNoMatch:
|
| + case kRegexpEmptyMatch:
|
| + case kRegexpAnyChar:
|
| + case kRegexpAnyByte:
|
| + case kRegexpBeginLine:
|
| + case kRegexpEndLine:
|
| + case kRegexpWordBoundary:
|
| + case kRegexpNoWordBoundary:
|
| + case kRegexpBeginText:
|
| + return true;
|
| +
|
| + case kRegexpEndText:
|
| + // The parse flags remember whether it's \z or (?-m:$),
|
| + // which matters when testing against PCRE.
|
| + return ((a->parse_flags() ^ b->parse_flags()) & Regexp::WasDollar) == 0;
|
| +
|
| + case kRegexpLiteral:
|
| + return a->rune() == b->rune() &&
|
| + ((a->parse_flags() ^ b->parse_flags()) & Regexp::FoldCase) == 0;
|
| +
|
| + case kRegexpLiteralString:
|
| + return a->nrunes() == b->nrunes() &&
|
| + ((a->parse_flags() ^ b->parse_flags()) & Regexp::FoldCase) == 0 &&
|
| + memcmp(a->runes(), b->runes(),
|
| + a->nrunes() * sizeof a->runes()[0]) == 0;
|
| +
|
| + case kRegexpAlternate:
|
| + case kRegexpConcat:
|
| + return a->nsub() == b->nsub();
|
| +
|
| + case kRegexpStar:
|
| + case kRegexpPlus:
|
| + case kRegexpQuest:
|
| + return ((a->parse_flags() ^ b->parse_flags()) & Regexp::NonGreedy) == 0;
|
| +
|
| + case kRegexpRepeat:
|
| + return ((a->parse_flags() ^ b->parse_flags()) & Regexp::NonGreedy) == 0 &&
|
| + a->min() == b->min() &&
|
| + a->max() == b->max();
|
| +
|
| + case kRegexpCapture:
|
| + return a->cap() == b->cap() && a->name() == b->name();
|
| +
|
| + case kRegexpHaveMatch:
|
| + return a->match_id() == b->match_id();
|
| +
|
| + case kRegexpCharClass: {
|
| + CharClass* acc = a->cc();
|
| + CharClass* bcc = b->cc();
|
| + return acc->size() == bcc->size() &&
|
| + acc->end() - acc->begin() == bcc->end() - bcc->begin() &&
|
| + memcmp(acc->begin(), bcc->begin(),
|
| + (acc->end() - acc->begin()) * sizeof acc->begin()[0]) == 0;
|
| + }
|
| + }
|
| +
|
| + LOG(DFATAL) << "Unexpected op in Regexp::Equal: " << a->op();
|
| + return 0;
|
| +}
|
| +
|
| +bool Regexp::Equal(Regexp* a, Regexp* b) {
|
| + if (a == NULL || b == NULL)
|
| + return a == b;
|
| +
|
| + if (!TopEqual(a, b))
|
| + return false;
|
| +
|
| + // Fast path:
|
| + // return without allocating vector if there are no subregexps.
|
| + switch (a->op()) {
|
| + case kRegexpAlternate:
|
| + case kRegexpConcat:
|
| + case kRegexpStar:
|
| + case kRegexpPlus:
|
| + case kRegexpQuest:
|
| + case kRegexpRepeat:
|
| + case kRegexpCapture:
|
| + break;
|
| +
|
| + default:
|
| + return true;
|
| + }
|
| +
|
| + // Committed to doing real work.
|
| + // The stack (vector) has pairs of regexps waiting to
|
| + // be compared. The regexps are only equal if
|
| + // all the pairs end up being equal.
|
| + vector<Regexp*> stk;
|
| +
|
| + for (;;) {
|
| + // Invariant: TopEqual(a, b) == true.
|
| + Regexp* a2;
|
| + Regexp* b2;
|
| + switch (a->op()) {
|
| + default:
|
| + break;
|
| + case kRegexpAlternate:
|
| + case kRegexpConcat:
|
| + for (int i = 0; i < a->nsub(); i++) {
|
| + a2 = a->sub()[i];
|
| + b2 = b->sub()[i];
|
| + if (!TopEqual(a2, b2))
|
| + return false;
|
| + stk.push_back(a2);
|
| + stk.push_back(b2);
|
| + }
|
| + break;
|
| +
|
| + case kRegexpStar:
|
| + case kRegexpPlus:
|
| + case kRegexpQuest:
|
| + case kRegexpRepeat:
|
| + case kRegexpCapture:
|
| + a2 = a->sub()[0];
|
| + b2 = b->sub()[0];
|
| + if (!TopEqual(a2, b2))
|
| + return false;
|
| + // Really:
|
| + // stk.push_back(a2);
|
| + // stk.push_back(b2);
|
| + // break;
|
| + // but faster to assign directly and loop.
|
| + a = a2;
|
| + b = b2;
|
| + continue;
|
| + }
|
| +
|
| + int n = stk.size();
|
| + if (n == 0)
|
| + break;
|
| +
|
| + a = stk[n-2];
|
| + b = stk[n-1];
|
| + stk.resize(n-2);
|
| + }
|
| +
|
| + return true;
|
| +}
|
| +
|
| +// Keep in sync with enum RegexpStatusCode in regexp.h
|
| +static const string kErrorStrings[] = {
|
| + "no error",
|
| + "unexpected error",
|
| + "invalid escape sequence",
|
| + "invalid character class",
|
| + "invalid character class range",
|
| + "missing ]",
|
| + "missing )",
|
| + "trailing \\",
|
| + "no argument for repetition operator",
|
| + "invalid repetition size",
|
| + "bad repetition operator",
|
| + "invalid perl operator",
|
| + "invalid UTF-8",
|
| + "invalid named capture group",
|
| +};
|
| +
|
| +const string& RegexpStatus::CodeText(enum RegexpStatusCode code) {
|
| + if (code < 0 || code >= arraysize(kErrorStrings))
|
| + code = kRegexpInternalError;
|
| + return kErrorStrings[code];
|
| +}
|
| +
|
| +string RegexpStatus::Text() const {
|
| + if (error_arg_.empty())
|
| + return CodeText(code_);
|
| + string s;
|
| + s.append(CodeText(code_));
|
| + s.append(": ");
|
| + s.append(error_arg_.data(), error_arg_.size());
|
| + return s;
|
| +}
|
| +
|
| +void RegexpStatus::Copy(const RegexpStatus& status) {
|
| + code_ = status.code_;
|
| + error_arg_ = status.error_arg_;
|
| +}
|
| +
|
| +typedef int Ignored; // Walker<void> doesn't exist
|
| +
|
| +// Walker subclass to count capturing parens in regexp.
|
| +class NumCapturesWalker : public Regexp::Walker<Ignored> {
|
| + public:
|
| + NumCapturesWalker() : ncapture_(0) {}
|
| + int ncapture() { return ncapture_; }
|
| +
|
| + virtual Ignored PreVisit(Regexp* re, Ignored ignored, bool* stop) {
|
| + if (re->op() == kRegexpCapture)
|
| + ncapture_++;
|
| + return ignored;
|
| + }
|
| + virtual Ignored ShortVisit(Regexp* re, Ignored ignored) {
|
| + // Should never be called: we use Walk not WalkExponential.
|
| + LOG(DFATAL) << "NumCapturesWalker::ShortVisit called";
|
| + return ignored;
|
| + }
|
| +
|
| + private:
|
| + int ncapture_;
|
| + DISALLOW_EVIL_CONSTRUCTORS(NumCapturesWalker);
|
| +};
|
| +
|
| +int Regexp::NumCaptures() {
|
| + NumCapturesWalker w;
|
| + w.Walk(this, 0);
|
| + return w.ncapture();
|
| +}
|
| +
|
| +// Walker class to build map of named capture groups and their indices.
|
| +class NamedCapturesWalker : public Regexp::Walker<Ignored> {
|
| + public:
|
| + NamedCapturesWalker() : map_(NULL) {}
|
| + ~NamedCapturesWalker() { delete map_; }
|
| +
|
| + map<string, int>* TakeMap() {
|
| + map<string, int>* m = map_;
|
| + map_ = NULL;
|
| + return m;
|
| + }
|
| +
|
| + Ignored PreVisit(Regexp* re, Ignored ignored, bool* stop) {
|
| + if (re->op() == kRegexpCapture && re->name() != NULL) {
|
| + // Allocate map once we find a name.
|
| + if (map_ == NULL)
|
| + map_ = new map<string, int>;
|
| +
|
| + // Record first occurrence of each name.
|
| + // (The rule is that if you have the same name
|
| + // multiple times, only the leftmost one counts.)
|
| + if (map_->find(*re->name()) == map_->end())
|
| + (*map_)[*re->name()] = re->cap();
|
| + }
|
| + return ignored;
|
| + }
|
| +
|
| + virtual Ignored ShortVisit(Regexp* re, Ignored ignored) {
|
| + // Should never be called: we use Walk not WalkExponential.
|
| + LOG(DFATAL) << "NamedCapturesWalker::ShortVisit called";
|
| + return ignored;
|
| + }
|
| +
|
| + private:
|
| + map<string, int>* map_;
|
| + DISALLOW_EVIL_CONSTRUCTORS(NamedCapturesWalker);
|
| +};
|
| +
|
| +map<string, int>* Regexp::NamedCaptures() {
|
| + NamedCapturesWalker w;
|
| + w.Walk(this, 0);
|
| + return w.TakeMap();
|
| +}
|
| +
|
| +// Walker class to build map from capture group indices to their names.
|
| +class CaptureNamesWalker : public Regexp::Walker<Ignored> {
|
| + public:
|
| + CaptureNamesWalker() : map_(NULL) {}
|
| + ~CaptureNamesWalker() { delete map_; }
|
| +
|
| + map<int, string>* TakeMap() {
|
| + map<int, string>* m = map_;
|
| + map_ = NULL;
|
| + return m;
|
| + }
|
| +
|
| + Ignored PreVisit(Regexp* re, Ignored ignored, bool* stop) {
|
| + if (re->op() == kRegexpCapture && re->name() != NULL) {
|
| + // Allocate map once we find a name.
|
| + if (map_ == NULL)
|
| + map_ = new map<int, string>;
|
| +
|
| + (*map_)[re->cap()] = *re->name();
|
| + }
|
| + return ignored;
|
| + }
|
| +
|
| + virtual Ignored ShortVisit(Regexp* re, Ignored ignored) {
|
| + // Should never be called: we use Walk not WalkExponential.
|
| + LOG(DFATAL) << "CaptureNamesWalker::ShortVisit called";
|
| + return ignored;
|
| + }
|
| +
|
| + private:
|
| + map<int, string>* map_;
|
| + DISALLOW_EVIL_CONSTRUCTORS(CaptureNamesWalker);
|
| +};
|
| +
|
| +map<int, string>* Regexp::CaptureNames() {
|
| + CaptureNamesWalker w;
|
| + w.Walk(this, 0);
|
| + return w.TakeMap();
|
| +}
|
| +
|
| +// Determines whether regexp matches must be anchored
|
| +// with a fixed string prefix. If so, returns the prefix and
|
| +// the regexp that remains after the prefix. The prefix might
|
| +// be ASCII case-insensitive.
|
| +bool Regexp::RequiredPrefix(string *prefix, bool *foldcase, Regexp** suffix) {
|
| + // No need for a walker: the regexp must be of the form
|
| + // 1. some number of ^ anchors
|
| + // 2. a literal char or string
|
| + // 3. the rest
|
| + prefix->clear();
|
| + *foldcase = false;
|
| + *suffix = NULL;
|
| + if (op_ != kRegexpConcat)
|
| + return false;
|
| +
|
| + // Some number of anchors, then a literal or concatenation.
|
| + int i = 0;
|
| + Regexp** sub = this->sub();
|
| + while (i < nsub_ && sub[i]->op_ == kRegexpBeginText)
|
| + i++;
|
| + if (i == 0 || i >= nsub_)
|
| + return false;
|
| +
|
| + Regexp* re = sub[i];
|
| + switch (re->op_) {
|
| + default:
|
| + return false;
|
| +
|
| + case kRegexpLiteralString:
|
| + // Convert to string in proper encoding.
|
| + if (re->parse_flags() & Latin1) {
|
| + prefix->resize(re->nrunes_);
|
| + for (int j = 0; j < re->nrunes_; j++)
|
| + (*prefix)[j] = re->runes_[j];
|
| + } else {
|
| + // Convert to UTF-8 in place.
|
| + // Assume worst-case space and then trim.
|
| + prefix->resize(re->nrunes_ * UTFmax);
|
| + char *p = &(*prefix)[0];
|
| + for (int j = 0; j < re->nrunes_; j++) {
|
| + Rune r = re->runes_[j];
|
| + if (r < Runeself)
|
| + *p++ = r;
|
| + else
|
| + p += runetochar(p, &r);
|
| + }
|
| + prefix->resize(p - &(*prefix)[0]);
|
| + }
|
| + break;
|
| +
|
| + case kRegexpLiteral:
|
| + if ((re->parse_flags() & Latin1) || re->rune_ < Runeself) {
|
| + prefix->append(1, re->rune_);
|
| + } else {
|
| + char buf[UTFmax];
|
| + prefix->append(buf, runetochar(buf, &re->rune_));
|
| + }
|
| + break;
|
| + }
|
| + *foldcase = (sub[i]->parse_flags() & FoldCase);
|
| + i++;
|
| +
|
| + // The rest.
|
| + if (i < nsub_) {
|
| + for (int j = i; j < nsub_; j++)
|
| + sub[j]->Incref();
|
| + re = Concat(sub + i, nsub_ - i, parse_flags());
|
| + } else {
|
| + re = new Regexp(kRegexpEmptyMatch, parse_flags());
|
| + }
|
| + *suffix = re;
|
| + return true;
|
| +}
|
| +
|
| +// Character class builder is a balanced binary tree (STL set)
|
| +// containing non-overlapping, non-abutting RuneRanges.
|
| +// The less-than operator used in the tree treats two
|
| +// ranges as equal if they overlap at all, so that
|
| +// lookups for a particular Rune are possible.
|
| +
|
| +CharClassBuilder::CharClassBuilder() {
|
| + nrunes_ = 0;
|
| + upper_ = 0;
|
| + lower_ = 0;
|
| +}
|
| +
|
| +// Add lo-hi to the class; return whether class got bigger.
|
| +bool CharClassBuilder::AddRange(Rune lo, Rune hi) {
|
| + if (hi < lo)
|
| + return false;
|
| +
|
| + if (lo <= 'z' && hi >= 'A') {
|
| + // Overlaps some alpha, maybe not all.
|
| + // Update bitmaps telling which ASCII letters are in the set.
|
| + Rune lo1 = max<Rune>(lo, 'A');
|
| + Rune hi1 = min<Rune>(hi, 'Z');
|
| + if (lo1 <= hi1)
|
| + upper_ |= ((1 << (hi1 - lo1 + 1)) - 1) << (lo1 - 'A');
|
| +
|
| + lo1 = max<Rune>(lo, 'a');
|
| + hi1 = min<Rune>(hi, 'z');
|
| + if (lo1 <= hi1)
|
| + lower_ |= ((1 << (hi1 - lo1 + 1)) - 1) << (lo1 - 'a');
|
| + }
|
| +
|
| + { // Check whether lo, hi is already in the class.
|
| + iterator it = ranges_.find(RuneRange(lo, lo));
|
| + if (it != end() && it->lo <= lo && hi <= it->hi)
|
| + return false;
|
| + }
|
| +
|
| + // Look for a range abutting lo on the left.
|
| + // If it exists, take it out and increase our range.
|
| + if (lo > 0) {
|
| + iterator it = ranges_.find(RuneRange(lo-1, lo-1));
|
| + if (it != end()) {
|
| + lo = it->lo;
|
| + if (it->hi > hi)
|
| + hi = it->hi;
|
| + nrunes_ -= it->hi - it->lo + 1;
|
| + ranges_.erase(it);
|
| + }
|
| + }
|
| +
|
| + // Look for a range abutting hi on the right.
|
| + // If it exists, take it out and increase our range.
|
| + if (hi < Runemax) {
|
| + iterator it = ranges_.find(RuneRange(hi+1, hi+1));
|
| + if (it != end()) {
|
| + hi = it->hi;
|
| + nrunes_ -= it->hi - it->lo + 1;
|
| + ranges_.erase(it);
|
| + }
|
| + }
|
| +
|
| + // Look for ranges between lo and hi. Take them out.
|
| + // This is only safe because the set has no overlapping ranges.
|
| + // We've already removed any ranges abutting lo and hi, so
|
| + // any that overlap [lo, hi] must be contained within it.
|
| + for (;;) {
|
| + iterator it = ranges_.find(RuneRange(lo, hi));
|
| + if (it == end())
|
| + break;
|
| + nrunes_ -= it->hi - it->lo + 1;
|
| + ranges_.erase(it);
|
| + }
|
| +
|
| + // Finally, add [lo, hi].
|
| + nrunes_ += hi - lo + 1;
|
| + ranges_.insert(RuneRange(lo, hi));
|
| + return true;
|
| +}
|
| +
|
| +void CharClassBuilder::AddCharClass(CharClassBuilder *cc) {
|
| + for (iterator it = cc->begin(); it != cc->end(); ++it)
|
| + AddRange(it->lo, it->hi);
|
| +}
|
| +
|
| +bool CharClassBuilder::Contains(Rune r) {
|
| + return ranges_.find(RuneRange(r, r)) != end();
|
| +}
|
| +
|
| +// Does the character class behave the same on A-Z as on a-z?
|
| +bool CharClassBuilder::FoldsASCII() {
|
| + return ((upper_ ^ lower_) & AlphaMask) == 0;
|
| +}
|
| +
|
| +CharClassBuilder* CharClassBuilder::Copy() {
|
| + CharClassBuilder* cc = new CharClassBuilder;
|
| + for (iterator it = begin(); it != end(); ++it)
|
| + cc->ranges_.insert(RuneRange(it->lo, it->hi));
|
| + cc->upper_ = upper_;
|
| + cc->lower_ = lower_;
|
| + cc->nrunes_ = nrunes_;
|
| + return cc;
|
| +}
|
| +
|
| +
|
| +
|
| +void CharClassBuilder::RemoveAbove(Rune r) {
|
| + if (r >= Runemax)
|
| + return;
|
| +
|
| + if (r < 'z') {
|
| + if (r < 'a')
|
| + lower_ = 0;
|
| + else
|
| + lower_ &= AlphaMask >> ('z' - r);
|
| + }
|
| +
|
| + if (r < 'Z') {
|
| + if (r < 'A')
|
| + upper_ = 0;
|
| + else
|
| + upper_ &= AlphaMask >> ('Z' - r);
|
| + }
|
| +
|
| + for (;;) {
|
| +
|
| + iterator it = ranges_.find(RuneRange(r + 1, Runemax));
|
| + if (it == end())
|
| + break;
|
| + RuneRange rr = *it;
|
| + ranges_.erase(it);
|
| + nrunes_ -= rr.hi - rr.lo + 1;
|
| + if (rr.lo <= r) {
|
| + rr.hi = r;
|
| + ranges_.insert(rr);
|
| + nrunes_ += rr.hi - rr.lo + 1;
|
| + }
|
| + }
|
| +}
|
| +
|
| +void CharClassBuilder::Negate() {
|
| + // Build up negation and then copy in.
|
| + // Could edit ranges in place, but C++ won't let me.
|
| + vector<RuneRange> v;
|
| + v.reserve(ranges_.size() + 1);
|
| +
|
| + // In negation, first range begins at 0, unless
|
| + // the current class begins at 0.
|
| + iterator it = begin();
|
| + if (it == end()) {
|
| + v.push_back(RuneRange(0, Runemax));
|
| + } else {
|
| + int nextlo = 0;
|
| + if (it->lo == 0) {
|
| + nextlo = it->hi + 1;
|
| + ++it;
|
| + }
|
| + for (; it != end(); ++it) {
|
| + v.push_back(RuneRange(nextlo, it->lo - 1));
|
| + nextlo = it->hi + 1;
|
| + }
|
| + if (nextlo <= Runemax)
|
| + v.push_back(RuneRange(nextlo, Runemax));
|
| + }
|
| +
|
| + ranges_.clear();
|
| + for (int i = 0; i < v.size(); i++)
|
| + ranges_.insert(v[i]);
|
| +
|
| + upper_ = AlphaMask & ~upper_;
|
| + lower_ = AlphaMask & ~lower_;
|
| + nrunes_ = Runemax+1 - nrunes_;
|
| +}
|
| +
|
| +// Character class is a sorted list of ranges.
|
| +// The ranges are allocated in the same block as the header,
|
| +// necessitating a special allocator and Delete method.
|
| +
|
| +CharClass* CharClass::New(int maxranges) {
|
| + CharClass* cc;
|
| + uint8* data = new uint8[sizeof *cc + maxranges*sizeof cc->ranges_[0]];
|
| + cc = reinterpret_cast<CharClass*>(data);
|
| + cc->ranges_ = reinterpret_cast<RuneRange*>(data + sizeof *cc);
|
| + cc->nranges_ = 0;
|
| + cc->folds_ascii_ = false;
|
| + cc->nrunes_ = 0;
|
| + return cc;
|
| +}
|
| +
|
| +void CharClass::Delete() {
|
| + if (this == NULL)
|
| + return;
|
| + uint8 *data = reinterpret_cast<uint8*>(this);
|
| + delete[] data;
|
| +}
|
| +
|
| +CharClass* CharClass::Negate() {
|
| + CharClass* cc = CharClass::New(nranges_+1);
|
| + cc->folds_ascii_ = folds_ascii_;
|
| + cc->nrunes_ = Runemax + 1 - nrunes_;
|
| + int n = 0;
|
| + int nextlo = 0;
|
| + for (CharClass::iterator it = begin(); it != end(); ++it) {
|
| + if (it->lo == nextlo) {
|
| + nextlo = it->hi + 1;
|
| + } else {
|
| + cc->ranges_[n++] = RuneRange(nextlo, it->lo - 1);
|
| + nextlo = it->hi + 1;
|
| + }
|
| + }
|
| + if (nextlo <= Runemax)
|
| + cc->ranges_[n++] = RuneRange(nextlo, Runemax);
|
| + cc->nranges_ = n;
|
| + return cc;
|
| +}
|
| +
|
| +bool CharClass::Contains(Rune r) {
|
| + RuneRange* rr = ranges_;
|
| + int n = nranges_;
|
| + while (n > 0) {
|
| + int m = n/2;
|
| + if (rr[m].hi < r) {
|
| + rr += m+1;
|
| + n -= m+1;
|
| + } else if (r < rr[m].lo) {
|
| + n = m;
|
| + } else { // rr[m].lo <= r && r <= rr[m].hi
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +CharClass* CharClassBuilder::GetCharClass() {
|
| + CharClass* cc = CharClass::New(ranges_.size());
|
| + int n = 0;
|
| + for (iterator it = begin(); it != end(); ++it)
|
| + cc->ranges_[n++] = *it;
|
| + cc->nranges_ = n;
|
| + DCHECK_LE(n, ranges_.size());
|
| + cc->nrunes_ = nrunes_;
|
| + cc->folds_ascii_ = FoldsASCII();
|
| + return cc;
|
| +}
|
| +
|
| +} // namespace re2
|
|
|