Index: third_party/re2/re2/nfa.cc |
diff --git a/third_party/re2/re2/nfa.cc b/third_party/re2/re2/nfa.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..8c4f76136d51fbbfbeb9372b61dad0438c2d9886 |
--- /dev/null |
+++ b/third_party/re2/re2/nfa.cc |
@@ -0,0 +1,709 @@ |
+// Copyright 2006-2007 The RE2 Authors. All Rights Reserved. |
+// Use of this source code is governed by a BSD-style |
+// license that can be found in the LICENSE file. |
+ |
+// Tested by search_test.cc. |
+// |
+// Prog::SearchNFA, an NFA search. |
+// This is an actual NFA like the theorists talk about, |
+// not the pseudo-NFA found in backtracking regexp implementations. |
+// |
+// IMPLEMENTATION |
+// |
+// This algorithm is a variant of one that appeared in Rob Pike's sam editor, |
+// which is a variant of the one described in Thompson's 1968 CACM paper. |
+// See http://swtch.com/~rsc/regexp/ for various history. The main feature |
+// over the DFA implementation is that it tracks submatch boundaries. |
+// |
+// When the choice of submatch boundaries is ambiguous, this particular |
+// implementation makes the same choices that traditional backtracking |
+// implementations (in particular, Perl and PCRE) do. |
+// Note that unlike in Perl and PCRE, this algorithm *cannot* take exponential |
+// time in the length of the input. |
+// |
+// Like Thompson's original machine and like the DFA implementation, this |
+// implementation notices a match only once it is one byte past it. |
+ |
+#include "re2/prog.h" |
+#include "re2/regexp.h" |
+#include "util/sparse_array.h" |
+#include "util/sparse_set.h" |
+ |
+namespace re2 { |
+ |
+class NFA { |
+ public: |
+ NFA(Prog* prog); |
+ ~NFA(); |
+ |
+ // Searches for a matching string. |
+ // * If anchored is true, only considers matches starting at offset. |
+ // Otherwise finds lefmost match at or after offset. |
+ // * If longest is true, returns the longest match starting |
+ // at the chosen start point. Otherwise returns the so-called |
+ // left-biased match, the one traditional backtracking engines |
+ // (like Perl and PCRE) find. |
+ // Records submatch boundaries in submatch[1..nsubmatch-1]. |
+ // Submatch[0] is the entire match. When there is a choice in |
+ // which text matches each subexpression, the submatch boundaries |
+ // are chosen to match what a backtracking implementation would choose. |
+ bool Search(const StringPiece& text, const StringPiece& context, |
+ bool anchored, bool longest, |
+ StringPiece* submatch, int nsubmatch); |
+ |
+ static const int Debug = 0; |
+ |
+ private: |
+ struct Thread { |
+ union { |
+ int id; |
+ Thread* next; // when on free list |
+ }; |
+ const char** capture; |
+ }; |
+ |
+ // State for explicit stack in AddToThreadq. |
+ struct AddState { |
+ int id; // Inst to process |
+ int j; |
+ const char* cap_j; // if j>=0, set capture[j] = cap_j before processing ip |
+ |
+ AddState() |
+ : id(0), j(-1), cap_j(NULL) {} |
+ explicit AddState(int id) |
+ : id(id), j(-1), cap_j(NULL) {} |
+ AddState(int id, const char* cap_j, int j) |
+ : id(id), j(j), cap_j(cap_j) {} |
+ }; |
+ |
+ // Threadq is a list of threads. The list is sorted by the order |
+ // in which Perl would explore that particular state -- the earlier |
+ // choices appear earlier in the list. |
+ typedef SparseArray<Thread*> Threadq; |
+ |
+ inline Thread* AllocThread(); |
+ inline void FreeThread(Thread*); |
+ |
+ // Add id (or its children, following unlabeled arrows) |
+ // to the workqueue q with associated capture info. |
+ void AddToThreadq(Threadq* q, int id, int flag, |
+ const char* p, const char** capture); |
+ |
+ // Run runq on byte c, appending new states to nextq. |
+ // Updates matched_ and match_ as new, better matches are found. |
+ // p is position of the next byte (the one after c) |
+ // in the input string, used when processing capturing parens. |
+ // flag is the bitwise or of Bol, Eol, etc., specifying whether |
+ // ^, $ and \b match the current input point (after c). |
+ inline int Step(Threadq* runq, Threadq* nextq, int c, int flag, const char* p); |
+ |
+ // Returns text version of capture information, for debugging. |
+ string FormatCapture(const char** capture); |
+ |
+ inline void CopyCapture(const char** dst, const char** src); |
+ |
+ // Computes whether all matches must begin with the same first |
+ // byte, and if so, returns that byte. If not, returns -1. |
+ int ComputeFirstByte(); |
+ |
+ Prog* prog_; // underlying program |
+ int start_; // start instruction in program |
+ int ncapture_; // number of submatches to track |
+ bool longest_; // whether searching for longest match |
+ bool endmatch_; // whether match must end at text.end() |
+ const char* btext_; // beginning of text being matched (for FormatSubmatch) |
+ const char* etext_; // end of text being matched (for endmatch_) |
+ Threadq q0_, q1_; // pre-allocated for Search. |
+ const char** match_; // best match so far |
+ bool matched_; // any match so far? |
+ AddState* astack_; // pre-allocated for AddToThreadq |
+ int nastack_; |
+ int first_byte_; // required first byte for match, or -1 if none |
+ |
+ Thread* free_threads_; // free list |
+ |
+ DISALLOW_EVIL_CONSTRUCTORS(NFA); |
+}; |
+ |
+NFA::NFA(Prog* prog) { |
+ prog_ = prog; |
+ start_ = prog->start(); |
+ ncapture_ = 0; |
+ longest_ = false; |
+ endmatch_ = false; |
+ btext_ = NULL; |
+ etext_ = NULL; |
+ q0_.resize(prog_->size()); |
+ q1_.resize(prog_->size()); |
+ nastack_ = 2*prog_->size(); |
+ astack_ = new AddState[nastack_]; |
+ match_ = NULL; |
+ matched_ = false; |
+ free_threads_ = NULL; |
+ first_byte_ = ComputeFirstByte(); |
+} |
+ |
+NFA::~NFA() { |
+ delete[] match_; |
+ delete[] astack_; |
+ Thread* next; |
+ for (Thread* t = free_threads_; t; t = next) { |
+ next = t->next; |
+ delete[] t->capture; |
+ delete t; |
+ } |
+} |
+ |
+void NFA::FreeThread(Thread *t) { |
+ if (t == NULL) |
+ return; |
+ t->next = free_threads_; |
+ free_threads_ = t; |
+} |
+ |
+NFA::Thread* NFA::AllocThread() { |
+ Thread* t = free_threads_; |
+ if (t == NULL) { |
+ t = new Thread; |
+ t->capture = new const char*[ncapture_]; |
+ return t; |
+ } |
+ free_threads_ = t->next; |
+ return t; |
+} |
+ |
+void NFA::CopyCapture(const char** dst, const char** src) { |
+ for (int i = 0; i < ncapture_; i+=2) { |
+ dst[i] = src[i]; |
+ dst[i+1] = src[i+1]; |
+ } |
+} |
+ |
+// Follows all empty arrows from id0 and enqueues all the states reached. |
+// The bits in flag (Bol, Eol, etc.) specify whether ^, $ and \b match. |
+// The pointer p is the current input position, and m is the |
+// current set of match boundaries. |
+void NFA::AddToThreadq(Threadq* q, int id0, int flag, |
+ const char* p, const char** capture) { |
+ if (id0 == 0) |
+ return; |
+ |
+ // Astack_ is pre-allocated to avoid resize operations. |
+ // It has room for 2*prog_->size() entries, which is enough: |
+ // Each inst in prog can be processed at most once, |
+ // pushing at most two entries on stk. |
+ |
+ int nstk = 0; |
+ AddState* stk = astack_; |
+ stk[nstk++] = AddState(id0); |
+ |
+ while (nstk > 0) { |
+ DCHECK_LE(nstk, nastack_); |
+ const AddState& a = stk[--nstk]; |
+ if (a.j >= 0) |
+ capture[a.j] = a.cap_j; |
+ |
+ int id = a.id; |
+ if (id == 0) |
+ continue; |
+ if (q->has_index(id)) { |
+ if (Debug) |
+ fprintf(stderr, " [%d%s]\n", id, FormatCapture(capture).c_str()); |
+ continue; |
+ } |
+ |
+ // Create entry in q no matter what. We might fill it in below, |
+ // or we might not. Even if not, it is necessary to have it, |
+ // so that we don't revisit id0 during the recursion. |
+ q->set_new(id, NULL); |
+ |
+ Thread** tp = &q->find(id)->second; |
+ int j; |
+ Thread* t; |
+ Prog::Inst* ip = prog_->inst(id); |
+ switch (ip->opcode()) { |
+ default: |
+ LOG(DFATAL) << "unhandled " << ip->opcode() << " in AddToThreadq"; |
+ break; |
+ |
+ case kInstFail: |
+ break; |
+ |
+ case kInstAltMatch: |
+ // Save state; will pick up at next byte. |
+ t = AllocThread(); |
+ t->id = id; |
+ CopyCapture(t->capture, capture); |
+ *tp = t; |
+ // fall through |
+ |
+ case kInstAlt: |
+ // Explore alternatives. |
+ stk[nstk++] = AddState(ip->out1()); |
+ stk[nstk++] = AddState(ip->out()); |
+ break; |
+ |
+ case kInstNop: |
+ // Continue on. |
+ stk[nstk++] = AddState(ip->out()); |
+ break; |
+ |
+ case kInstCapture: |
+ if ((j=ip->cap()) < ncapture_) { |
+ // Push a dummy whose only job is to restore capture[j] |
+ // once we finish exploring this possibility. |
+ stk[nstk++] = AddState(0, capture[j], j); |
+ |
+ // Record capture. |
+ capture[j] = p; |
+ } |
+ stk[nstk++] = AddState(ip->out()); |
+ break; |
+ |
+ case kInstMatch: |
+ case kInstByteRange: |
+ // Save state; will pick up at next byte. |
+ t = AllocThread(); |
+ t->id = id; |
+ CopyCapture(t->capture, capture); |
+ *tp = t; |
+ if (Debug) |
+ fprintf(stderr, " + %d%s [%p]\n", id, FormatCapture(t->capture).c_str(), t); |
+ break; |
+ |
+ case kInstEmptyWidth: |
+ // Continue on if we have all the right flag bits. |
+ if (ip->empty() & ~flag) |
+ break; |
+ stk[nstk++] = AddState(ip->out()); |
+ break; |
+ } |
+ } |
+} |
+ |
+// Run runq on byte c, appending new states to nextq. |
+// Updates match as new, better matches are found. |
+// p is position of the byte c in the input string, |
+// used when processing capturing parens. |
+// flag is the bitwise or of Bol, Eol, etc., specifying whether |
+// ^, $ and \b match the current input point (after c). |
+// Frees all the threads on runq. |
+// If there is a shortcut to the end, returns that shortcut. |
+int NFA::Step(Threadq* runq, Threadq* nextq, int c, int flag, const char* p) { |
+ nextq->clear(); |
+ |
+ for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) { |
+ Thread* t = i->second; |
+ if (t == NULL) |
+ continue; |
+ |
+ if (longest_) { |
+ // Can skip any threads started after our current best match. |
+ if (matched_ && match_[0] < t->capture[0]) { |
+ FreeThread(t); |
+ continue; |
+ } |
+ } |
+ |
+ int id = t->id; |
+ Prog::Inst* ip = prog_->inst(id); |
+ |
+ switch (ip->opcode()) { |
+ default: |
+ // Should only see the values handled below. |
+ LOG(DFATAL) << "Unhandled " << ip->opcode() << " in step"; |
+ break; |
+ |
+ case kInstByteRange: |
+ if (ip->Matches(c)) |
+ AddToThreadq(nextq, ip->out(), flag, p+1, t->capture); |
+ break; |
+ |
+ case kInstAltMatch: |
+ if (i != runq->begin()) |
+ break; |
+ // The match is ours if we want it. |
+ if (ip->greedy(prog_) || longest_) { |
+ CopyCapture((const char**)match_, t->capture); |
+ FreeThread(t); |
+ for (++i; i != runq->end(); ++i) |
+ FreeThread(i->second); |
+ runq->clear(); |
+ matched_ = true; |
+ if (ip->greedy(prog_)) |
+ return ip->out1(); |
+ return ip->out(); |
+ } |
+ break; |
+ |
+ case kInstMatch: |
+ if (endmatch_ && p != etext_) |
+ break; |
+ |
+ const char* old = t->capture[1]; // previous end pointer |
+ t->capture[1] = p; |
+ if (longest_) { |
+ // Leftmost-longest mode: save this match only if |
+ // it is either farther to the left or at the same |
+ // point but longer than an existing match. |
+ if (!matched_ || t->capture[0] < match_[0] || |
+ (t->capture[0] == match_[0] && t->capture[1] > match_[1])) |
+ CopyCapture((const char**)match_, t->capture); |
+ } else { |
+ // Leftmost-biased mode: this match is by definition |
+ // better than what we've already found (see next line). |
+ CopyCapture((const char**)match_, t->capture); |
+ |
+ // Cut off the threads that can only find matches |
+ // worse than the one we just found: don't run the |
+ // rest of the current Threadq. |
+ t->capture[0] = old; |
+ FreeThread(t); |
+ for (++i; i != runq->end(); ++i) |
+ FreeThread(i->second); |
+ runq->clear(); |
+ matched_ = true; |
+ return 0; |
+ } |
+ t->capture[0] = old; |
+ matched_ = true; |
+ break; |
+ } |
+ FreeThread(t); |
+ } |
+ runq->clear(); |
+ return 0; |
+} |
+ |
+string NFA::FormatCapture(const char** capture) { |
+ string s; |
+ |
+ for (int i = 0; i < ncapture_; i+=2) { |
+ if (capture[i] == NULL) |
+ StringAppendF(&s, "(?,?)"); |
+ else if (capture[i+1] == NULL) |
+ StringAppendF(&s, "(%d,?)", (int)(capture[i] - btext_)); |
+ else |
+ StringAppendF(&s, "(%d,%d)", |
+ (int)(capture[i] - btext_), |
+ (int)(capture[i+1] - btext_)); |
+ } |
+ return s; |
+} |
+ |
+// Returns whether haystack contains needle's memory. |
+static bool StringPieceContains(const StringPiece haystack, const StringPiece needle) { |
+ return haystack.begin() <= needle.begin() && |
+ haystack.end() >= needle.end(); |
+} |
+ |
+bool NFA::Search(const StringPiece& text, const StringPiece& const_context, |
+ bool anchored, bool longest, |
+ StringPiece* submatch, int nsubmatch) { |
+ if (start_ == 0) |
+ return false; |
+ |
+ StringPiece context = const_context; |
+ if (context.begin() == NULL) |
+ context = text; |
+ |
+ if (!StringPieceContains(context, text)) { |
+ LOG(FATAL) << "Bad args: context does not contain text " |
+ << reinterpret_cast<const void*>(context.begin()) |
+ << "+" << context.size() << " " |
+ << reinterpret_cast<const void*>(text.begin()) |
+ << "+" << text.size(); |
+ return false; |
+ } |
+ |
+ if (prog_->anchor_start() && context.begin() != text.begin()) |
+ return false; |
+ if (prog_->anchor_end() && context.end() != text.end()) |
+ return false; |
+ anchored |= prog_->anchor_start(); |
+ if (prog_->anchor_end()) { |
+ longest = true; |
+ endmatch_ = true; |
+ etext_ = text.end(); |
+ } |
+ |
+ if (nsubmatch < 0) { |
+ LOG(DFATAL) << "Bad args: nsubmatch=" << nsubmatch; |
+ return false; |
+ } |
+ |
+ // Save search parameters. |
+ ncapture_ = 2*nsubmatch; |
+ longest_ = longest; |
+ |
+ if (nsubmatch == 0) { |
+ // We need to maintain match[0], both to distinguish the |
+ // longest match (if longest is true) and also to tell |
+ // whether we've seen any matches at all. |
+ ncapture_ = 2; |
+ } |
+ |
+ match_ = new const char*[ncapture_]; |
+ matched_ = false; |
+ memset(match_, 0, ncapture_*sizeof match_[0]); |
+ |
+ // For debugging prints. |
+ btext_ = context.begin(); |
+ |
+ if (Debug) { |
+ fprintf(stderr, "NFA::Search %s (context: %s) anchored=%d longest=%d\n", |
+ text.as_string().c_str(), context.as_string().c_str(), anchored, |
+ longest); |
+ } |
+ |
+ // Set up search. |
+ Threadq* runq = &q0_; |
+ Threadq* nextq = &q1_; |
+ runq->clear(); |
+ nextq->clear(); |
+ memset(&match_[0], 0, ncapture_*sizeof match_[0]); |
+ const char* bp = context.begin(); |
+ int c = -1; |
+ int wasword = 0; |
+ |
+ if (text.begin() > context.begin()) { |
+ c = text.begin()[-1] & 0xFF; |
+ wasword = Prog::IsWordChar(c); |
+ } |
+ |
+ // Loop over the text, stepping the machine. |
+ for (const char* p = text.begin();; p++) { |
+ // Check for empty-width specials. |
+ int flag = 0; |
+ |
+ // ^ and \A |
+ if (p == context.begin()) |
+ flag |= kEmptyBeginText | kEmptyBeginLine; |
+ else if (p <= context.end() && p[-1] == '\n') |
+ flag |= kEmptyBeginLine; |
+ |
+ // $ and \z |
+ if (p == context.end()) |
+ flag |= kEmptyEndText | kEmptyEndLine; |
+ else if (p < context.end() && p[0] == '\n') |
+ flag |= kEmptyEndLine; |
+ |
+ // \b and \B |
+ int isword = 0; |
+ if (p < context.end()) |
+ isword = Prog::IsWordChar(p[0] & 0xFF); |
+ |
+ if (isword != wasword) |
+ flag |= kEmptyWordBoundary; |
+ else |
+ flag |= kEmptyNonWordBoundary; |
+ |
+ if (Debug) { |
+ fprintf(stderr, "%c[%#x/%d/%d]:", p > text.end() ? '$' : p == bp ? '^' : c, flag, isword, wasword); |
+ for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) { |
+ Thread* t = i->second; |
+ if (t == NULL) |
+ continue; |
+ fprintf(stderr, " %d%s", t->id, |
+ FormatCapture((const char**)t->capture).c_str()); |
+ } |
+ fprintf(stderr, "\n"); |
+ } |
+ |
+ // Process previous character (waited until now to avoid |
+ // repeating the flag computation above). |
+ // This is a no-op the first time around the loop, because |
+ // runq is empty. |
+ int id = Step(runq, nextq, c, flag, p-1); |
+ DCHECK_EQ(runq->size(), 0); |
+ swap(nextq, runq); |
+ nextq->clear(); |
+ if (id != 0) { |
+ // We're done: full match ahead. |
+ p = text.end(); |
+ for (;;) { |
+ Prog::Inst* ip = prog_->inst(id); |
+ switch (ip->opcode()) { |
+ default: |
+ LOG(DFATAL) << "Unexpected opcode in short circuit: " << ip->opcode(); |
+ break; |
+ |
+ case kInstCapture: |
+ match_[ip->cap()] = p; |
+ id = ip->out(); |
+ continue; |
+ |
+ case kInstNop: |
+ id = ip->out(); |
+ continue; |
+ |
+ case kInstMatch: |
+ match_[1] = p; |
+ matched_ = true; |
+ break; |
+ |
+ case kInstEmptyWidth: |
+ if (ip->empty() & ~(kEmptyEndLine|kEmptyEndText)) { |
+ LOG(DFATAL) << "Unexpected empty-width in short circuit: " << ip->empty(); |
+ break; |
+ } |
+ id = ip->out(); |
+ continue; |
+ } |
+ break; |
+ } |
+ break; |
+ } |
+ |
+ if (p > text.end()) |
+ break; |
+ |
+ // Start a new thread if there have not been any matches. |
+ // (No point in starting a new thread if there have been |
+ // matches, since it would be to the right of the match |
+ // we already found.) |
+ if (!matched_ && (!anchored || p == text.begin())) { |
+ // If there's a required first byte for an unanchored search |
+ // and we're not in the middle of any possible matches, |
+ // use memchr to search for the byte quickly. |
+ if (!anchored && first_byte_ >= 0 && runq->size() == 0 && |
+ p < text.end() && (p[0] & 0xFF) != first_byte_) { |
+ p = reinterpret_cast<const char*>(memchr(p, first_byte_, |
+ text.end() - p)); |
+ if (p == NULL) { |
+ p = text.end(); |
+ isword = 0; |
+ } else { |
+ isword = Prog::IsWordChar(p[0] & 0xFF); |
+ } |
+ flag = Prog::EmptyFlags(context, p); |
+ } |
+ |
+ // Steal match storage (cleared but unused as of yet) |
+ // temporarily to hold match boundaries for new thread. |
+ match_[0] = p; |
+ AddToThreadq(runq, start_, flag, p, match_); |
+ match_[0] = NULL; |
+ } |
+ |
+ // If all the threads have died, stop early. |
+ if (runq->size() == 0) { |
+ if (Debug) |
+ fprintf(stderr, "dead\n"); |
+ break; |
+ } |
+ |
+ if (p == text.end()) |
+ c = 0; |
+ else |
+ c = *p & 0xFF; |
+ wasword = isword; |
+ |
+ // Will run step(runq, nextq, c, ...) on next iteration. See above. |
+ } |
+ |
+ for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) |
+ FreeThread(i->second); |
+ |
+ if (matched_) { |
+ for (int i = 0; i < nsubmatch; i++) |
+ submatch[i].set(match_[2*i], match_[2*i+1] - match_[2*i]); |
+ if (Debug) |
+ fprintf(stderr, "match (%d,%d)\n", |
+ static_cast<int>(match_[0] - btext_), |
+ static_cast<int>(match_[1] - btext_)); |
+ return true; |
+ } |
+ VLOG(1) << "No matches found"; |
+ return false; |
+} |
+ |
+// Computes whether all successful matches have a common first byte, |
+// and if so, returns that byte. If not, returns -1. |
+int NFA::ComputeFirstByte() { |
+ if (start_ == 0) |
+ return -1; |
+ |
+ int b = -1; // first byte, not yet computed |
+ |
+ typedef SparseSet Workq; |
+ Workq q(prog_->size()); |
+ q.insert(start_); |
+ for (Workq::iterator it = q.begin(); it != q.end(); ++it) { |
+ int id = *it; |
+ Prog::Inst* ip = prog_->inst(id); |
+ switch (ip->opcode()) { |
+ default: |
+ LOG(DFATAL) << "unhandled " << ip->opcode() << " in ComputeFirstByte"; |
+ break; |
+ |
+ case kInstMatch: |
+ // The empty string matches: no first byte. |
+ return -1; |
+ |
+ case kInstByteRange: |
+ // Must match only a single byte |
+ if (ip->lo() != ip->hi()) |
+ return -1; |
+ if (ip->foldcase() && 'a' <= ip->lo() && ip->lo() <= 'z') |
+ return -1; |
+ // If we haven't seen any bytes yet, record it; |
+ // otherwise must match the one we saw before. |
+ if (b == -1) |
+ b = ip->lo(); |
+ else if (b != ip->lo()) |
+ return -1; |
+ break; |
+ |
+ case kInstNop: |
+ case kInstCapture: |
+ case kInstEmptyWidth: |
+ // Continue on. |
+ // Ignore ip->empty() flags for kInstEmptyWidth |
+ // in order to be as conservative as possible |
+ // (assume all possible empty-width flags are true). |
+ if (ip->out()) |
+ q.insert(ip->out()); |
+ break; |
+ |
+ case kInstAlt: |
+ case kInstAltMatch: |
+ // Explore alternatives. |
+ if (ip->out()) |
+ q.insert(ip->out()); |
+ if (ip->out1()) |
+ q.insert(ip->out1()); |
+ break; |
+ |
+ case kInstFail: |
+ break; |
+ } |
+ } |
+ return b; |
+} |
+ |
+bool |
+Prog::SearchNFA(const StringPiece& text, const StringPiece& context, |
+ Anchor anchor, MatchKind kind, |
+ StringPiece* match, int nmatch) { |
+ if (NFA::Debug) |
+ Dump(); |
+ |
+ NFA nfa(this); |
+ StringPiece sp; |
+ if (kind == kFullMatch) { |
+ anchor = kAnchored; |
+ if (nmatch == 0) { |
+ match = &sp; |
+ nmatch = 1; |
+ } |
+ } |
+ if (!nfa.Search(text, context, anchor == kAnchored, kind != kFirstMatch, match, nmatch)) |
+ return false; |
+ if (kind == kFullMatch && match[0].end() != text.end()) |
+ return false; |
+ return true; |
+} |
+ |
+} // namespace re2 |
+ |