| Index: third_party/re2/re2/nfa.cc
|
| diff --git a/third_party/re2/re2/nfa.cc b/third_party/re2/re2/nfa.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..8c4f76136d51fbbfbeb9372b61dad0438c2d9886
|
| --- /dev/null
|
| +++ b/third_party/re2/re2/nfa.cc
|
| @@ -0,0 +1,709 @@
|
| +// Copyright 2006-2007 The RE2 Authors. All Rights Reserved.
|
| +// Use of this source code is governed by a BSD-style
|
| +// license that can be found in the LICENSE file.
|
| +
|
| +// Tested by search_test.cc.
|
| +//
|
| +// Prog::SearchNFA, an NFA search.
|
| +// This is an actual NFA like the theorists talk about,
|
| +// not the pseudo-NFA found in backtracking regexp implementations.
|
| +//
|
| +// IMPLEMENTATION
|
| +//
|
| +// This algorithm is a variant of one that appeared in Rob Pike's sam editor,
|
| +// which is a variant of the one described in Thompson's 1968 CACM paper.
|
| +// See http://swtch.com/~rsc/regexp/ for various history. The main feature
|
| +// over the DFA implementation is that it tracks submatch boundaries.
|
| +//
|
| +// When the choice of submatch boundaries is ambiguous, this particular
|
| +// implementation makes the same choices that traditional backtracking
|
| +// implementations (in particular, Perl and PCRE) do.
|
| +// Note that unlike in Perl and PCRE, this algorithm *cannot* take exponential
|
| +// time in the length of the input.
|
| +//
|
| +// Like Thompson's original machine and like the DFA implementation, this
|
| +// implementation notices a match only once it is one byte past it.
|
| +
|
| +#include "re2/prog.h"
|
| +#include "re2/regexp.h"
|
| +#include "util/sparse_array.h"
|
| +#include "util/sparse_set.h"
|
| +
|
| +namespace re2 {
|
| +
|
| +class NFA {
|
| + public:
|
| + NFA(Prog* prog);
|
| + ~NFA();
|
| +
|
| + // Searches for a matching string.
|
| + // * If anchored is true, only considers matches starting at offset.
|
| + // Otherwise finds lefmost match at or after offset.
|
| + // * If longest is true, returns the longest match starting
|
| + // at the chosen start point. Otherwise returns the so-called
|
| + // left-biased match, the one traditional backtracking engines
|
| + // (like Perl and PCRE) find.
|
| + // Records submatch boundaries in submatch[1..nsubmatch-1].
|
| + // Submatch[0] is the entire match. When there is a choice in
|
| + // which text matches each subexpression, the submatch boundaries
|
| + // are chosen to match what a backtracking implementation would choose.
|
| + bool Search(const StringPiece& text, const StringPiece& context,
|
| + bool anchored, bool longest,
|
| + StringPiece* submatch, int nsubmatch);
|
| +
|
| + static const int Debug = 0;
|
| +
|
| + private:
|
| + struct Thread {
|
| + union {
|
| + int id;
|
| + Thread* next; // when on free list
|
| + };
|
| + const char** capture;
|
| + };
|
| +
|
| + // State for explicit stack in AddToThreadq.
|
| + struct AddState {
|
| + int id; // Inst to process
|
| + int j;
|
| + const char* cap_j; // if j>=0, set capture[j] = cap_j before processing ip
|
| +
|
| + AddState()
|
| + : id(0), j(-1), cap_j(NULL) {}
|
| + explicit AddState(int id)
|
| + : id(id), j(-1), cap_j(NULL) {}
|
| + AddState(int id, const char* cap_j, int j)
|
| + : id(id), j(j), cap_j(cap_j) {}
|
| + };
|
| +
|
| + // Threadq is a list of threads. The list is sorted by the order
|
| + // in which Perl would explore that particular state -- the earlier
|
| + // choices appear earlier in the list.
|
| + typedef SparseArray<Thread*> Threadq;
|
| +
|
| + inline Thread* AllocThread();
|
| + inline void FreeThread(Thread*);
|
| +
|
| + // Add id (or its children, following unlabeled arrows)
|
| + // to the workqueue q with associated capture info.
|
| + void AddToThreadq(Threadq* q, int id, int flag,
|
| + const char* p, const char** capture);
|
| +
|
| + // Run runq on byte c, appending new states to nextq.
|
| + // Updates matched_ and match_ as new, better matches are found.
|
| + // p is position of the next byte (the one after c)
|
| + // in the input string, used when processing capturing parens.
|
| + // flag is the bitwise or of Bol, Eol, etc., specifying whether
|
| + // ^, $ and \b match the current input point (after c).
|
| + inline int Step(Threadq* runq, Threadq* nextq, int c, int flag, const char* p);
|
| +
|
| + // Returns text version of capture information, for debugging.
|
| + string FormatCapture(const char** capture);
|
| +
|
| + inline void CopyCapture(const char** dst, const char** src);
|
| +
|
| + // Computes whether all matches must begin with the same first
|
| + // byte, and if so, returns that byte. If not, returns -1.
|
| + int ComputeFirstByte();
|
| +
|
| + Prog* prog_; // underlying program
|
| + int start_; // start instruction in program
|
| + int ncapture_; // number of submatches to track
|
| + bool longest_; // whether searching for longest match
|
| + bool endmatch_; // whether match must end at text.end()
|
| + const char* btext_; // beginning of text being matched (for FormatSubmatch)
|
| + const char* etext_; // end of text being matched (for endmatch_)
|
| + Threadq q0_, q1_; // pre-allocated for Search.
|
| + const char** match_; // best match so far
|
| + bool matched_; // any match so far?
|
| + AddState* astack_; // pre-allocated for AddToThreadq
|
| + int nastack_;
|
| + int first_byte_; // required first byte for match, or -1 if none
|
| +
|
| + Thread* free_threads_; // free list
|
| +
|
| + DISALLOW_EVIL_CONSTRUCTORS(NFA);
|
| +};
|
| +
|
| +NFA::NFA(Prog* prog) {
|
| + prog_ = prog;
|
| + start_ = prog->start();
|
| + ncapture_ = 0;
|
| + longest_ = false;
|
| + endmatch_ = false;
|
| + btext_ = NULL;
|
| + etext_ = NULL;
|
| + q0_.resize(prog_->size());
|
| + q1_.resize(prog_->size());
|
| + nastack_ = 2*prog_->size();
|
| + astack_ = new AddState[nastack_];
|
| + match_ = NULL;
|
| + matched_ = false;
|
| + free_threads_ = NULL;
|
| + first_byte_ = ComputeFirstByte();
|
| +}
|
| +
|
| +NFA::~NFA() {
|
| + delete[] match_;
|
| + delete[] astack_;
|
| + Thread* next;
|
| + for (Thread* t = free_threads_; t; t = next) {
|
| + next = t->next;
|
| + delete[] t->capture;
|
| + delete t;
|
| + }
|
| +}
|
| +
|
| +void NFA::FreeThread(Thread *t) {
|
| + if (t == NULL)
|
| + return;
|
| + t->next = free_threads_;
|
| + free_threads_ = t;
|
| +}
|
| +
|
| +NFA::Thread* NFA::AllocThread() {
|
| + Thread* t = free_threads_;
|
| + if (t == NULL) {
|
| + t = new Thread;
|
| + t->capture = new const char*[ncapture_];
|
| + return t;
|
| + }
|
| + free_threads_ = t->next;
|
| + return t;
|
| +}
|
| +
|
| +void NFA::CopyCapture(const char** dst, const char** src) {
|
| + for (int i = 0; i < ncapture_; i+=2) {
|
| + dst[i] = src[i];
|
| + dst[i+1] = src[i+1];
|
| + }
|
| +}
|
| +
|
| +// Follows all empty arrows from id0 and enqueues all the states reached.
|
| +// The bits in flag (Bol, Eol, etc.) specify whether ^, $ and \b match.
|
| +// The pointer p is the current input position, and m is the
|
| +// current set of match boundaries.
|
| +void NFA::AddToThreadq(Threadq* q, int id0, int flag,
|
| + const char* p, const char** capture) {
|
| + if (id0 == 0)
|
| + return;
|
| +
|
| + // Astack_ is pre-allocated to avoid resize operations.
|
| + // It has room for 2*prog_->size() entries, which is enough:
|
| + // Each inst in prog can be processed at most once,
|
| + // pushing at most two entries on stk.
|
| +
|
| + int nstk = 0;
|
| + AddState* stk = astack_;
|
| + stk[nstk++] = AddState(id0);
|
| +
|
| + while (nstk > 0) {
|
| + DCHECK_LE(nstk, nastack_);
|
| + const AddState& a = stk[--nstk];
|
| + if (a.j >= 0)
|
| + capture[a.j] = a.cap_j;
|
| +
|
| + int id = a.id;
|
| + if (id == 0)
|
| + continue;
|
| + if (q->has_index(id)) {
|
| + if (Debug)
|
| + fprintf(stderr, " [%d%s]\n", id, FormatCapture(capture).c_str());
|
| + continue;
|
| + }
|
| +
|
| + // Create entry in q no matter what. We might fill it in below,
|
| + // or we might not. Even if not, it is necessary to have it,
|
| + // so that we don't revisit id0 during the recursion.
|
| + q->set_new(id, NULL);
|
| +
|
| + Thread** tp = &q->find(id)->second;
|
| + int j;
|
| + Thread* t;
|
| + Prog::Inst* ip = prog_->inst(id);
|
| + switch (ip->opcode()) {
|
| + default:
|
| + LOG(DFATAL) << "unhandled " << ip->opcode() << " in AddToThreadq";
|
| + break;
|
| +
|
| + case kInstFail:
|
| + break;
|
| +
|
| + case kInstAltMatch:
|
| + // Save state; will pick up at next byte.
|
| + t = AllocThread();
|
| + t->id = id;
|
| + CopyCapture(t->capture, capture);
|
| + *tp = t;
|
| + // fall through
|
| +
|
| + case kInstAlt:
|
| + // Explore alternatives.
|
| + stk[nstk++] = AddState(ip->out1());
|
| + stk[nstk++] = AddState(ip->out());
|
| + break;
|
| +
|
| + case kInstNop:
|
| + // Continue on.
|
| + stk[nstk++] = AddState(ip->out());
|
| + break;
|
| +
|
| + case kInstCapture:
|
| + if ((j=ip->cap()) < ncapture_) {
|
| + // Push a dummy whose only job is to restore capture[j]
|
| + // once we finish exploring this possibility.
|
| + stk[nstk++] = AddState(0, capture[j], j);
|
| +
|
| + // Record capture.
|
| + capture[j] = p;
|
| + }
|
| + stk[nstk++] = AddState(ip->out());
|
| + break;
|
| +
|
| + case kInstMatch:
|
| + case kInstByteRange:
|
| + // Save state; will pick up at next byte.
|
| + t = AllocThread();
|
| + t->id = id;
|
| + CopyCapture(t->capture, capture);
|
| + *tp = t;
|
| + if (Debug)
|
| + fprintf(stderr, " + %d%s [%p]\n", id, FormatCapture(t->capture).c_str(), t);
|
| + break;
|
| +
|
| + case kInstEmptyWidth:
|
| + // Continue on if we have all the right flag bits.
|
| + if (ip->empty() & ~flag)
|
| + break;
|
| + stk[nstk++] = AddState(ip->out());
|
| + break;
|
| + }
|
| + }
|
| +}
|
| +
|
| +// Run runq on byte c, appending new states to nextq.
|
| +// Updates match as new, better matches are found.
|
| +// p is position of the byte c in the input string,
|
| +// used when processing capturing parens.
|
| +// flag is the bitwise or of Bol, Eol, etc., specifying whether
|
| +// ^, $ and \b match the current input point (after c).
|
| +// Frees all the threads on runq.
|
| +// If there is a shortcut to the end, returns that shortcut.
|
| +int NFA::Step(Threadq* runq, Threadq* nextq, int c, int flag, const char* p) {
|
| + nextq->clear();
|
| +
|
| + for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) {
|
| + Thread* t = i->second;
|
| + if (t == NULL)
|
| + continue;
|
| +
|
| + if (longest_) {
|
| + // Can skip any threads started after our current best match.
|
| + if (matched_ && match_[0] < t->capture[0]) {
|
| + FreeThread(t);
|
| + continue;
|
| + }
|
| + }
|
| +
|
| + int id = t->id;
|
| + Prog::Inst* ip = prog_->inst(id);
|
| +
|
| + switch (ip->opcode()) {
|
| + default:
|
| + // Should only see the values handled below.
|
| + LOG(DFATAL) << "Unhandled " << ip->opcode() << " in step";
|
| + break;
|
| +
|
| + case kInstByteRange:
|
| + if (ip->Matches(c))
|
| + AddToThreadq(nextq, ip->out(), flag, p+1, t->capture);
|
| + break;
|
| +
|
| + case kInstAltMatch:
|
| + if (i != runq->begin())
|
| + break;
|
| + // The match is ours if we want it.
|
| + if (ip->greedy(prog_) || longest_) {
|
| + CopyCapture((const char**)match_, t->capture);
|
| + FreeThread(t);
|
| + for (++i; i != runq->end(); ++i)
|
| + FreeThread(i->second);
|
| + runq->clear();
|
| + matched_ = true;
|
| + if (ip->greedy(prog_))
|
| + return ip->out1();
|
| + return ip->out();
|
| + }
|
| + break;
|
| +
|
| + case kInstMatch:
|
| + if (endmatch_ && p != etext_)
|
| + break;
|
| +
|
| + const char* old = t->capture[1]; // previous end pointer
|
| + t->capture[1] = p;
|
| + if (longest_) {
|
| + // Leftmost-longest mode: save this match only if
|
| + // it is either farther to the left or at the same
|
| + // point but longer than an existing match.
|
| + if (!matched_ || t->capture[0] < match_[0] ||
|
| + (t->capture[0] == match_[0] && t->capture[1] > match_[1]))
|
| + CopyCapture((const char**)match_, t->capture);
|
| + } else {
|
| + // Leftmost-biased mode: this match is by definition
|
| + // better than what we've already found (see next line).
|
| + CopyCapture((const char**)match_, t->capture);
|
| +
|
| + // Cut off the threads that can only find matches
|
| + // worse than the one we just found: don't run the
|
| + // rest of the current Threadq.
|
| + t->capture[0] = old;
|
| + FreeThread(t);
|
| + for (++i; i != runq->end(); ++i)
|
| + FreeThread(i->second);
|
| + runq->clear();
|
| + matched_ = true;
|
| + return 0;
|
| + }
|
| + t->capture[0] = old;
|
| + matched_ = true;
|
| + break;
|
| + }
|
| + FreeThread(t);
|
| + }
|
| + runq->clear();
|
| + return 0;
|
| +}
|
| +
|
| +string NFA::FormatCapture(const char** capture) {
|
| + string s;
|
| +
|
| + for (int i = 0; i < ncapture_; i+=2) {
|
| + if (capture[i] == NULL)
|
| + StringAppendF(&s, "(?,?)");
|
| + else if (capture[i+1] == NULL)
|
| + StringAppendF(&s, "(%d,?)", (int)(capture[i] - btext_));
|
| + else
|
| + StringAppendF(&s, "(%d,%d)",
|
| + (int)(capture[i] - btext_),
|
| + (int)(capture[i+1] - btext_));
|
| + }
|
| + return s;
|
| +}
|
| +
|
| +// Returns whether haystack contains needle's memory.
|
| +static bool StringPieceContains(const StringPiece haystack, const StringPiece needle) {
|
| + return haystack.begin() <= needle.begin() &&
|
| + haystack.end() >= needle.end();
|
| +}
|
| +
|
| +bool NFA::Search(const StringPiece& text, const StringPiece& const_context,
|
| + bool anchored, bool longest,
|
| + StringPiece* submatch, int nsubmatch) {
|
| + if (start_ == 0)
|
| + return false;
|
| +
|
| + StringPiece context = const_context;
|
| + if (context.begin() == NULL)
|
| + context = text;
|
| +
|
| + if (!StringPieceContains(context, text)) {
|
| + LOG(FATAL) << "Bad args: context does not contain text "
|
| + << reinterpret_cast<const void*>(context.begin())
|
| + << "+" << context.size() << " "
|
| + << reinterpret_cast<const void*>(text.begin())
|
| + << "+" << text.size();
|
| + return false;
|
| + }
|
| +
|
| + if (prog_->anchor_start() && context.begin() != text.begin())
|
| + return false;
|
| + if (prog_->anchor_end() && context.end() != text.end())
|
| + return false;
|
| + anchored |= prog_->anchor_start();
|
| + if (prog_->anchor_end()) {
|
| + longest = true;
|
| + endmatch_ = true;
|
| + etext_ = text.end();
|
| + }
|
| +
|
| + if (nsubmatch < 0) {
|
| + LOG(DFATAL) << "Bad args: nsubmatch=" << nsubmatch;
|
| + return false;
|
| + }
|
| +
|
| + // Save search parameters.
|
| + ncapture_ = 2*nsubmatch;
|
| + longest_ = longest;
|
| +
|
| + if (nsubmatch == 0) {
|
| + // We need to maintain match[0], both to distinguish the
|
| + // longest match (if longest is true) and also to tell
|
| + // whether we've seen any matches at all.
|
| + ncapture_ = 2;
|
| + }
|
| +
|
| + match_ = new const char*[ncapture_];
|
| + matched_ = false;
|
| + memset(match_, 0, ncapture_*sizeof match_[0]);
|
| +
|
| + // For debugging prints.
|
| + btext_ = context.begin();
|
| +
|
| + if (Debug) {
|
| + fprintf(stderr, "NFA::Search %s (context: %s) anchored=%d longest=%d\n",
|
| + text.as_string().c_str(), context.as_string().c_str(), anchored,
|
| + longest);
|
| + }
|
| +
|
| + // Set up search.
|
| + Threadq* runq = &q0_;
|
| + Threadq* nextq = &q1_;
|
| + runq->clear();
|
| + nextq->clear();
|
| + memset(&match_[0], 0, ncapture_*sizeof match_[0]);
|
| + const char* bp = context.begin();
|
| + int c = -1;
|
| + int wasword = 0;
|
| +
|
| + if (text.begin() > context.begin()) {
|
| + c = text.begin()[-1] & 0xFF;
|
| + wasword = Prog::IsWordChar(c);
|
| + }
|
| +
|
| + // Loop over the text, stepping the machine.
|
| + for (const char* p = text.begin();; p++) {
|
| + // Check for empty-width specials.
|
| + int flag = 0;
|
| +
|
| + // ^ and \A
|
| + if (p == context.begin())
|
| + flag |= kEmptyBeginText | kEmptyBeginLine;
|
| + else if (p <= context.end() && p[-1] == '\n')
|
| + flag |= kEmptyBeginLine;
|
| +
|
| + // $ and \z
|
| + if (p == context.end())
|
| + flag |= kEmptyEndText | kEmptyEndLine;
|
| + else if (p < context.end() && p[0] == '\n')
|
| + flag |= kEmptyEndLine;
|
| +
|
| + // \b and \B
|
| + int isword = 0;
|
| + if (p < context.end())
|
| + isword = Prog::IsWordChar(p[0] & 0xFF);
|
| +
|
| + if (isword != wasword)
|
| + flag |= kEmptyWordBoundary;
|
| + else
|
| + flag |= kEmptyNonWordBoundary;
|
| +
|
| + if (Debug) {
|
| + fprintf(stderr, "%c[%#x/%d/%d]:", p > text.end() ? '$' : p == bp ? '^' : c, flag, isword, wasword);
|
| + for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) {
|
| + Thread* t = i->second;
|
| + if (t == NULL)
|
| + continue;
|
| + fprintf(stderr, " %d%s", t->id,
|
| + FormatCapture((const char**)t->capture).c_str());
|
| + }
|
| + fprintf(stderr, "\n");
|
| + }
|
| +
|
| + // Process previous character (waited until now to avoid
|
| + // repeating the flag computation above).
|
| + // This is a no-op the first time around the loop, because
|
| + // runq is empty.
|
| + int id = Step(runq, nextq, c, flag, p-1);
|
| + DCHECK_EQ(runq->size(), 0);
|
| + swap(nextq, runq);
|
| + nextq->clear();
|
| + if (id != 0) {
|
| + // We're done: full match ahead.
|
| + p = text.end();
|
| + for (;;) {
|
| + Prog::Inst* ip = prog_->inst(id);
|
| + switch (ip->opcode()) {
|
| + default:
|
| + LOG(DFATAL) << "Unexpected opcode in short circuit: " << ip->opcode();
|
| + break;
|
| +
|
| + case kInstCapture:
|
| + match_[ip->cap()] = p;
|
| + id = ip->out();
|
| + continue;
|
| +
|
| + case kInstNop:
|
| + id = ip->out();
|
| + continue;
|
| +
|
| + case kInstMatch:
|
| + match_[1] = p;
|
| + matched_ = true;
|
| + break;
|
| +
|
| + case kInstEmptyWidth:
|
| + if (ip->empty() & ~(kEmptyEndLine|kEmptyEndText)) {
|
| + LOG(DFATAL) << "Unexpected empty-width in short circuit: " << ip->empty();
|
| + break;
|
| + }
|
| + id = ip->out();
|
| + continue;
|
| + }
|
| + break;
|
| + }
|
| + break;
|
| + }
|
| +
|
| + if (p > text.end())
|
| + break;
|
| +
|
| + // Start a new thread if there have not been any matches.
|
| + // (No point in starting a new thread if there have been
|
| + // matches, since it would be to the right of the match
|
| + // we already found.)
|
| + if (!matched_ && (!anchored || p == text.begin())) {
|
| + // If there's a required first byte for an unanchored search
|
| + // and we're not in the middle of any possible matches,
|
| + // use memchr to search for the byte quickly.
|
| + if (!anchored && first_byte_ >= 0 && runq->size() == 0 &&
|
| + p < text.end() && (p[0] & 0xFF) != first_byte_) {
|
| + p = reinterpret_cast<const char*>(memchr(p, first_byte_,
|
| + text.end() - p));
|
| + if (p == NULL) {
|
| + p = text.end();
|
| + isword = 0;
|
| + } else {
|
| + isword = Prog::IsWordChar(p[0] & 0xFF);
|
| + }
|
| + flag = Prog::EmptyFlags(context, p);
|
| + }
|
| +
|
| + // Steal match storage (cleared but unused as of yet)
|
| + // temporarily to hold match boundaries for new thread.
|
| + match_[0] = p;
|
| + AddToThreadq(runq, start_, flag, p, match_);
|
| + match_[0] = NULL;
|
| + }
|
| +
|
| + // If all the threads have died, stop early.
|
| + if (runq->size() == 0) {
|
| + if (Debug)
|
| + fprintf(stderr, "dead\n");
|
| + break;
|
| + }
|
| +
|
| + if (p == text.end())
|
| + c = 0;
|
| + else
|
| + c = *p & 0xFF;
|
| + wasword = isword;
|
| +
|
| + // Will run step(runq, nextq, c, ...) on next iteration. See above.
|
| + }
|
| +
|
| + for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i)
|
| + FreeThread(i->second);
|
| +
|
| + if (matched_) {
|
| + for (int i = 0; i < nsubmatch; i++)
|
| + submatch[i].set(match_[2*i], match_[2*i+1] - match_[2*i]);
|
| + if (Debug)
|
| + fprintf(stderr, "match (%d,%d)\n",
|
| + static_cast<int>(match_[0] - btext_),
|
| + static_cast<int>(match_[1] - btext_));
|
| + return true;
|
| + }
|
| + VLOG(1) << "No matches found";
|
| + return false;
|
| +}
|
| +
|
| +// Computes whether all successful matches have a common first byte,
|
| +// and if so, returns that byte. If not, returns -1.
|
| +int NFA::ComputeFirstByte() {
|
| + if (start_ == 0)
|
| + return -1;
|
| +
|
| + int b = -1; // first byte, not yet computed
|
| +
|
| + typedef SparseSet Workq;
|
| + Workq q(prog_->size());
|
| + q.insert(start_);
|
| + for (Workq::iterator it = q.begin(); it != q.end(); ++it) {
|
| + int id = *it;
|
| + Prog::Inst* ip = prog_->inst(id);
|
| + switch (ip->opcode()) {
|
| + default:
|
| + LOG(DFATAL) << "unhandled " << ip->opcode() << " in ComputeFirstByte";
|
| + break;
|
| +
|
| + case kInstMatch:
|
| + // The empty string matches: no first byte.
|
| + return -1;
|
| +
|
| + case kInstByteRange:
|
| + // Must match only a single byte
|
| + if (ip->lo() != ip->hi())
|
| + return -1;
|
| + if (ip->foldcase() && 'a' <= ip->lo() && ip->lo() <= 'z')
|
| + return -1;
|
| + // If we haven't seen any bytes yet, record it;
|
| + // otherwise must match the one we saw before.
|
| + if (b == -1)
|
| + b = ip->lo();
|
| + else if (b != ip->lo())
|
| + return -1;
|
| + break;
|
| +
|
| + case kInstNop:
|
| + case kInstCapture:
|
| + case kInstEmptyWidth:
|
| + // Continue on.
|
| + // Ignore ip->empty() flags for kInstEmptyWidth
|
| + // in order to be as conservative as possible
|
| + // (assume all possible empty-width flags are true).
|
| + if (ip->out())
|
| + q.insert(ip->out());
|
| + break;
|
| +
|
| + case kInstAlt:
|
| + case kInstAltMatch:
|
| + // Explore alternatives.
|
| + if (ip->out())
|
| + q.insert(ip->out());
|
| + if (ip->out1())
|
| + q.insert(ip->out1());
|
| + break;
|
| +
|
| + case kInstFail:
|
| + break;
|
| + }
|
| + }
|
| + return b;
|
| +}
|
| +
|
| +bool
|
| +Prog::SearchNFA(const StringPiece& text, const StringPiece& context,
|
| + Anchor anchor, MatchKind kind,
|
| + StringPiece* match, int nmatch) {
|
| + if (NFA::Debug)
|
| + Dump();
|
| +
|
| + NFA nfa(this);
|
| + StringPiece sp;
|
| + if (kind == kFullMatch) {
|
| + anchor = kAnchored;
|
| + if (nmatch == 0) {
|
| + match = &sp;
|
| + nmatch = 1;
|
| + }
|
| + }
|
| + if (!nfa.Search(text, context, anchor == kAnchored, kind != kFirstMatch, match, nmatch))
|
| + return false;
|
| + if (kind == kFullMatch && match[0].end() != text.end())
|
| + return false;
|
| + return true;
|
| +}
|
| +
|
| +} // namespace re2
|
| +
|
|
|