Index: third_party/qcms/transform_util.c |
=================================================================== |
--- third_party/qcms/transform_util.c (revision 129548) |
+++ third_party/qcms/transform_util.c (working copy) |
@@ -1,559 +0,0 @@ |
-// qcms |
-// Copyright (C) 2009 Mozilla Foundation |
-// |
-// Permission is hereby granted, free of charge, to any person obtaining |
-// a copy of this software and associated documentation files (the "Software"), |
-// to deal in the Software without restriction, including without limitation |
-// the rights to use, copy, modify, merge, publish, distribute, sublicense, |
-// and/or sell copies of the Software, and to permit persons to whom the Software |
-// is furnished to do so, subject to the following conditions: |
-// |
-// The above copyright notice and this permission notice shall be included in |
-// all copies or substantial portions of the Software. |
-// |
-// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
-// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
-// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
-// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
-// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
-// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
-// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
- |
-#define _ISOC99_SOURCE /* for INFINITY */ |
- |
-#include <math.h> |
-#include <assert.h> |
-#include <string.h> //memcpy |
-#include "qcmsint.h" |
-#include "transform_util.h" |
-#include "matrix.h" |
- |
-#if !defined(INFINITY) |
-#define INFINITY HUGE_VAL |
-#endif |
- |
-#define PARAMETRIC_CURVE_TYPE 0x70617261 //'para' |
- |
-/* value must be a value between 0 and 1 */ |
-//XXX: is the above a good restriction to have? |
-float lut_interp_linear(double value, uint16_t *table, int length) |
-{ |
- int upper, lower; |
- value = value * (length - 1); // scale to length of the array |
- upper = ceil(value); |
- lower = floor(value); |
- //XXX: can we be more performant here? |
- value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - value); |
- /* scale the value */ |
- return value * (1./65535.); |
-} |
- |
-/* same as above but takes and returns a uint16_t value representing a range from 0..1 */ |
-uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length) |
-{ |
- /* Start scaling input_value to the length of the array: 65535*(length-1). |
- * We'll divide out the 65535 next */ |
- uint32_t value = (input_value * (length - 1)); |
- uint32_t upper = (value + 65534) / 65535; /* equivalent to ceil(value/65535) */ |
- uint32_t lower = value / 65535; /* equivalent to floor(value/65535) */ |
- /* interp is the distance from upper to value scaled to 0..65535 */ |
- uint32_t interp = value % 65535; |
- |
- value = (table[upper]*(interp) + table[lower]*(65535 - interp))/65535; // 0..65535*65535 |
- |
- return value; |
-} |
- |
-/* same as above but takes an input_value from 0..PRECACHE_OUTPUT_MAX |
- * and returns a uint8_t value representing a range from 0..1 */ |
-static |
-uint8_t lut_interp_linear_precache_output(uint32_t input_value, uint16_t *table, int length) |
-{ |
- /* Start scaling input_value to the length of the array: PRECACHE_OUTPUT_MAX*(length-1). |
- * We'll divide out the PRECACHE_OUTPUT_MAX next */ |
- uint32_t value = (input_value * (length - 1)); |
- |
- /* equivalent to ceil(value/PRECACHE_OUTPUT_MAX) */ |
- uint32_t upper = (value + PRECACHE_OUTPUT_MAX-1) / PRECACHE_OUTPUT_MAX; |
- /* equivalent to floor(value/PRECACHE_OUTPUT_MAX) */ |
- uint32_t lower = value / PRECACHE_OUTPUT_MAX; |
- /* interp is the distance from upper to value scaled to 0..PRECACHE_OUTPUT_MAX */ |
- uint32_t interp = value % PRECACHE_OUTPUT_MAX; |
- |
- /* the table values range from 0..65535 */ |
- value = (table[upper]*(interp) + table[lower]*(PRECACHE_OUTPUT_MAX - interp)); // 0..(65535*PRECACHE_OUTPUT_MAX) |
- |
- /* round and scale */ |
- value += (PRECACHE_OUTPUT_MAX*65535/255)/2; |
- value /= (PRECACHE_OUTPUT_MAX*65535/255); // scale to 0..255 |
- return value; |
-} |
- |
-/* value must be a value between 0 and 1 */ |
-//XXX: is the above a good restriction to have? |
-float lut_interp_linear_float(float value, float *table, int length) |
-{ |
- int upper, lower; |
- value = value * (length - 1); |
- upper = ceil(value); |
- lower = floor(value); |
- //XXX: can we be more performant here? |
- value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - value); |
- /* scale the value */ |
- return value; |
-} |
- |
-#if 0 |
-/* if we use a different representation i.e. one that goes from 0 to 0x1000 we can be more efficient |
- * because we can avoid the divisions and use a shifting instead */ |
-/* same as above but takes and returns a uint16_t value representing a range from 0..1 */ |
-uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length) |
-{ |
- uint32_t value = (input_value * (length - 1)); |
- uint32_t upper = (value + 4095) / 4096; /* equivalent to ceil(value/4096) */ |
- uint32_t lower = value / 4096; /* equivalent to floor(value/4096) */ |
- uint32_t interp = value % 4096; |
- |
- value = (table[upper]*(interp) + table[lower]*(4096 - interp))/4096; // 0..4096*4096 |
- |
- return value; |
-} |
-#endif |
- |
-void compute_curve_gamma_table_type1(float gamma_table[256], double gamma) |
-{ |
- unsigned int i; |
- for (i = 0; i < 256; i++) { |
- gamma_table[i] = pow(i/255., gamma); |
- } |
-} |
- |
-void compute_curve_gamma_table_type2(float gamma_table[256], uint16_t *table, int length) |
-{ |
- unsigned int i; |
- for (i = 0; i < 256; i++) { |
- gamma_table[i] = lut_interp_linear(i/255., table, length); |
- } |
-} |
- |
-void compute_curve_gamma_table_type_parametric(float gamma_table[256], float parameter[7], int count) |
-{ |
- size_t X; |
- float interval; |
- float a, b, c, e, f; |
- float y = parameter[0]; |
- if (count == 0) { |
- a = 1; |
- b = 0; |
- c = 0; |
- e = 0; |
- f = 0; |
- interval = -INFINITY; |
- } else if(count == 1) { |
- a = parameter[1]; |
- b = parameter[2]; |
- c = 0; |
- e = 0; |
- f = 0; |
- interval = -1 * parameter[2] / parameter[1]; |
- } else if(count == 2) { |
- a = parameter[1]; |
- b = parameter[2]; |
- c = 0; |
- e = parameter[3]; |
- f = parameter[3]; |
- interval = -1 * parameter[2] / parameter[1]; |
- } else if(count == 3) { |
- a = parameter[1]; |
- b = parameter[2]; |
- c = parameter[3]; |
- e = -c; |
- f = 0; |
- interval = parameter[4]; |
- } else if(count == 4) { |
- a = parameter[1]; |
- b = parameter[2]; |
- c = parameter[3]; |
- e = parameter[5] - c; |
- f = parameter[6]; |
- interval = parameter[4]; |
- } else { |
- assert(0 && "invalid parametric function type."); |
- a = 1; |
- b = 0; |
- c = 0; |
- e = 0; |
- f = 0; |
- interval = -INFINITY; |
- } |
- for (X = 0; X < 256; X++) { |
- if (X >= interval) { |
- // XXX The equations are not exactly as definied in the spec but are |
- // algebraic equivilent. |
- // TODO Should division by 255 be for the whole expression. |
- gamma_table[X] = pow(a * X / 255. + b, y) + c + e; |
- } else { |
- gamma_table[X] = c * X / 255. + f; |
- } |
- } |
-} |
- |
-void compute_curve_gamma_table_type0(float gamma_table[256]) |
-{ |
- unsigned int i; |
- for (i = 0; i < 256; i++) { |
- gamma_table[i] = i/255.; |
- } |
-} |
- |
- |
-float clamp_float(float a) |
-{ |
- if (a > 1.) |
- return 1.; |
- else if (a < 0) |
- return 0; |
- else |
- return a; |
-} |
- |
-unsigned char clamp_u8(float v) |
-{ |
- if (v > 255.) |
- return 255; |
- else if (v < 0) |
- return 0; |
- else |
- return floor(v+.5); |
-} |
- |
-float u8Fixed8Number_to_float(uint16_t x) |
-{ |
- // 0x0000 = 0. |
- // 0x0100 = 1. |
- // 0xffff = 255 + 255/256 |
- return x/256.; |
-} |
- |
-float *build_input_gamma_table(struct curveType *TRC) |
-{ |
- float *gamma_table; |
- |
- if (!TRC) return NULL; |
- gamma_table = malloc(sizeof(float)*256); |
- if (gamma_table) { |
- if (TRC->type == PARAMETRIC_CURVE_TYPE) { |
- compute_curve_gamma_table_type_parametric(gamma_table, TRC->parameter, TRC->count); |
- } else { |
- if (TRC->count == 0) { |
- compute_curve_gamma_table_type0(gamma_table); |
- } else if (TRC->count == 1) { |
- compute_curve_gamma_table_type1(gamma_table, u8Fixed8Number_to_float(TRC->data[0])); |
- } else { |
- compute_curve_gamma_table_type2(gamma_table, TRC->data, TRC->count); |
- } |
- } |
- } |
- return gamma_table; |
-} |
- |
-struct matrix build_colorant_matrix(qcms_profile *p) |
-{ |
- struct matrix result; |
- result.m[0][0] = s15Fixed16Number_to_float(p->redColorant.X); |
- result.m[0][1] = s15Fixed16Number_to_float(p->greenColorant.X); |
- result.m[0][2] = s15Fixed16Number_to_float(p->blueColorant.X); |
- result.m[1][0] = s15Fixed16Number_to_float(p->redColorant.Y); |
- result.m[1][1] = s15Fixed16Number_to_float(p->greenColorant.Y); |
- result.m[1][2] = s15Fixed16Number_to_float(p->blueColorant.Y); |
- result.m[2][0] = s15Fixed16Number_to_float(p->redColorant.Z); |
- result.m[2][1] = s15Fixed16Number_to_float(p->greenColorant.Z); |
- result.m[2][2] = s15Fixed16Number_to_float(p->blueColorant.Z); |
- result.invalid = false; |
- return result; |
-} |
- |
-/* The following code is copied nearly directly from lcms. |
- * I think it could be much better. For example, Argyll seems to have better code in |
- * icmTable_lookup_bwd and icmTable_setup_bwd. However, for now this is a quick way |
- * to a working solution and allows for easy comparing with lcms. */ |
-uint16_fract_t lut_inverse_interp16(uint16_t Value, uint16_t LutTable[], int length) |
-{ |
- int l = 1; |
- int r = 0x10000; |
- int x = 0, res; // 'int' Give spacing for negative values |
- int NumZeroes, NumPoles; |
- int cell0, cell1; |
- double val2; |
- double y0, y1, x0, x1; |
- double a, b, f; |
- |
- // July/27 2001 - Expanded to handle degenerated curves with an arbitrary |
- // number of elements containing 0 at the begining of the table (Zeroes) |
- // and another arbitrary number of poles (FFFFh) at the end. |
- // First the zero and pole extents are computed, then value is compared. |
- |
- NumZeroes = 0; |
- while (LutTable[NumZeroes] == 0 && NumZeroes < length-1) |
- NumZeroes++; |
- |
- // There are no zeros at the beginning and we are trying to find a zero, so |
- // return anything. It seems zero would be the less destructive choice |
- /* I'm not sure that this makes sense, but oh well... */ |
- if (NumZeroes == 0 && Value == 0) |
- return 0; |
- |
- NumPoles = 0; |
- while (LutTable[length-1- NumPoles] == 0xFFFF && NumPoles < length-1) |
- NumPoles++; |
- |
- // Does the curve belong to this case? |
- if (NumZeroes > 1 || NumPoles > 1) |
- { |
- int a, b; |
- |
- // Identify if value fall downto 0 or FFFF zone |
- if (Value == 0) return 0; |
- // if (Value == 0xFFFF) return 0xFFFF; |
- |
- // else restrict to valid zone |
- |
- a = ((NumZeroes-1) * 0xFFFF) / (length-1); |
- b = ((length-1 - NumPoles) * 0xFFFF) / (length-1); |
- |
- l = a - 1; |
- r = b + 1; |
- } |
- |
- |
- // Seems not a degenerated case... apply binary search |
- |
- while (r > l) { |
- |
- x = (l + r) / 2; |
- |
- res = (int) lut_interp_linear16((uint16_fract_t) (x-1), LutTable, length); |
- |
- if (res == Value) { |
- |
- // Found exact match. |
- |
- return (uint16_fract_t) (x - 1); |
- } |
- |
- if (res > Value) r = x - 1; |
- else l = x + 1; |
- } |
- |
- // Not found, should we interpolate? |
- |
- |
- // Get surrounding nodes |
- |
- val2 = (length-1) * ((double) (x - 1) / 65535.0); |
- |
- cell0 = (int) floor(val2); |
- cell1 = (int) ceil(val2); |
- |
- if (cell0 == cell1) return (uint16_fract_t) x; |
- |
- y0 = LutTable[cell0] ; |
- x0 = (65535.0 * cell0) / (length-1); |
- |
- y1 = LutTable[cell1] ; |
- x1 = (65535.0 * cell1) / (length-1); |
- |
- a = (y1 - y0) / (x1 - x0); |
- b = y0 - a * x0; |
- |
- if (fabs(a) < 0.01) return (uint16_fract_t) x; |
- |
- f = ((Value - b) / a); |
- |
- if (f < 0.0) return (uint16_fract_t) 0; |
- if (f >= 65535.0) return (uint16_fract_t) 0xFFFF; |
- |
- return (uint16_fract_t) floor(f + 0.5); |
- |
-} |
- |
-/* |
- The number of entries needed to invert a lookup table should not |
- necessarily be the same as the original number of entries. This is |
- especially true of lookup tables that have a small number of entries. |
- |
- For example: |
- Using a table like: |
- {0, 3104, 14263, 34802, 65535} |
- invert_lut will produce an inverse of: |
- {3, 34459, 47529, 56801, 65535} |
- which has an maximum error of about 9855 (pixel difference of ~38.346) |
- |
- For now, we punt the decision of output size to the caller. */ |
-static uint16_t *invert_lut(uint16_t *table, int length, int out_length) |
-{ |
- int i; |
- /* for now we invert the lut by creating a lut of size out_length |
- * and attempting to lookup a value for each entry using lut_inverse_interp16 */ |
- uint16_t *output = malloc(sizeof(uint16_t)*out_length); |
- if (!output) |
- return NULL; |
- |
- for (i = 0; i < out_length; i++) { |
- double x = ((double) i * 65535.) / (double) (out_length - 1); |
- uint16_fract_t input = floor(x + .5); |
- output[i] = lut_inverse_interp16(input, table, length); |
- } |
- return output; |
-} |
- |
-static void compute_precache_pow(uint8_t *output, float gamma) |
-{ |
- uint32_t v = 0; |
- for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { |
- //XXX: don't do integer/float conversion... and round? |
- output[v] = 255. * pow(v/(double)PRECACHE_OUTPUT_MAX, gamma); |
- } |
-} |
- |
-void compute_precache_lut(uint8_t *output, uint16_t *table, int length) |
-{ |
- uint32_t v = 0; |
- for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { |
- output[v] = lut_interp_linear_precache_output(v, table, length); |
- } |
-} |
- |
-void compute_precache_linear(uint8_t *output) |
-{ |
- uint32_t v = 0; |
- for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { |
- //XXX: round? |
- output[v] = v / (PRECACHE_OUTPUT_SIZE/256); |
- } |
-} |
- |
-qcms_bool compute_precache(struct curveType *trc, uint8_t *output) |
-{ |
- |
- if (trc->type == PARAMETRIC_CURVE_TYPE) { |
- float gamma_table[256]; |
- uint16_t gamma_table_uint[256]; |
- uint16_t i; |
- uint16_t *inverted; |
- int inverted_size = 256; |
- |
- compute_curve_gamma_table_type_parametric(gamma_table, trc->parameter, trc->count); |
- for(i = 0; i < 256; i++) { |
- gamma_table_uint[i] = (uint16_t)(gamma_table[i] * 65535); |
- } |
- |
- //XXX: the choice of a minimum of 256 here is not backed by any theory, |
- // measurement or data, howeve r it is what lcms uses. |
- // the maximum number we would need is 65535 because that's the |
- // accuracy used for computing the pre cache table |
- if (inverted_size < 256) |
- inverted_size = 256; |
- |
- inverted = invert_lut(gamma_table_uint, 256, inverted_size); |
- if (!inverted) |
- return false; |
- compute_precache_lut(output, inverted, inverted_size); |
- free(inverted); |
- } else { |
- if (trc->count == 0) { |
- compute_precache_linear(output); |
- } else if (trc->count == 1) { |
- compute_precache_pow(output, 1./u8Fixed8Number_to_float(trc->data[0])); |
- } else { |
- uint16_t *inverted; |
- int inverted_size = trc->count; |
- //XXX: the choice of a minimum of 256 here is not backed by any theory, |
- // measurement or data, howeve r it is what lcms uses. |
- // the maximum number we would need is 65535 because that's the |
- // accuracy used for computing the pre cache table |
- if (inverted_size < 256) |
- inverted_size = 256; |
- |
- inverted = invert_lut(trc->data, trc->count, inverted_size); |
- if (!inverted) |
- return false; |
- compute_precache_lut(output, inverted, inverted_size); |
- free(inverted); |
- } |
- } |
- return true; |
-} |
- |
- |
-static uint16_t *build_linear_table(int length) |
-{ |
- int i; |
- uint16_t *output = malloc(sizeof(uint16_t)*length); |
- if (!output) |
- return NULL; |
- |
- for (i = 0; i < length; i++) { |
- double x = ((double) i * 65535.) / (double) (length - 1); |
- uint16_fract_t input = floor(x + .5); |
- output[i] = input; |
- } |
- return output; |
-} |
- |
-static uint16_t *build_pow_table(float gamma, int length) |
-{ |
- int i; |
- uint16_t *output = malloc(sizeof(uint16_t)*length); |
- if (!output) |
- return NULL; |
- |
- for (i = 0; i < length; i++) { |
- uint16_fract_t result; |
- double x = ((double) i) / (double) (length - 1); |
- x = pow(x, gamma); //XXX turn this conversion into a function |
- result = floor(x*65535. + .5); |
- output[i] = result; |
- } |
- return output; |
-} |
- |
-void build_output_lut(struct curveType *trc, |
- uint16_t **output_gamma_lut, size_t *output_gamma_lut_length) |
-{ |
- if (trc->type == PARAMETRIC_CURVE_TYPE) { |
- float gamma_table[256]; |
- uint16_t i; |
- uint16_t *output = malloc(sizeof(uint16_t)*256); |
- |
- if (!output) { |
- *output_gamma_lut = NULL; |
- return; |
- } |
- |
- compute_curve_gamma_table_type_parametric(gamma_table, trc->parameter, trc->count); |
- *output_gamma_lut_length = 256; |
- for(i = 0; i < 256; i++) { |
- output[i] = (uint16_t)(gamma_table[i] * 65535); |
- } |
- *output_gamma_lut = output; |
- } else { |
- if (trc->count == 0) { |
- *output_gamma_lut = build_linear_table(4096); |
- *output_gamma_lut_length = 4096; |
- } else if (trc->count == 1) { |
- float gamma = 1./u8Fixed8Number_to_float(trc->data[0]); |
- *output_gamma_lut = build_pow_table(gamma, 4096); |
- *output_gamma_lut_length = 4096; |
- } else { |
- //XXX: the choice of a minimum of 256 here is not backed by any theory, |
- // measurement or data, however it is what lcms uses. |
- *output_gamma_lut_length = trc->count; |
- if (*output_gamma_lut_length < 256) |
- *output_gamma_lut_length = 256; |
- |
- *output_gamma_lut = invert_lut(trc->data, trc->count, *output_gamma_lut_length); |
- } |
- } |
- |
-} |