| Index: third_party/qcms/transform.c
|
| ===================================================================
|
| --- third_party/qcms/transform.c (revision 129548)
|
| +++ third_party/qcms/transform.c (working copy)
|
| @@ -1,1272 +0,0 @@
|
| -/* vim: set ts=8 sw=8 noexpandtab: */
|
| -// qcms
|
| -// Copyright (C) 2009 Mozilla Corporation
|
| -// Copyright (C) 1998-2007 Marti Maria
|
| -//
|
| -// Permission is hereby granted, free of charge, to any person obtaining
|
| -// a copy of this software and associated documentation files (the "Software"),
|
| -// to deal in the Software without restriction, including without limitation
|
| -// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
| -// and/or sell copies of the Software, and to permit persons to whom the Software
|
| -// is furnished to do so, subject to the following conditions:
|
| -//
|
| -// The above copyright notice and this permission notice shall be included in
|
| -// all copies or substantial portions of the Software.
|
| -//
|
| -// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
| -// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
|
| -// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
| -// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
| -// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
| -// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
| -// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
| -
|
| -#include <stdlib.h>
|
| -#include <math.h>
|
| -#include <assert.h>
|
| -#include <string.h> //memcpy
|
| -#include "qcmsint.h"
|
| -#include "chain.h"
|
| -#include "matrix.h"
|
| -#include "transform_util.h"
|
| -
|
| -/* for MSVC, GCC, Intel, and Sun compilers */
|
| -#if defined(_M_IX86) || defined(__i386__) || defined(__i386) || defined(_M_AMD64) || defined(__x86_64__) || defined(__x86_64)
|
| -#define X86
|
| -#endif /* _M_IX86 || __i386__ || __i386 || _M_AMD64 || __x86_64__ || __x86_64 */
|
| -
|
| -// Build a White point, primary chromas transfer matrix from RGB to CIE XYZ
|
| -// This is just an approximation, I am not handling all the non-linear
|
| -// aspects of the RGB to XYZ process, and assumming that the gamma correction
|
| -// has transitive property in the tranformation chain.
|
| -//
|
| -// the alghoritm:
|
| -//
|
| -// - First I build the absolute conversion matrix using
|
| -// primaries in XYZ. This matrix is next inverted
|
| -// - Then I eval the source white point across this matrix
|
| -// obtaining the coeficients of the transformation
|
| -// - Then, I apply these coeficients to the original matrix
|
| -static struct matrix build_RGB_to_XYZ_transfer_matrix(qcms_CIE_xyY white, qcms_CIE_xyYTRIPLE primrs)
|
| -{
|
| - struct matrix primaries;
|
| - struct matrix primaries_invert;
|
| - struct matrix result;
|
| - struct vector white_point;
|
| - struct vector coefs;
|
| -
|
| - double xn, yn;
|
| - double xr, yr;
|
| - double xg, yg;
|
| - double xb, yb;
|
| -
|
| - xn = white.x;
|
| - yn = white.y;
|
| -
|
| - if (yn == 0.0)
|
| - return matrix_invalid();
|
| -
|
| - xr = primrs.red.x;
|
| - yr = primrs.red.y;
|
| - xg = primrs.green.x;
|
| - yg = primrs.green.y;
|
| - xb = primrs.blue.x;
|
| - yb = primrs.blue.y;
|
| -
|
| - primaries.m[0][0] = xr;
|
| - primaries.m[0][1] = xg;
|
| - primaries.m[0][2] = xb;
|
| -
|
| - primaries.m[1][0] = yr;
|
| - primaries.m[1][1] = yg;
|
| - primaries.m[1][2] = yb;
|
| -
|
| - primaries.m[2][0] = 1 - xr - yr;
|
| - primaries.m[2][1] = 1 - xg - yg;
|
| - primaries.m[2][2] = 1 - xb - yb;
|
| - primaries.invalid = false;
|
| -
|
| - white_point.v[0] = xn/yn;
|
| - white_point.v[1] = 1.;
|
| - white_point.v[2] = (1.0-xn-yn)/yn;
|
| -
|
| - primaries_invert = matrix_invert(primaries);
|
| -
|
| - coefs = matrix_eval(primaries_invert, white_point);
|
| -
|
| - result.m[0][0] = coefs.v[0]*xr;
|
| - result.m[0][1] = coefs.v[1]*xg;
|
| - result.m[0][2] = coefs.v[2]*xb;
|
| -
|
| - result.m[1][0] = coefs.v[0]*yr;
|
| - result.m[1][1] = coefs.v[1]*yg;
|
| - result.m[1][2] = coefs.v[2]*yb;
|
| -
|
| - result.m[2][0] = coefs.v[0]*(1.-xr-yr);
|
| - result.m[2][1] = coefs.v[1]*(1.-xg-yg);
|
| - result.m[2][2] = coefs.v[2]*(1.-xb-yb);
|
| - result.invalid = primaries_invert.invalid;
|
| -
|
| - return result;
|
| -}
|
| -
|
| -struct CIE_XYZ {
|
| - double X;
|
| - double Y;
|
| - double Z;
|
| -};
|
| -
|
| -/* CIE Illuminant D50 */
|
| -static const struct CIE_XYZ D50_XYZ = {
|
| - 0.9642,
|
| - 1.0000,
|
| - 0.8249
|
| -};
|
| -
|
| -/* from lcms: xyY2XYZ()
|
| - * corresponds to argyll: icmYxy2XYZ() */
|
| -static struct CIE_XYZ xyY2XYZ(qcms_CIE_xyY source)
|
| -{
|
| - struct CIE_XYZ dest;
|
| - dest.X = (source.x / source.y) * source.Y;
|
| - dest.Y = source.Y;
|
| - dest.Z = ((1 - source.x - source.y) / source.y) * source.Y;
|
| - return dest;
|
| -}
|
| -
|
| -/* from lcms: ComputeChromaticAdaption */
|
| -// Compute chromatic adaption matrix using chad as cone matrix
|
| -static struct matrix
|
| -compute_chromatic_adaption(struct CIE_XYZ source_white_point,
|
| - struct CIE_XYZ dest_white_point,
|
| - struct matrix chad)
|
| -{
|
| - struct matrix chad_inv;
|
| - struct vector cone_source_XYZ, cone_source_rgb;
|
| - struct vector cone_dest_XYZ, cone_dest_rgb;
|
| - struct matrix cone, tmp;
|
| -
|
| - tmp = chad;
|
| - chad_inv = matrix_invert(tmp);
|
| -
|
| - cone_source_XYZ.v[0] = source_white_point.X;
|
| - cone_source_XYZ.v[1] = source_white_point.Y;
|
| - cone_source_XYZ.v[2] = source_white_point.Z;
|
| -
|
| - cone_dest_XYZ.v[0] = dest_white_point.X;
|
| - cone_dest_XYZ.v[1] = dest_white_point.Y;
|
| - cone_dest_XYZ.v[2] = dest_white_point.Z;
|
| -
|
| - cone_source_rgb = matrix_eval(chad, cone_source_XYZ);
|
| - cone_dest_rgb = matrix_eval(chad, cone_dest_XYZ);
|
| -
|
| - cone.m[0][0] = cone_dest_rgb.v[0]/cone_source_rgb.v[0];
|
| - cone.m[0][1] = 0;
|
| - cone.m[0][2] = 0;
|
| - cone.m[1][0] = 0;
|
| - cone.m[1][1] = cone_dest_rgb.v[1]/cone_source_rgb.v[1];
|
| - cone.m[1][2] = 0;
|
| - cone.m[2][0] = 0;
|
| - cone.m[2][1] = 0;
|
| - cone.m[2][2] = cone_dest_rgb.v[2]/cone_source_rgb.v[2];
|
| - cone.invalid = false;
|
| -
|
| - // Normalize
|
| - return matrix_multiply(chad_inv, matrix_multiply(cone, chad));
|
| -}
|
| -
|
| -/* from lcms: cmsAdaptionMatrix */
|
| -// Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll
|
| -// Bradford is assumed
|
| -static struct matrix
|
| -adaption_matrix(struct CIE_XYZ source_illumination, struct CIE_XYZ target_illumination)
|
| -{
|
| - struct matrix lam_rigg = {{ // Bradford matrix
|
| - { 0.8951, 0.2664, -0.1614 },
|
| - { -0.7502, 1.7135, 0.0367 },
|
| - { 0.0389, -0.0685, 1.0296 }
|
| - }};
|
| - return compute_chromatic_adaption(source_illumination, target_illumination, lam_rigg);
|
| -}
|
| -
|
| -/* from lcms: cmsAdaptMatrixToD50 */
|
| -static struct matrix adapt_matrix_to_D50(struct matrix r, qcms_CIE_xyY source_white_pt)
|
| -{
|
| - struct CIE_XYZ Dn;
|
| - struct matrix Bradford;
|
| -
|
| - if (source_white_pt.y == 0.0)
|
| - return matrix_invalid();
|
| -
|
| - Dn = xyY2XYZ(source_white_pt);
|
| -
|
| - Bradford = adaption_matrix(Dn, D50_XYZ);
|
| - return matrix_multiply(Bradford, r);
|
| -}
|
| -
|
| -qcms_bool set_rgb_colorants(qcms_profile *profile, qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries)
|
| -{
|
| - struct matrix colorants;
|
| - colorants = build_RGB_to_XYZ_transfer_matrix(white_point, primaries);
|
| - colorants = adapt_matrix_to_D50(colorants, white_point);
|
| -
|
| - if (colorants.invalid)
|
| - return false;
|
| -
|
| - /* note: there's a transpose type of operation going on here */
|
| - profile->redColorant.X = double_to_s15Fixed16Number(colorants.m[0][0]);
|
| - profile->redColorant.Y = double_to_s15Fixed16Number(colorants.m[1][0]);
|
| - profile->redColorant.Z = double_to_s15Fixed16Number(colorants.m[2][0]);
|
| -
|
| - profile->greenColorant.X = double_to_s15Fixed16Number(colorants.m[0][1]);
|
| - profile->greenColorant.Y = double_to_s15Fixed16Number(colorants.m[1][1]);
|
| - profile->greenColorant.Z = double_to_s15Fixed16Number(colorants.m[2][1]);
|
| -
|
| - profile->blueColorant.X = double_to_s15Fixed16Number(colorants.m[0][2]);
|
| - profile->blueColorant.Y = double_to_s15Fixed16Number(colorants.m[1][2]);
|
| - profile->blueColorant.Z = double_to_s15Fixed16Number(colorants.m[2][2]);
|
| -
|
| - return true;
|
| -}
|
| -
|
| -#if 0
|
| -static void qcms_transform_data_rgb_out_pow(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
| -{
|
| - int i;
|
| - float (*mat)[4] = transform->matrix;
|
| - for (i=0; i<length; i++) {
|
| - unsigned char device_r = *src++;
|
| - unsigned char device_g = *src++;
|
| - unsigned char device_b = *src++;
|
| -
|
| - float linear_r = transform->input_gamma_table_r[device_r];
|
| - float linear_g = transform->input_gamma_table_g[device_g];
|
| - float linear_b = transform->input_gamma_table_b[device_b];
|
| -
|
| - float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
|
| - float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
|
| - float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
|
| -
|
| - float out_device_r = pow(out_linear_r, transform->out_gamma_r);
|
| - float out_device_g = pow(out_linear_g, transform->out_gamma_g);
|
| - float out_device_b = pow(out_linear_b, transform->out_gamma_b);
|
| -
|
| - *dest++ = clamp_u8(255*out_device_r);
|
| - *dest++ = clamp_u8(255*out_device_g);
|
| - *dest++ = clamp_u8(255*out_device_b);
|
| - }
|
| -}
|
| -#endif
|
| -
|
| -static void qcms_transform_data_gray_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
| -{
|
| - unsigned int i;
|
| - for (i = 0; i < length; i++) {
|
| - float out_device_r, out_device_g, out_device_b;
|
| - unsigned char device = *src++;
|
| -
|
| - float linear = transform->input_gamma_table_gray[device];
|
| -
|
| - out_device_r = lut_interp_linear(linear, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
|
| - out_device_g = lut_interp_linear(linear, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
|
| - out_device_b = lut_interp_linear(linear, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
|
| -
|
| - *dest++ = clamp_u8(out_device_r*255);
|
| - *dest++ = clamp_u8(out_device_g*255);
|
| - *dest++ = clamp_u8(out_device_b*255);
|
| - }
|
| -}
|
| -
|
| -/* Alpha is not corrected.
|
| - A rationale for this is found in Alvy Ray's "Should Alpha Be Nonlinear If
|
| - RGB Is?" Tech Memo 17 (December 14, 1998).
|
| - See: ftp://ftp.alvyray.com/Acrobat/17_Nonln.pdf
|
| -*/
|
| -
|
| -static void qcms_transform_data_graya_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
| -{
|
| - unsigned int i;
|
| - for (i = 0; i < length; i++) {
|
| - float out_device_r, out_device_g, out_device_b;
|
| - unsigned char device = *src++;
|
| - unsigned char alpha = *src++;
|
| -
|
| - float linear = transform->input_gamma_table_gray[device];
|
| -
|
| - out_device_r = lut_interp_linear(linear, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
|
| - out_device_g = lut_interp_linear(linear, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
|
| - out_device_b = lut_interp_linear(linear, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
|
| -
|
| - *dest++ = clamp_u8(out_device_r*255);
|
| - *dest++ = clamp_u8(out_device_g*255);
|
| - *dest++ = clamp_u8(out_device_b*255);
|
| - *dest++ = alpha;
|
| - }
|
| -}
|
| -
|
| -
|
| -static void qcms_transform_data_gray_out_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
| -{
|
| - unsigned int i;
|
| - for (i = 0; i < length; i++) {
|
| - unsigned char device = *src++;
|
| - uint16_t gray;
|
| -
|
| - float linear = transform->input_gamma_table_gray[device];
|
| -
|
| - /* we could round here... */
|
| - gray = linear * PRECACHE_OUTPUT_MAX;
|
| -
|
| - *dest++ = transform->output_table_r->data[gray];
|
| - *dest++ = transform->output_table_g->data[gray];
|
| - *dest++ = transform->output_table_b->data[gray];
|
| - }
|
| -}
|
| -
|
| -static void qcms_transform_data_graya_out_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
| -{
|
| - unsigned int i;
|
| - for (i = 0; i < length; i++) {
|
| - unsigned char device = *src++;
|
| - unsigned char alpha = *src++;
|
| - uint16_t gray;
|
| -
|
| - float linear = transform->input_gamma_table_gray[device];
|
| -
|
| - /* we could round here... */
|
| - gray = linear * PRECACHE_OUTPUT_MAX;
|
| -
|
| - *dest++ = transform->output_table_r->data[gray];
|
| - *dest++ = transform->output_table_g->data[gray];
|
| - *dest++ = transform->output_table_b->data[gray];
|
| - *dest++ = alpha;
|
| - }
|
| -}
|
| -
|
| -static void qcms_transform_data_rgb_out_lut_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
| -{
|
| - unsigned int i;
|
| - float (*mat)[4] = transform->matrix;
|
| - for (i = 0; i < length; i++) {
|
| - unsigned char device_r = *src++;
|
| - unsigned char device_g = *src++;
|
| - unsigned char device_b = *src++;
|
| - uint16_t r, g, b;
|
| -
|
| - float linear_r = transform->input_gamma_table_r[device_r];
|
| - float linear_g = transform->input_gamma_table_g[device_g];
|
| - float linear_b = transform->input_gamma_table_b[device_b];
|
| -
|
| - float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
|
| - float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
|
| - float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
|
| -
|
| - out_linear_r = clamp_float(out_linear_r);
|
| - out_linear_g = clamp_float(out_linear_g);
|
| - out_linear_b = clamp_float(out_linear_b);
|
| -
|
| - /* we could round here... */
|
| - r = out_linear_r * PRECACHE_OUTPUT_MAX;
|
| - g = out_linear_g * PRECACHE_OUTPUT_MAX;
|
| - b = out_linear_b * PRECACHE_OUTPUT_MAX;
|
| -
|
| - *dest++ = transform->output_table_r->data[r];
|
| - *dest++ = transform->output_table_g->data[g];
|
| - *dest++ = transform->output_table_b->data[b];
|
| - }
|
| -}
|
| -
|
| -static void qcms_transform_data_rgba_out_lut_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
| -{
|
| - unsigned int i;
|
| - float (*mat)[4] = transform->matrix;
|
| - for (i = 0; i < length; i++) {
|
| - unsigned char device_r = *src++;
|
| - unsigned char device_g = *src++;
|
| - unsigned char device_b = *src++;
|
| - unsigned char alpha = *src++;
|
| - uint16_t r, g, b;
|
| -
|
| - float linear_r = transform->input_gamma_table_r[device_r];
|
| - float linear_g = transform->input_gamma_table_g[device_g];
|
| - float linear_b = transform->input_gamma_table_b[device_b];
|
| -
|
| - float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
|
| - float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
|
| - float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
|
| -
|
| - out_linear_r = clamp_float(out_linear_r);
|
| - out_linear_g = clamp_float(out_linear_g);
|
| - out_linear_b = clamp_float(out_linear_b);
|
| -
|
| - /* we could round here... */
|
| - r = out_linear_r * PRECACHE_OUTPUT_MAX;
|
| - g = out_linear_g * PRECACHE_OUTPUT_MAX;
|
| - b = out_linear_b * PRECACHE_OUTPUT_MAX;
|
| -
|
| - *dest++ = transform->output_table_r->data[r];
|
| - *dest++ = transform->output_table_g->data[g];
|
| - *dest++ = transform->output_table_b->data[b];
|
| - *dest++ = alpha;
|
| - }
|
| -}
|
| -
|
| -// Not used
|
| -/*
|
| -static void qcms_transform_data_clut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) {
|
| - unsigned int i;
|
| - int xy_len = 1;
|
| - int x_len = transform->grid_size;
|
| - int len = x_len * x_len;
|
| - float* r_table = transform->r_clut;
|
| - float* g_table = transform->g_clut;
|
| - float* b_table = transform->b_clut;
|
| -
|
| - for (i = 0; i < length; i++) {
|
| - unsigned char in_r = *src++;
|
| - unsigned char in_g = *src++;
|
| - unsigned char in_b = *src++;
|
| - float linear_r = in_r/255.0f, linear_g=in_g/255.0f, linear_b = in_b/255.0f;
|
| -
|
| - int x = floor(linear_r * (transform->grid_size-1));
|
| - int y = floor(linear_g * (transform->grid_size-1));
|
| - int z = floor(linear_b * (transform->grid_size-1));
|
| - int x_n = ceil(linear_r * (transform->grid_size-1));
|
| - int y_n = ceil(linear_g * (transform->grid_size-1));
|
| - int z_n = ceil(linear_b * (transform->grid_size-1));
|
| - float x_d = linear_r * (transform->grid_size-1) - x;
|
| - float y_d = linear_g * (transform->grid_size-1) - y;
|
| - float z_d = linear_b * (transform->grid_size-1) - z;
|
| -
|
| - float r_x1 = lerp(CLU(r_table,x,y,z), CLU(r_table,x_n,y,z), x_d);
|
| - float r_x2 = lerp(CLU(r_table,x,y_n,z), CLU(r_table,x_n,y_n,z), x_d);
|
| - float r_y1 = lerp(r_x1, r_x2, y_d);
|
| - float r_x3 = lerp(CLU(r_table,x,y,z_n), CLU(r_table,x_n,y,z_n), x_d);
|
| - float r_x4 = lerp(CLU(r_table,x,y_n,z_n), CLU(r_table,x_n,y_n,z_n), x_d);
|
| - float r_y2 = lerp(r_x3, r_x4, y_d);
|
| - float clut_r = lerp(r_y1, r_y2, z_d);
|
| -
|
| - float g_x1 = lerp(CLU(g_table,x,y,z), CLU(g_table,x_n,y,z), x_d);
|
| - float g_x2 = lerp(CLU(g_table,x,y_n,z), CLU(g_table,x_n,y_n,z), x_d);
|
| - float g_y1 = lerp(g_x1, g_x2, y_d);
|
| - float g_x3 = lerp(CLU(g_table,x,y,z_n), CLU(g_table,x_n,y,z_n), x_d);
|
| - float g_x4 = lerp(CLU(g_table,x,y_n,z_n), CLU(g_table,x_n,y_n,z_n), x_d);
|
| - float g_y2 = lerp(g_x3, g_x4, y_d);
|
| - float clut_g = lerp(g_y1, g_y2, z_d);
|
| -
|
| - float b_x1 = lerp(CLU(b_table,x,y,z), CLU(b_table,x_n,y,z), x_d);
|
| - float b_x2 = lerp(CLU(b_table,x,y_n,z), CLU(b_table,x_n,y_n,z), x_d);
|
| - float b_y1 = lerp(b_x1, b_x2, y_d);
|
| - float b_x3 = lerp(CLU(b_table,x,y,z_n), CLU(b_table,x_n,y,z_n), x_d);
|
| - float b_x4 = lerp(CLU(b_table,x,y_n,z_n), CLU(b_table,x_n,y_n,z_n), x_d);
|
| - float b_y2 = lerp(b_x3, b_x4, y_d);
|
| - float clut_b = lerp(b_y1, b_y2, z_d);
|
| -
|
| - *dest++ = clamp_u8(clut_r*255.0f);
|
| - *dest++ = clamp_u8(clut_g*255.0f);
|
| - *dest++ = clamp_u8(clut_b*255.0f);
|
| - }
|
| -}
|
| -*/
|
| -
|
| -// Using lcms' tetra interpolation algorithm.
|
| -static void qcms_transform_data_tetra_clut_rgba(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) {
|
| - unsigned int i;
|
| - int xy_len = 1;
|
| - int x_len = transform->grid_size;
|
| - int len = x_len * x_len;
|
| - float* r_table = transform->r_clut;
|
| - float* g_table = transform->g_clut;
|
| - float* b_table = transform->b_clut;
|
| - float c0_r, c1_r, c2_r, c3_r;
|
| - float c0_g, c1_g, c2_g, c3_g;
|
| - float c0_b, c1_b, c2_b, c3_b;
|
| - float clut_r, clut_g, clut_b;
|
| - for (i = 0; i < length; i++) {
|
| - unsigned char in_r = *src++;
|
| - unsigned char in_g = *src++;
|
| - unsigned char in_b = *src++;
|
| - unsigned char in_a = *src++;
|
| - float linear_r = in_r/255.0f, linear_g=in_g/255.0f, linear_b = in_b/255.0f;
|
| -
|
| - int x = floor(linear_r * (transform->grid_size-1));
|
| - int y = floor(linear_g * (transform->grid_size-1));
|
| - int z = floor(linear_b * (transform->grid_size-1));
|
| - int x_n = ceil(linear_r * (transform->grid_size-1));
|
| - int y_n = ceil(linear_g * (transform->grid_size-1));
|
| - int z_n = ceil(linear_b * (transform->grid_size-1));
|
| - float rx = linear_r * (transform->grid_size-1) - x;
|
| - float ry = linear_g * (transform->grid_size-1) - y;
|
| - float rz = linear_b * (transform->grid_size-1) - z;
|
| -
|
| - c0_r = CLU(r_table, x, y, z);
|
| - c0_g = CLU(g_table, x, y, z);
|
| - c0_b = CLU(b_table, x, y, z);
|
| -
|
| - if( rx >= ry ) {
|
| - if (ry >= rz) { //rx >= ry && ry >= rz
|
| - c1_r = CLU(r_table, x_n, y, z) - c0_r;
|
| - c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z);
|
| - c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
|
| - c1_g = CLU(g_table, x_n, y, z) - c0_g;
|
| - c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z);
|
| - c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
|
| - c1_b = CLU(b_table, x_n, y, z) - c0_b;
|
| - c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z);
|
| - c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
|
| - } else {
|
| - if (rx >= rz) { //rx >= rz && rz >= ry
|
| - c1_r = CLU(r_table, x_n, y, z) - c0_r;
|
| - c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
|
| - c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z);
|
| - c1_g = CLU(g_table, x_n, y, z) - c0_g;
|
| - c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
|
| - c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z);
|
| - c1_b = CLU(b_table, x_n, y, z) - c0_b;
|
| - c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
|
| - c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z);
|
| - } else { //rz > rx && rx >= ry
|
| - c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n);
|
| - c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
|
| - c3_r = CLU(r_table, x, y, z_n) - c0_r;
|
| - c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n);
|
| - c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
|
| - c3_g = CLU(g_table, x, y, z_n) - c0_g;
|
| - c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n);
|
| - c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
|
| - c3_b = CLU(b_table, x, y, z_n) - c0_b;
|
| - }
|
| - }
|
| - } else {
|
| - if (rx >= rz) { //ry > rx && rx >= rz
|
| - c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z);
|
| - c2_r = CLU(r_table, x, y_n, z) - c0_r;
|
| - c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
|
| - c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z);
|
| - c2_g = CLU(g_table, x, y_n, z) - c0_g;
|
| - c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
|
| - c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z);
|
| - c2_b = CLU(b_table, x, y_n, z) - c0_b;
|
| - c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
|
| - } else {
|
| - if (ry >= rz) { //ry >= rz && rz > rx
|
| - c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
|
| - c2_r = CLU(r_table, x, y_n, z) - c0_r;
|
| - c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z);
|
| - c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
|
| - c2_g = CLU(g_table, x, y_n, z) - c0_g;
|
| - c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z);
|
| - c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
|
| - c2_b = CLU(b_table, x, y_n, z) - c0_b;
|
| - c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z);
|
| - } else { //rz > ry && ry > rx
|
| - c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
|
| - c2_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y, z_n);
|
| - c3_r = CLU(r_table, x, y, z_n) - c0_r;
|
| - c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
|
| - c2_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y, z_n);
|
| - c3_g = CLU(g_table, x, y, z_n) - c0_g;
|
| - c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
|
| - c2_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y, z_n);
|
| - c3_b = CLU(b_table, x, y, z_n) - c0_b;
|
| - }
|
| - }
|
| - }
|
| -
|
| - clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz;
|
| - clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz;
|
| - clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz;
|
| -
|
| - *dest++ = clamp_u8(clut_r*255.0f);
|
| - *dest++ = clamp_u8(clut_g*255.0f);
|
| - *dest++ = clamp_u8(clut_b*255.0f);
|
| - *dest++ = in_a;
|
| - }
|
| -}
|
| -
|
| -// Using lcms' tetra interpolation code.
|
| -static void qcms_transform_data_tetra_clut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) {
|
| - unsigned int i;
|
| - int xy_len = 1;
|
| - int x_len = transform->grid_size;
|
| - int len = x_len * x_len;
|
| - float* r_table = transform->r_clut;
|
| - float* g_table = transform->g_clut;
|
| - float* b_table = transform->b_clut;
|
| - float c0_r, c1_r, c2_r, c3_r;
|
| - float c0_g, c1_g, c2_g, c3_g;
|
| - float c0_b, c1_b, c2_b, c3_b;
|
| - float clut_r, clut_g, clut_b;
|
| - for (i = 0; i < length; i++) {
|
| - unsigned char in_r = *src++;
|
| - unsigned char in_g = *src++;
|
| - unsigned char in_b = *src++;
|
| - float linear_r = in_r/255.0f, linear_g=in_g/255.0f, linear_b = in_b/255.0f;
|
| -
|
| - int x = floor(linear_r * (transform->grid_size-1));
|
| - int y = floor(linear_g * (transform->grid_size-1));
|
| - int z = floor(linear_b * (transform->grid_size-1));
|
| - int x_n = ceil(linear_r * (transform->grid_size-1));
|
| - int y_n = ceil(linear_g * (transform->grid_size-1));
|
| - int z_n = ceil(linear_b * (transform->grid_size-1));
|
| - float rx = linear_r * (transform->grid_size-1) - x;
|
| - float ry = linear_g * (transform->grid_size-1) - y;
|
| - float rz = linear_b * (transform->grid_size-1) - z;
|
| -
|
| - c0_r = CLU(r_table, x, y, z);
|
| - c0_g = CLU(g_table, x, y, z);
|
| - c0_b = CLU(b_table, x, y, z);
|
| -
|
| - if( rx >= ry ) {
|
| - if (ry >= rz) { //rx >= ry && ry >= rz
|
| - c1_r = CLU(r_table, x_n, y, z) - c0_r;
|
| - c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z);
|
| - c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
|
| - c1_g = CLU(g_table, x_n, y, z) - c0_g;
|
| - c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z);
|
| - c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
|
| - c1_b = CLU(b_table, x_n, y, z) - c0_b;
|
| - c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z);
|
| - c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
|
| - } else {
|
| - if (rx >= rz) { //rx >= rz && rz >= ry
|
| - c1_r = CLU(r_table, x_n, y, z) - c0_r;
|
| - c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
|
| - c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z);
|
| - c1_g = CLU(g_table, x_n, y, z) - c0_g;
|
| - c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
|
| - c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z);
|
| - c1_b = CLU(b_table, x_n, y, z) - c0_b;
|
| - c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
|
| - c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z);
|
| - } else { //rz > rx && rx >= ry
|
| - c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n);
|
| - c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
|
| - c3_r = CLU(r_table, x, y, z_n) - c0_r;
|
| - c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n);
|
| - c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
|
| - c3_g = CLU(g_table, x, y, z_n) - c0_g;
|
| - c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n);
|
| - c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
|
| - c3_b = CLU(b_table, x, y, z_n) - c0_b;
|
| - }
|
| - }
|
| - } else {
|
| - if (rx >= rz) { //ry > rx && rx >= rz
|
| - c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z);
|
| - c2_r = CLU(r_table, x, y_n, z) - c0_r;
|
| - c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
|
| - c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z);
|
| - c2_g = CLU(g_table, x, y_n, z) - c0_g;
|
| - c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
|
| - c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z);
|
| - c2_b = CLU(b_table, x, y_n, z) - c0_b;
|
| - c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
|
| - } else {
|
| - if (ry >= rz) { //ry >= rz && rz > rx
|
| - c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
|
| - c2_r = CLU(r_table, x, y_n, z) - c0_r;
|
| - c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z);
|
| - c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
|
| - c2_g = CLU(g_table, x, y_n, z) - c0_g;
|
| - c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z);
|
| - c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
|
| - c2_b = CLU(b_table, x, y_n, z) - c0_b;
|
| - c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z);
|
| - } else { //rz > ry && ry > rx
|
| - c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
|
| - c2_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y, z_n);
|
| - c3_r = CLU(r_table, x, y, z_n) - c0_r;
|
| - c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
|
| - c2_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y, z_n);
|
| - c3_g = CLU(g_table, x, y, z_n) - c0_g;
|
| - c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
|
| - c2_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y, z_n);
|
| - c3_b = CLU(b_table, x, y, z_n) - c0_b;
|
| - }
|
| - }
|
| - }
|
| -
|
| - clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz;
|
| - clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz;
|
| - clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz;
|
| -
|
| - *dest++ = clamp_u8(clut_r*255.0f);
|
| - *dest++ = clamp_u8(clut_g*255.0f);
|
| - *dest++ = clamp_u8(clut_b*255.0f);
|
| - }
|
| -}
|
| -
|
| -static void qcms_transform_data_rgb_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
| -{
|
| - unsigned int i;
|
| - float (*mat)[4] = transform->matrix;
|
| - for (i = 0; i < length; i++) {
|
| - unsigned char device_r = *src++;
|
| - unsigned char device_g = *src++;
|
| - unsigned char device_b = *src++;
|
| - float out_device_r, out_device_g, out_device_b;
|
| -
|
| - float linear_r = transform->input_gamma_table_r[device_r];
|
| - float linear_g = transform->input_gamma_table_g[device_g];
|
| - float linear_b = transform->input_gamma_table_b[device_b];
|
| -
|
| - float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
|
| - float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
|
| - float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
|
| -
|
| - out_linear_r = clamp_float(out_linear_r);
|
| - out_linear_g = clamp_float(out_linear_g);
|
| - out_linear_b = clamp_float(out_linear_b);
|
| -
|
| - out_device_r = lut_interp_linear(out_linear_r,
|
| - transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
|
| - out_device_g = lut_interp_linear(out_linear_g,
|
| - transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
|
| - out_device_b = lut_interp_linear(out_linear_b,
|
| - transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
|
| -
|
| - *dest++ = clamp_u8(out_device_r*255);
|
| - *dest++ = clamp_u8(out_device_g*255);
|
| - *dest++ = clamp_u8(out_device_b*255);
|
| - }
|
| -}
|
| -
|
| -static void qcms_transform_data_rgba_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
| -{
|
| - unsigned int i;
|
| - float (*mat)[4] = transform->matrix;
|
| - for (i = 0; i < length; i++) {
|
| - unsigned char device_r = *src++;
|
| - unsigned char device_g = *src++;
|
| - unsigned char device_b = *src++;
|
| - unsigned char alpha = *src++;
|
| - float out_device_r, out_device_g, out_device_b;
|
| -
|
| - float linear_r = transform->input_gamma_table_r[device_r];
|
| - float linear_g = transform->input_gamma_table_g[device_g];
|
| - float linear_b = transform->input_gamma_table_b[device_b];
|
| -
|
| - float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
|
| - float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
|
| - float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
|
| -
|
| - out_linear_r = clamp_float(out_linear_r);
|
| - out_linear_g = clamp_float(out_linear_g);
|
| - out_linear_b = clamp_float(out_linear_b);
|
| -
|
| - out_device_r = lut_interp_linear(out_linear_r,
|
| - transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
|
| - out_device_g = lut_interp_linear(out_linear_g,
|
| - transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
|
| - out_device_b = lut_interp_linear(out_linear_b,
|
| - transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
|
| -
|
| - *dest++ = clamp_u8(out_device_r*255);
|
| - *dest++ = clamp_u8(out_device_g*255);
|
| - *dest++ = clamp_u8(out_device_b*255);
|
| - *dest++ = alpha;
|
| - }
|
| -}
|
| -
|
| -#if 0
|
| -static void qcms_transform_data_rgb_out_linear(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
| -{
|
| - int i;
|
| - float (*mat)[4] = transform->matrix;
|
| - for (i = 0; i < length; i++) {
|
| - unsigned char device_r = *src++;
|
| - unsigned char device_g = *src++;
|
| - unsigned char device_b = *src++;
|
| -
|
| - float linear_r = transform->input_gamma_table_r[device_r];
|
| - float linear_g = transform->input_gamma_table_g[device_g];
|
| - float linear_b = transform->input_gamma_table_b[device_b];
|
| -
|
| - float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
|
| - float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
|
| - float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
|
| -
|
| - *dest++ = clamp_u8(out_linear_r*255);
|
| - *dest++ = clamp_u8(out_linear_g*255);
|
| - *dest++ = clamp_u8(out_linear_b*255);
|
| - }
|
| -}
|
| -#endif
|
| -
|
| -static struct precache_output *precache_reference(struct precache_output *p)
|
| -{
|
| - p->ref_count++;
|
| - return p;
|
| -}
|
| -
|
| -static struct precache_output *precache_create()
|
| -{
|
| - struct precache_output *p = malloc(sizeof(struct precache_output));
|
| - if (p)
|
| - p->ref_count = 1;
|
| - return p;
|
| -}
|
| -
|
| -void precache_release(struct precache_output *p)
|
| -{
|
| - if (--p->ref_count == 0) {
|
| - free(p);
|
| - }
|
| -}
|
| -
|
| -#ifdef HAS_POSIX_MEMALIGN
|
| -static qcms_transform *transform_alloc(void)
|
| -{
|
| - qcms_transform *t;
|
| - if (!posix_memalign(&t, 16, sizeof(*t))) {
|
| - return t;
|
| - } else {
|
| - return NULL;
|
| - }
|
| -}
|
| -static void transform_free(qcms_transform *t)
|
| -{
|
| - free(t);
|
| -}
|
| -#else
|
| -static qcms_transform *transform_alloc(void)
|
| -{
|
| - /* transform needs to be aligned on a 16byte boundrary */
|
| - char *original_block = calloc(sizeof(qcms_transform) + sizeof(void*) + 16, 1);
|
| - /* make room for a pointer to the block returned by calloc */
|
| - void *transform_start = original_block + sizeof(void*);
|
| - /* align transform_start */
|
| - qcms_transform *transform_aligned = (qcms_transform*)(((uintptr_t)transform_start + 15) & ~0xf);
|
| -
|
| - /* store a pointer to the block returned by calloc so that we can free it later */
|
| - void **(original_block_ptr) = (void**)transform_aligned;
|
| - if (!original_block)
|
| - return NULL;
|
| - original_block_ptr--;
|
| - *original_block_ptr = original_block;
|
| -
|
| - return transform_aligned;
|
| -}
|
| -static void transform_free(qcms_transform *t)
|
| -{
|
| - /* get at the pointer to the unaligned block returned by calloc */
|
| - void **p = (void**)t;
|
| - p--;
|
| - free(*p);
|
| -}
|
| -#endif
|
| -
|
| -void qcms_transform_release(qcms_transform *t)
|
| -{
|
| - /* ensure we only free the gamma tables once even if there are
|
| - * multiple references to the same data */
|
| -
|
| - if (t->output_table_r)
|
| - precache_release(t->output_table_r);
|
| - if (t->output_table_g)
|
| - precache_release(t->output_table_g);
|
| - if (t->output_table_b)
|
| - precache_release(t->output_table_b);
|
| -
|
| - free(t->input_gamma_table_r);
|
| - if (t->input_gamma_table_g != t->input_gamma_table_r)
|
| - free(t->input_gamma_table_g);
|
| - if (t->input_gamma_table_g != t->input_gamma_table_r &&
|
| - t->input_gamma_table_g != t->input_gamma_table_b)
|
| - free(t->input_gamma_table_b);
|
| -
|
| - free(t->input_gamma_table_gray);
|
| -
|
| - free(t->output_gamma_lut_r);
|
| - free(t->output_gamma_lut_g);
|
| - free(t->output_gamma_lut_b);
|
| -
|
| - transform_free(t);
|
| -}
|
| -
|
| -#ifdef X86
|
| -// Determine if we can build with SSE2 (this was partly copied from jmorecfg.h in
|
| -// mozilla/jpeg)
|
| - // -------------------------------------------------------------------------
|
| -#if defined(_M_IX86) && defined(_MSC_VER)
|
| -#define HAS_CPUID
|
| -/* Get us a CPUID function. Avoid clobbering EBX because sometimes it's the PIC
|
| - register - I'm not sure if that ever happens on windows, but cpuid isn't
|
| - on the critical path so we just preserve the register to be safe and to be
|
| - consistent with the non-windows version. */
|
| -static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d) {
|
| - uint32_t a_, b_, c_, d_;
|
| - __asm {
|
| - xchg ebx, esi
|
| - mov eax, fxn
|
| - cpuid
|
| - mov a_, eax
|
| - mov b_, ebx
|
| - mov c_, ecx
|
| - mov d_, edx
|
| - xchg ebx, esi
|
| - }
|
| - *a = a_;
|
| - *b = b_;
|
| - *c = c_;
|
| - *d = d_;
|
| -}
|
| -#elif (defined(__GNUC__) || defined(__SUNPRO_C)) && (defined(__i386__) || defined(__i386))
|
| -#define HAS_CPUID
|
| -/* Get us a CPUID function. We can't use ebx because it's the PIC register on
|
| - some platforms, so we use ESI instead and save ebx to avoid clobbering it. */
|
| -static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d) {
|
| -
|
| - uint32_t a_, b_, c_, d_;
|
| - __asm__ __volatile__ ("xchgl %%ebx, %%esi; cpuid; xchgl %%ebx, %%esi;"
|
| - : "=a" (a_), "=S" (b_), "=c" (c_), "=d" (d_) : "a" (fxn));
|
| - *a = a_;
|
| - *b = b_;
|
| - *c = c_;
|
| - *d = d_;
|
| -}
|
| -#endif
|
| -
|
| -// -------------------------Runtime SSEx Detection-----------------------------
|
| -
|
| -/* MMX is always supported per
|
| - * Gecko v1.9.1 minimum CPU requirements */
|
| -#define SSE1_EDX_MASK (1UL << 25)
|
| -#define SSE2_EDX_MASK (1UL << 26)
|
| -#define SSE3_ECX_MASK (1UL << 0)
|
| -
|
| -static int sse_version_available(void)
|
| -{
|
| -#if defined(__x86_64__) || defined(__x86_64) || defined(_M_AMD64)
|
| - /* we know at build time that 64-bit CPUs always have SSE2
|
| - * this tells the compiler that non-SSE2 branches will never be
|
| - * taken (i.e. OK to optimze away the SSE1 and non-SIMD code */
|
| - return 2;
|
| -#elif defined(HAS_CPUID)
|
| - static int sse_version = -1;
|
| - uint32_t a, b, c, d;
|
| - uint32_t function = 0x00000001;
|
| -
|
| - if (sse_version == -1) {
|
| - sse_version = 0;
|
| - cpuid(function, &a, &b, &c, &d);
|
| - if (c & SSE3_ECX_MASK)
|
| - sse_version = 3;
|
| - else if (d & SSE2_EDX_MASK)
|
| - sse_version = 2;
|
| - else if (d & SSE1_EDX_MASK)
|
| - sse_version = 1;
|
| - }
|
| -
|
| - return sse_version;
|
| -#else
|
| - return 0;
|
| -#endif
|
| -}
|
| -#endif
|
| -
|
| -static const struct matrix bradford_matrix = {{ { 0.8951f, 0.2664f,-0.1614f},
|
| - {-0.7502f, 1.7135f, 0.0367f},
|
| - { 0.0389f,-0.0685f, 1.0296f}},
|
| - false};
|
| -
|
| -static const struct matrix bradford_matrix_inv = {{ { 0.9869929f,-0.1470543f, 0.1599627f},
|
| - { 0.4323053f, 0.5183603f, 0.0492912f},
|
| - {-0.0085287f, 0.0400428f, 0.9684867f}},
|
| - false};
|
| -
|
| -// See ICCv4 E.3
|
| -struct matrix compute_whitepoint_adaption(float X, float Y, float Z) {
|
| - float p = (0.96422f*bradford_matrix.m[0][0] + 1.000f*bradford_matrix.m[1][0] + 0.82521f*bradford_matrix.m[2][0]) /
|
| - (X*bradford_matrix.m[0][0] + Y*bradford_matrix.m[1][0] + Z*bradford_matrix.m[2][0] );
|
| - float y = (0.96422f*bradford_matrix.m[0][1] + 1.000f*bradford_matrix.m[1][1] + 0.82521f*bradford_matrix.m[2][1]) /
|
| - (X*bradford_matrix.m[0][1] + Y*bradford_matrix.m[1][1] + Z*bradford_matrix.m[2][1] );
|
| - float b = (0.96422f*bradford_matrix.m[0][2] + 1.000f*bradford_matrix.m[1][2] + 0.82521f*bradford_matrix.m[2][2]) /
|
| - (X*bradford_matrix.m[0][2] + Y*bradford_matrix.m[1][2] + Z*bradford_matrix.m[2][2] );
|
| - struct matrix white_adaption = {{ {p,0,0}, {0,y,0}, {0,0,b}}, false};
|
| - return matrix_multiply( bradford_matrix_inv, matrix_multiply(white_adaption, bradford_matrix) );
|
| -}
|
| -
|
| -void qcms_profile_precache_output_transform(qcms_profile *profile)
|
| -{
|
| - /* we only support precaching on rgb profiles */
|
| - if (profile->color_space != RGB_SIGNATURE)
|
| - return;
|
| -
|
| - /* don't precache since we will use the B2A LUT */
|
| - if (profile->B2A0)
|
| - return;
|
| -
|
| - /* don't precache since we will use the mBA LUT */
|
| - if (profile->mBA)
|
| - return;
|
| -
|
| - /* don't precache if we do not have the TRC curves */
|
| - if (!profile->redTRC || !profile->greenTRC || !profile->blueTRC)
|
| - return;
|
| -
|
| - if (!profile->output_table_r) {
|
| - profile->output_table_r = precache_create();
|
| - if (profile->output_table_r &&
|
| - !compute_precache(profile->redTRC, profile->output_table_r->data)) {
|
| - precache_release(profile->output_table_r);
|
| - profile->output_table_r = NULL;
|
| - }
|
| - }
|
| - if (!profile->output_table_g) {
|
| - profile->output_table_g = precache_create();
|
| - if (profile->output_table_g &&
|
| - !compute_precache(profile->greenTRC, profile->output_table_g->data)) {
|
| - precache_release(profile->output_table_g);
|
| - profile->output_table_g = NULL;
|
| - }
|
| - }
|
| - if (!profile->output_table_b) {
|
| - profile->output_table_b = precache_create();
|
| - if (profile->output_table_b &&
|
| - !compute_precache(profile->blueTRC, profile->output_table_b->data)) {
|
| - precache_release(profile->output_table_b);
|
| - profile->output_table_b = NULL;
|
| - }
|
| - }
|
| -}
|
| -
|
| -/* Replace the current transformation with a LUT transformation using a given number of sample points */
|
| -qcms_transform* qcms_transform_precacheLUT_float(qcms_transform *transform, qcms_profile *in, qcms_profile *out,
|
| - int samples, qcms_data_type in_type)
|
| -{
|
| - /* The range between which 2 consecutive sample points can be used to interpolate */
|
| - uint16_t x,y,z;
|
| - uint32_t l;
|
| - uint32_t lutSize = 3 * samples * samples * samples;
|
| - float* src = NULL;
|
| - float* dest = NULL;
|
| - float* lut = NULL;
|
| -
|
| - src = malloc(lutSize*sizeof(float));
|
| - dest = malloc(lutSize*sizeof(float));
|
| -
|
| - if (src && dest) {
|
| - /* Prepare a list of points we want to sample */
|
| - l = 0;
|
| - for (x = 0; x < samples; x++) {
|
| - for (y = 0; y < samples; y++) {
|
| - for (z = 0; z < samples; z++) {
|
| - src[l++] = x / (float)(samples-1);
|
| - src[l++] = y / (float)(samples-1);
|
| - src[l++] = z / (float)(samples-1);
|
| - }
|
| - }
|
| - }
|
| -
|
| - lut = qcms_chain_transform(in, out, src, dest, lutSize);
|
| - if (lut) {
|
| - transform->r_clut = &lut[0];
|
| - transform->g_clut = &lut[1];
|
| - transform->b_clut = &lut[2];
|
| - transform->grid_size = samples;
|
| - if (in_type == QCMS_DATA_RGBA_8) {
|
| - transform->transform_fn = qcms_transform_data_tetra_clut_rgba;
|
| - } else {
|
| - transform->transform_fn = qcms_transform_data_tetra_clut;
|
| - }
|
| - }
|
| - }
|
| -
|
| -
|
| - //XXX: qcms_modular_transform_data may return either the src or dest buffer. If so it must not be free-ed
|
| - if (src && lut != src) {
|
| - free(src);
|
| - } else if (dest && lut != src) {
|
| - free(dest);
|
| - }
|
| -
|
| - if (lut == NULL) {
|
| - return NULL;
|
| - }
|
| - return transform;
|
| -}
|
| -
|
| -#define NO_MEM_TRANSFORM NULL
|
| -
|
| -qcms_transform* qcms_transform_create(
|
| - qcms_profile *in, qcms_data_type in_type,
|
| - qcms_profile *out, qcms_data_type out_type,
|
| - qcms_intent intent)
|
| -{
|
| - bool precache = false;
|
| -
|
| - qcms_transform *transform = transform_alloc();
|
| - if (!transform) {
|
| - return NULL;
|
| - }
|
| - if (out_type != QCMS_DATA_RGB_8 &&
|
| - out_type != QCMS_DATA_RGBA_8) {
|
| - assert(0 && "output type");
|
| - transform_free(transform);
|
| - return NULL;
|
| - }
|
| -
|
| - if (out->output_table_r &&
|
| - out->output_table_g &&
|
| - out->output_table_b) {
|
| - precache = true;
|
| - }
|
| -
|
| - if (qcms_supports_iccv4 && (in->A2B0 || out->B2A0 || in->mAB || out->mAB)) {
|
| - // Precache the transformation to a CLUT 33x33x33 in size.
|
| - // 33 is used by many profiles and works well in pratice.
|
| - // This evenly divides 256 into blocks of 8x8x8.
|
| - // TODO For transforming small data sets of about 200x200 or less
|
| - // precaching should be avoided.
|
| - qcms_transform *result = qcms_transform_precacheLUT_float(transform, in, out, 33, in_type);
|
| - if (!result) {
|
| - assert(0 && "precacheLUT failed");
|
| - transform_free(transform);
|
| - return NULL;
|
| - }
|
| - return result;
|
| - }
|
| -
|
| - if (precache) {
|
| - transform->output_table_r = precache_reference(out->output_table_r);
|
| - transform->output_table_g = precache_reference(out->output_table_g);
|
| - transform->output_table_b = precache_reference(out->output_table_b);
|
| - } else {
|
| - if (!out->redTRC || !out->greenTRC || !out->blueTRC) {
|
| - qcms_transform_release(transform);
|
| - return NO_MEM_TRANSFORM;
|
| - }
|
| - build_output_lut(out->redTRC, &transform->output_gamma_lut_r, &transform->output_gamma_lut_r_length);
|
| - build_output_lut(out->greenTRC, &transform->output_gamma_lut_g, &transform->output_gamma_lut_g_length);
|
| - build_output_lut(out->blueTRC, &transform->output_gamma_lut_b, &transform->output_gamma_lut_b_length);
|
| - if (!transform->output_gamma_lut_r || !transform->output_gamma_lut_g || !transform->output_gamma_lut_b) {
|
| - qcms_transform_release(transform);
|
| - return NO_MEM_TRANSFORM;
|
| - }
|
| - }
|
| -
|
| - if (in->color_space == RGB_SIGNATURE) {
|
| - struct matrix in_matrix, out_matrix, result;
|
| -
|
| - if (in_type != QCMS_DATA_RGB_8 &&
|
| - in_type != QCMS_DATA_RGBA_8){
|
| - assert(0 && "input type");
|
| - transform_free(transform);
|
| - return NULL;
|
| - }
|
| - if (precache) {
|
| -#ifdef X86
|
| - if (sse_version_available() >= 2) {
|
| - if (in_type == QCMS_DATA_RGB_8)
|
| - transform->transform_fn = qcms_transform_data_rgb_out_lut_sse2;
|
| - else
|
| - transform->transform_fn = qcms_transform_data_rgba_out_lut_sse2;
|
| -
|
| -#if !(defined(_MSC_VER) && defined(_M_AMD64))
|
| - /* Microsoft Compiler for x64 doesn't support MMX.
|
| - * SSE code uses MMX so that we disable on x64 */
|
| - } else
|
| - if (sse_version_available() >= 1) {
|
| - if (in_type == QCMS_DATA_RGB_8)
|
| - transform->transform_fn = qcms_transform_data_rgb_out_lut_sse1;
|
| - else
|
| - transform->transform_fn = qcms_transform_data_rgba_out_lut_sse1;
|
| -#endif
|
| - } else
|
| -#endif
|
| - {
|
| - if (in_type == QCMS_DATA_RGB_8)
|
| - transform->transform_fn = qcms_transform_data_rgb_out_lut_precache;
|
| - else
|
| - transform->transform_fn = qcms_transform_data_rgba_out_lut_precache;
|
| - }
|
| - } else {
|
| - if (in_type == QCMS_DATA_RGB_8)
|
| - transform->transform_fn = qcms_transform_data_rgb_out_lut;
|
| - else
|
| - transform->transform_fn = qcms_transform_data_rgba_out_lut;
|
| - }
|
| -
|
| - //XXX: avoid duplicating tables if we can
|
| - transform->input_gamma_table_r = build_input_gamma_table(in->redTRC);
|
| - transform->input_gamma_table_g = build_input_gamma_table(in->greenTRC);
|
| - transform->input_gamma_table_b = build_input_gamma_table(in->blueTRC);
|
| - if (!transform->input_gamma_table_r || !transform->input_gamma_table_g || !transform->input_gamma_table_b) {
|
| - qcms_transform_release(transform);
|
| - return NO_MEM_TRANSFORM;
|
| - }
|
| -
|
| -
|
| - /* build combined colorant matrix */
|
| - in_matrix = build_colorant_matrix(in);
|
| - out_matrix = build_colorant_matrix(out);
|
| - out_matrix = matrix_invert(out_matrix);
|
| - if (out_matrix.invalid) {
|
| - qcms_transform_release(transform);
|
| - return NULL;
|
| - }
|
| - result = matrix_multiply(out_matrix, in_matrix);
|
| -
|
| - /* store the results in column major mode
|
| - * this makes doing the multiplication with sse easier */
|
| - transform->matrix[0][0] = result.m[0][0];
|
| - transform->matrix[1][0] = result.m[0][1];
|
| - transform->matrix[2][0] = result.m[0][2];
|
| - transform->matrix[0][1] = result.m[1][0];
|
| - transform->matrix[1][1] = result.m[1][1];
|
| - transform->matrix[2][1] = result.m[1][2];
|
| - transform->matrix[0][2] = result.m[2][0];
|
| - transform->matrix[1][2] = result.m[2][1];
|
| - transform->matrix[2][2] = result.m[2][2];
|
| -
|
| - } else if (in->color_space == GRAY_SIGNATURE) {
|
| - if (in_type != QCMS_DATA_GRAY_8 &&
|
| - in_type != QCMS_DATA_GRAYA_8){
|
| - assert(0 && "input type");
|
| - transform_free(transform);
|
| - return NULL;
|
| - }
|
| -
|
| - transform->input_gamma_table_gray = build_input_gamma_table(in->grayTRC);
|
| - if (!transform->input_gamma_table_gray) {
|
| - qcms_transform_release(transform);
|
| - return NO_MEM_TRANSFORM;
|
| - }
|
| -
|
| - if (precache) {
|
| - if (in_type == QCMS_DATA_GRAY_8) {
|
| - transform->transform_fn = qcms_transform_data_gray_out_precache;
|
| - } else {
|
| - transform->transform_fn = qcms_transform_data_graya_out_precache;
|
| - }
|
| - } else {
|
| - if (in_type == QCMS_DATA_GRAY_8) {
|
| - transform->transform_fn = qcms_transform_data_gray_out_lut;
|
| - } else {
|
| - transform->transform_fn = qcms_transform_data_graya_out_lut;
|
| - }
|
| - }
|
| - } else {
|
| - assert(0 && "unexpected colorspace");
|
| - transform_free(transform);
|
| - return NULL;
|
| - }
|
| - return transform;
|
| -}
|
| -
|
| -#if defined(__GNUC__) && !defined(__x86_64__) && !defined(__amd64__)
|
| -/* we need this to avoid crashes when gcc assumes the stack is 128bit aligned */
|
| -__attribute__((__force_align_arg_pointer__))
|
| -#endif
|
| -void qcms_transform_data(qcms_transform *transform, void *src, void *dest, size_t length)
|
| -{
|
| - transform->transform_fn(transform, src, dest, length);
|
| -}
|
| -
|
| -qcms_bool qcms_supports_iccv4;
|
| -void qcms_enable_iccv4()
|
| -{
|
| - qcms_supports_iccv4 = true;
|
| -}
|
|
|