Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(167)

Side by Side Diff: src/mips/stub-cache-mips.cc

Issue 9429005: MIPS: Added support for Loongson architectures. (Closed)
Patch Set: Added loongson variant to the gyp system. Created 8 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 // Copyright 2012 the V8 project authors. All rights reserved. 1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without 2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are 3 // modification, are permitted provided that the following conditions are
4 // met: 4 // met:
5 // 5 //
6 // * Redistributions of source code must retain the above copyright 6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer. 7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above 8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following 9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided 10 // disclaimer in the documentation and/or other materials provided
(...skipping 874 matching lines...) Expand 10 before | Expand all | Expand 10 after
885 885
886 Label not_special, done; 886 Label not_special, done;
887 // Move sign bit from source to destination. This works because the sign 887 // Move sign bit from source to destination. This works because the sign
888 // bit in the exponent word of the double has the same position and polarity 888 // bit in the exponent word of the double has the same position and polarity
889 // as the 2's complement sign bit in a Smi. 889 // as the 2's complement sign bit in a Smi.
890 ASSERT(kBinary32SignMask == 0x80000000u); 890 ASSERT(kBinary32SignMask == 0x80000000u);
891 891
892 __ And(fval, ival, Operand(kBinary32SignMask)); 892 __ And(fval, ival, Operand(kBinary32SignMask));
893 // Negate value if it is negative. 893 // Negate value if it is negative.
894 __ subu(scratch1, zero_reg, ival); 894 __ subu(scratch1, zero_reg, ival);
895 __ movn(ival, scratch1, fval); 895 __ Movn(ival, scratch1, fval);
896 896
897 // We have -1, 0 or 1, which we treat specially. Register ival contains 897 // We have -1, 0 or 1, which we treat specially. Register ival contains
898 // absolute value: it is either equal to 1 (special case of -1 and 1), 898 // absolute value: it is either equal to 1 (special case of -1 and 1),
899 // greater than 1 (not a special case) or less than 1 (special case of 0). 899 // greater than 1 (not a special case) or less than 1 (special case of 0).
900 __ Branch(&not_special, gt, ival, Operand(1)); 900 __ Branch(&not_special, gt, ival, Operand(1));
901 901
902 // For 1 or -1 we need to or in the 0 exponent (biased). 902 // For 1 or -1 we need to or in the 0 exponent (biased).
903 static const uint32_t exponent_word_for_1 = 903 static const uint32_t exponent_word_for_1 =
904 kBinary32ExponentBias << kBinary32ExponentShift; 904 kBinary32ExponentBias << kBinary32ExponentShift;
905 905
906 __ Xor(scratch1, ival, Operand(1)); 906 __ Xor(scratch1, ival, Operand(1));
907 __ li(scratch2, exponent_word_for_1); 907 __ li(scratch2, exponent_word_for_1);
908 __ or_(scratch2, fval, scratch2); 908 __ or_(scratch2, fval, scratch2);
909 __ movz(fval, scratch2, scratch1); // Only if ival is equal to 1. 909 __ Movz(fval, scratch2, scratch1); // Only if ival is equal to 1.
910 __ Branch(&done); 910 __ Branch(&done);
911 911
912 __ bind(&not_special); 912 __ bind(&not_special);
913 // Count leading zeros. 913 // Count leading zeros.
914 // Gets the wrong answer for 0, but we already checked for that case above. 914 // Gets the wrong answer for 0, but we already checked for that case above.
915 Register zeros = scratch2; 915 Register zeros = scratch2;
916 __ clz(zeros, ival); 916 __ Clz(zeros, ival);
917 917
918 // Compute exponent and or it into the exponent register. 918 // Compute exponent and or it into the exponent register.
919 __ li(scratch1, (kBitsPerInt - 1) + kBinary32ExponentBias); 919 __ li(scratch1, (kBitsPerInt - 1) + kBinary32ExponentBias);
920 __ subu(scratch1, scratch1, zeros); 920 __ subu(scratch1, scratch1, zeros);
921 921
922 __ sll(scratch1, scratch1, kBinary32ExponentShift); 922 __ sll(scratch1, scratch1, kBinary32ExponentShift);
923 __ or_(fval, fval, scratch1); 923 __ or_(fval, fval, scratch1);
924 924
925 // Shift up the source chopping the top bit off. 925 // Shift up the source chopping the top bit off.
926 __ Addu(zeros, zeros, Operand(1)); 926 __ Addu(zeros, zeros, Operand(1));
(...skipping 2650 matching lines...) Expand 10 before | Expand all | Expand 10 after
3577 3577
3578 // Extract exponent to t5. 3578 // Extract exponent to t5.
3579 __ srl(t5, value, kBinary32MantissaBits); 3579 __ srl(t5, value, kBinary32MantissaBits);
3580 __ And(t5, t5, Operand(kBinary32ExponentMask >> kBinary32MantissaBits)); 3580 __ And(t5, t5, Operand(kBinary32ExponentMask >> kBinary32MantissaBits));
3581 3581
3582 Label exponent_rebiased; 3582 Label exponent_rebiased;
3583 __ Branch(&exponent_rebiased, eq, t5, Operand(zero_reg)); 3583 __ Branch(&exponent_rebiased, eq, t5, Operand(zero_reg));
3584 3584
3585 __ li(t0, 0x7ff); 3585 __ li(t0, 0x7ff);
3586 __ Xor(t1, t5, Operand(0xFF)); 3586 __ Xor(t1, t5, Operand(0xFF));
3587 __ movz(t5, t0, t1); // Set t5 to 0x7ff only if t5 is equal to 0xff. 3587 __ Movz(t5, t0, t1); // Set t5 to 0x7ff only if t5 is equal to 0xff.
3588 __ Branch(&exponent_rebiased, eq, t0, Operand(0xff)); 3588 __ Branch(&exponent_rebiased, eq, t0, Operand(0xff));
3589 3589
3590 // Rebias exponent. 3590 // Rebias exponent.
3591 __ Addu(t5, 3591 __ Addu(t5,
3592 t5, 3592 t5,
3593 Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias)); 3593 Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias));
3594 3594
3595 __ bind(&exponent_rebiased); 3595 __ bind(&exponent_rebiased);
3596 __ And(a2, value, Operand(kBinary32SignMask)); 3596 __ And(a2, value, Operand(kBinary32SignMask));
3597 value = no_reg; 3597 value = no_reg;
(...skipping 273 matching lines...) Expand 10 before | Expand all | Expand 10 after
3871 kBitsPerInt - kMantissaInHiWordShift; 3871 kBitsPerInt - kMantissaInHiWordShift;
3872 3872
3873 // Test for all special exponent values: zeros, subnormal numbers, NaNs 3873 // Test for all special exponent values: zeros, subnormal numbers, NaNs
3874 // and infinities. All these should be converted to 0. 3874 // and infinities. All these should be converted to 0.
3875 __ li(t5, HeapNumber::kExponentMask); 3875 __ li(t5, HeapNumber::kExponentMask);
3876 __ and_(t6, t3, t5); 3876 __ and_(t6, t3, t5);
3877 __ Branch(&nan_or_infinity_or_zero, eq, t6, Operand(zero_reg)); 3877 __ Branch(&nan_or_infinity_or_zero, eq, t6, Operand(zero_reg));
3878 3878
3879 __ xor_(t1, t6, t5); 3879 __ xor_(t1, t6, t5);
3880 __ li(t2, kBinary32ExponentMask); 3880 __ li(t2, kBinary32ExponentMask);
3881 __ movz(t6, t2, t1); // Only if t6 is equal to t5. 3881 __ Movz(t6, t2, t1); // Only if t6 is equal to t5.
3882 __ Branch(&nan_or_infinity_or_zero, eq, t6, Operand(t5)); 3882 __ Branch(&nan_or_infinity_or_zero, eq, t6, Operand(t5));
3883 3883
3884 // Rebias exponent. 3884 // Rebias exponent.
3885 __ srl(t6, t6, HeapNumber::kExponentShift); 3885 __ srl(t6, t6, HeapNumber::kExponentShift);
3886 __ Addu(t6, 3886 __ Addu(t6,
3887 t6, 3887 t6,
3888 Operand(kBinary32ExponentBias - HeapNumber::kExponentBias)); 3888 Operand(kBinary32ExponentBias - HeapNumber::kExponentBias));
3889 3889
3890 __ li(t1, Operand(kBinary32MaxExponent)); 3890 __ li(t1, Operand(kBinary32MaxExponent));
3891 __ Slt(t1, t1, t6); 3891 __ Slt(t1, t1, t6);
3892 __ And(t2, t3, Operand(HeapNumber::kSignMask)); 3892 __ And(t2, t3, Operand(HeapNumber::kSignMask));
3893 __ Or(t2, t2, Operand(kBinary32ExponentMask)); 3893 __ Or(t2, t2, Operand(kBinary32ExponentMask));
3894 __ movn(t3, t2, t1); // Only if t6 is gt kBinary32MaxExponent. 3894 __ Movn(t3, t2, t1); // Only if t6 is gt kBinary32MaxExponent.
3895 __ Branch(&done, gt, t6, Operand(kBinary32MaxExponent)); 3895 __ Branch(&done, gt, t6, Operand(kBinary32MaxExponent));
3896 3896
3897 __ Slt(t1, t6, Operand(kBinary32MinExponent)); 3897 __ Slt(t1, t6, Operand(kBinary32MinExponent));
3898 __ And(t2, t3, Operand(HeapNumber::kSignMask)); 3898 __ And(t2, t3, Operand(HeapNumber::kSignMask));
3899 __ movn(t3, t2, t1); // Only if t6 is lt kBinary32MinExponent. 3899 __ Movn(t3, t2, t1); // Only if t6 is lt kBinary32MinExponent.
3900 __ Branch(&done, lt, t6, Operand(kBinary32MinExponent)); 3900 __ Branch(&done, lt, t6, Operand(kBinary32MinExponent));
3901 3901
3902 __ And(t7, t3, Operand(HeapNumber::kSignMask)); 3902 __ And(t7, t3, Operand(HeapNumber::kSignMask));
3903 __ And(t3, t3, Operand(HeapNumber::kMantissaMask)); 3903 __ And(t3, t3, Operand(HeapNumber::kMantissaMask));
3904 __ sll(t3, t3, kMantissaInHiWordShift); 3904 __ sll(t3, t3, kMantissaInHiWordShift);
3905 __ or_(t7, t7, t3); 3905 __ or_(t7, t7, t3);
3906 __ srl(t4, t4, kMantissaInLoWordShift); 3906 __ srl(t4, t4, kMantissaInLoWordShift);
3907 __ or_(t7, t7, t4); 3907 __ or_(t7, t7, t4);
3908 __ sll(t6, t6, kBinary32ExponentShift); 3908 __ sll(t6, t6, kBinary32ExponentShift);
3909 __ or_(t3, t7, t6); 3909 __ or_(t3, t7, t6);
(...skipping 29 matching lines...) Expand all
3939 bool is_signed_type = IsElementTypeSigned(elements_kind); 3939 bool is_signed_type = IsElementTypeSigned(elements_kind);
3940 int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt; 3940 int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt;
3941 int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000; 3941 int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000;
3942 3942
3943 Label done, sign; 3943 Label done, sign;
3944 3944
3945 // Test for all special exponent values: zeros, subnormal numbers, NaNs 3945 // Test for all special exponent values: zeros, subnormal numbers, NaNs
3946 // and infinities. All these should be converted to 0. 3946 // and infinities. All these should be converted to 0.
3947 __ li(t5, HeapNumber::kExponentMask); 3947 __ li(t5, HeapNumber::kExponentMask);
3948 __ and_(t6, t3, t5); 3948 __ and_(t6, t3, t5);
3949 __ movz(t3, zero_reg, t6); // Only if t6 is equal to zero. 3949 __ Movz(t3, zero_reg, t6); // Only if t6 is equal to zero.
3950 __ Branch(&done, eq, t6, Operand(zero_reg)); 3950 __ Branch(&done, eq, t6, Operand(zero_reg));
3951 3951
3952 __ xor_(t2, t6, t5); 3952 __ xor_(t2, t6, t5);
3953 __ movz(t3, zero_reg, t2); // Only if t6 is equal to t5. 3953 __ Movz(t3, zero_reg, t2); // Only if t6 is equal to t5.
3954 __ Branch(&done, eq, t6, Operand(t5)); 3954 __ Branch(&done, eq, t6, Operand(t5));
3955 3955
3956 // Unbias exponent. 3956 // Unbias exponent.
3957 __ srl(t6, t6, HeapNumber::kExponentShift); 3957 __ srl(t6, t6, HeapNumber::kExponentShift);
3958 __ Subu(t6, t6, Operand(HeapNumber::kExponentBias)); 3958 __ Subu(t6, t6, Operand(HeapNumber::kExponentBias));
3959 // If exponent is negative then result is 0. 3959 // If exponent is negative then result is 0.
3960 __ slt(t2, t6, zero_reg); 3960 __ slt(t2, t6, zero_reg);
3961 __ movn(t3, zero_reg, t2); // Only if exponent is negative. 3961 __ Movn(t3, zero_reg, t2); // Only if exponent is negative.
3962 __ Branch(&done, lt, t6, Operand(zero_reg)); 3962 __ Branch(&done, lt, t6, Operand(zero_reg));
3963 3963
3964 // If exponent is too big then result is minimal value. 3964 // If exponent is too big then result is minimal value.
3965 __ slti(t1, t6, meaningfull_bits - 1); 3965 __ slti(t1, t6, meaningfull_bits - 1);
3966 __ li(t2, min_value); 3966 __ li(t2, min_value);
3967 __ movz(t3, t2, t1); // Only if t6 is ge meaningfull_bits - 1. 3967 __ Movz(t3, t2, t1); // Only if t6 is ge meaningfull_bits - 1.
3968 __ Branch(&done, ge, t6, Operand(meaningfull_bits - 1)); 3968 __ Branch(&done, ge, t6, Operand(meaningfull_bits - 1));
3969 3969
3970 __ And(t5, t3, Operand(HeapNumber::kSignMask)); 3970 __ And(t5, t3, Operand(HeapNumber::kSignMask));
3971 __ And(t3, t3, Operand(HeapNumber::kMantissaMask)); 3971 __ And(t3, t3, Operand(HeapNumber::kMantissaMask));
3972 __ Or(t3, t3, Operand(1u << HeapNumber::kMantissaBitsInTopWord)); 3972 __ Or(t3, t3, Operand(1u << HeapNumber::kMantissaBitsInTopWord));
3973 3973
3974 __ li(t9, HeapNumber::kMantissaBitsInTopWord); 3974 __ li(t9, HeapNumber::kMantissaBitsInTopWord);
3975 __ subu(t6, t9, t6); 3975 __ subu(t6, t9, t6);
3976 __ slt(t1, t6, zero_reg); 3976 __ slt(t1, t6, zero_reg);
3977 __ srlv(t2, t3, t6); 3977 __ srlv(t2, t3, t6);
3978 __ movz(t3, t2, t1); // Only if t6 is positive. 3978 __ Movz(t3, t2, t1); // Only if t6 is positive.
3979 __ Branch(&sign, ge, t6, Operand(zero_reg)); 3979 __ Branch(&sign, ge, t6, Operand(zero_reg));
3980 3980
3981 __ subu(t6, zero_reg, t6); 3981 __ subu(t6, zero_reg, t6);
3982 __ sllv(t3, t3, t6); 3982 __ sllv(t3, t3, t6);
3983 __ li(t9, meaningfull_bits); 3983 __ li(t9, meaningfull_bits);
3984 __ subu(t6, t9, t6); 3984 __ subu(t6, t9, t6);
3985 __ srlv(t4, t4, t6); 3985 __ srlv(t4, t4, t6);
3986 __ or_(t3, t3, t4); 3986 __ or_(t3, t3, t4);
3987 3987
3988 __ bind(&sign); 3988 __ bind(&sign);
3989 __ subu(t2, t3, zero_reg); 3989 __ subu(t2, t3, zero_reg);
3990 __ movz(t3, t2, t5); // Only if t5 is zero. 3990 __ Movz(t3, t2, t5); // Only if t5 is zero.
3991 3991
3992 __ bind(&done); 3992 __ bind(&done);
3993 3993
3994 // Result is in t3. 3994 // Result is in t3.
3995 // This switch block should be exactly the same as above (FPU mode). 3995 // This switch block should be exactly the same as above (FPU mode).
3996 switch (elements_kind) { 3996 switch (elements_kind) {
3997 case EXTERNAL_BYTE_ELEMENTS: 3997 case EXTERNAL_BYTE_ELEMENTS:
3998 case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: 3998 case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
3999 __ srl(t8, key, 1); 3999 __ srl(t8, key, 1);
4000 __ addu(t8, a3, t8); 4000 __ addu(t8, a3, t8);
(...skipping 469 matching lines...) Expand 10 before | Expand all | Expand 10 after
4470 __ Jump(ic_slow, RelocInfo::CODE_TARGET); 4470 __ Jump(ic_slow, RelocInfo::CODE_TARGET);
4471 } 4471 }
4472 } 4472 }
4473 4473
4474 4474
4475 #undef __ 4475 #undef __
4476 4476
4477 } } // namespace v8::internal 4477 } } // namespace v8::internal
4478 4478
4479 #endif // V8_TARGET_ARCH_MIPS 4479 #endif // V8_TARGET_ARCH_MIPS
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698