OLD | NEW |
| (Empty) |
1 // Copyright 2011 Google Inc. | |
2 // | |
3 // This code is licensed under the same terms as WebM: | |
4 // Software License Agreement: http://www.webmproject.org/license/software/ | |
5 // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ | |
6 // ----------------------------------------------------------------------------- | |
7 // | |
8 // SSE2 version of speed-critical functions. | |
9 // | |
10 // Author: Christian Duvivier (cduvivier@google.com) | |
11 | |
12 #if defined(__SSE2__) || defined(_MSC_VER) | |
13 #include <emmintrin.h> | |
14 | |
15 #include "vp8enci.h" | |
16 | |
17 #if defined(__cplusplus) || defined(c_plusplus) | |
18 extern "C" { | |
19 #endif | |
20 | |
21 //------------------------------------------------------------------------------ | |
22 // Compute susceptibility based on DCT-coeff histograms: | |
23 // the higher, the "easier" the macroblock is to compress. | |
24 | |
25 static int CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred, | |
26 int start_block, int end_block) { | |
27 int histo[MAX_COEFF_THRESH + 1] = { 0 }; | |
28 int16_t out[16]; | |
29 int j, k; | |
30 const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH); | |
31 for (j = start_block; j < end_block; ++j) { | |
32 VP8FTransform(ref + VP8Scan[j], pred + VP8Scan[j], out); | |
33 | |
34 // Convert coefficients to bin (within out[]). | |
35 { | |
36 // Load. | |
37 const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]); | |
38 const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]); | |
39 // sign(out) = out >> 15 (0x0000 if positive, 0xffff if negative) | |
40 const __m128i sign0 = _mm_srai_epi16(out0, 15); | |
41 const __m128i sign1 = _mm_srai_epi16(out1, 15); | |
42 // abs(out) = (out ^ sign) - sign | |
43 const __m128i xor0 = _mm_xor_si128(out0, sign0); | |
44 const __m128i xor1 = _mm_xor_si128(out1, sign1); | |
45 const __m128i abs0 = _mm_sub_epi16(xor0, sign0); | |
46 const __m128i abs1 = _mm_sub_epi16(xor1, sign1); | |
47 // v = abs(out) >> 2 | |
48 const __m128i v0 = _mm_srai_epi16(abs0, 2); | |
49 const __m128i v1 = _mm_srai_epi16(abs1, 2); | |
50 // bin = min(v, MAX_COEFF_THRESH) | |
51 const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh); | |
52 const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh); | |
53 // Store. | |
54 _mm_storeu_si128((__m128i*)&out[0], bin0); | |
55 _mm_storeu_si128((__m128i*)&out[8], bin1); | |
56 } | |
57 | |
58 // Use bin to update histogram. | |
59 for (k = 0; k < 16; ++k) { | |
60 histo[out[k]]++; | |
61 } | |
62 } | |
63 | |
64 return VP8GetAlpha(histo); | |
65 } | |
66 | |
67 //------------------------------------------------------------------------------ | |
68 // Transforms (Paragraph 14.4) | |
69 | |
70 // Does one or two inverse transforms. | |
71 static void ITransformSSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst, | |
72 int do_two) { | |
73 // This implementation makes use of 16-bit fixed point versions of two | |
74 // multiply constants: | |
75 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 | |
76 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 | |
77 // | |
78 // To be able to use signed 16-bit integers, we use the following trick to | |
79 // have constants within range: | |
80 // - Associated constants are obtained by subtracting the 16-bit fixed point | |
81 // version of one: | |
82 // k = K - (1 << 16) => K = k + (1 << 16) | |
83 // K1 = 85267 => k1 = 20091 | |
84 // K2 = 35468 => k2 = -30068 | |
85 // - The multiplication of a variable by a constant become the sum of the | |
86 // variable and the multiplication of that variable by the associated | |
87 // constant: | |
88 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x | |
89 const __m128i k1 = _mm_set1_epi16(20091); | |
90 const __m128i k2 = _mm_set1_epi16(-30068); | |
91 __m128i T0, T1, T2, T3; | |
92 | |
93 // Load and concatenate the transform coefficients (we'll do two inverse | |
94 // transforms in parallel). In the case of only one inverse transform, the | |
95 // second half of the vectors will just contain random value we'll never | |
96 // use nor store. | |
97 __m128i in0, in1, in2, in3; | |
98 { | |
99 in0 = _mm_loadl_epi64((__m128i*)&in[0]); | |
100 in1 = _mm_loadl_epi64((__m128i*)&in[4]); | |
101 in2 = _mm_loadl_epi64((__m128i*)&in[8]); | |
102 in3 = _mm_loadl_epi64((__m128i*)&in[12]); | |
103 // a00 a10 a20 a30 x x x x | |
104 // a01 a11 a21 a31 x x x x | |
105 // a02 a12 a22 a32 x x x x | |
106 // a03 a13 a23 a33 x x x x | |
107 if (do_two) { | |
108 const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]); | |
109 const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]); | |
110 const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]); | |
111 const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]); | |
112 in0 = _mm_unpacklo_epi64(in0, inB0); | |
113 in1 = _mm_unpacklo_epi64(in1, inB1); | |
114 in2 = _mm_unpacklo_epi64(in2, inB2); | |
115 in3 = _mm_unpacklo_epi64(in3, inB3); | |
116 // a00 a10 a20 a30 b00 b10 b20 b30 | |
117 // a01 a11 a21 a31 b01 b11 b21 b31 | |
118 // a02 a12 a22 a32 b02 b12 b22 b32 | |
119 // a03 a13 a23 a33 b03 b13 b23 b33 | |
120 } | |
121 } | |
122 | |
123 // Vertical pass and subsequent transpose. | |
124 { | |
125 // First pass, c and d calculations are longer because of the "trick" | |
126 // multiplications. | |
127 const __m128i a = _mm_add_epi16(in0, in2); | |
128 const __m128i b = _mm_sub_epi16(in0, in2); | |
129 // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 | |
130 const __m128i c1 = _mm_mulhi_epi16(in1, k2); | |
131 const __m128i c2 = _mm_mulhi_epi16(in3, k1); | |
132 const __m128i c3 = _mm_sub_epi16(in1, in3); | |
133 const __m128i c4 = _mm_sub_epi16(c1, c2); | |
134 const __m128i c = _mm_add_epi16(c3, c4); | |
135 // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 | |
136 const __m128i d1 = _mm_mulhi_epi16(in1, k1); | |
137 const __m128i d2 = _mm_mulhi_epi16(in3, k2); | |
138 const __m128i d3 = _mm_add_epi16(in1, in3); | |
139 const __m128i d4 = _mm_add_epi16(d1, d2); | |
140 const __m128i d = _mm_add_epi16(d3, d4); | |
141 | |
142 // Second pass. | |
143 const __m128i tmp0 = _mm_add_epi16(a, d); | |
144 const __m128i tmp1 = _mm_add_epi16(b, c); | |
145 const __m128i tmp2 = _mm_sub_epi16(b, c); | |
146 const __m128i tmp3 = _mm_sub_epi16(a, d); | |
147 | |
148 // Transpose the two 4x4. | |
149 // a00 a01 a02 a03 b00 b01 b02 b03 | |
150 // a10 a11 a12 a13 b10 b11 b12 b13 | |
151 // a20 a21 a22 a23 b20 b21 b22 b23 | |
152 // a30 a31 a32 a33 b30 b31 b32 b33 | |
153 const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1); | |
154 const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3); | |
155 const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1); | |
156 const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3); | |
157 // a00 a10 a01 a11 a02 a12 a03 a13 | |
158 // a20 a30 a21 a31 a22 a32 a23 a33 | |
159 // b00 b10 b01 b11 b02 b12 b03 b13 | |
160 // b20 b30 b21 b31 b22 b32 b23 b33 | |
161 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); | |
162 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); | |
163 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); | |
164 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); | |
165 // a00 a10 a20 a30 a01 a11 a21 a31 | |
166 // b00 b10 b20 b30 b01 b11 b21 b31 | |
167 // a02 a12 a22 a32 a03 a13 a23 a33 | |
168 // b02 b12 a22 b32 b03 b13 b23 b33 | |
169 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); | |
170 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); | |
171 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); | |
172 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); | |
173 // a00 a10 a20 a30 b00 b10 b20 b30 | |
174 // a01 a11 a21 a31 b01 b11 b21 b31 | |
175 // a02 a12 a22 a32 b02 b12 b22 b32 | |
176 // a03 a13 a23 a33 b03 b13 b23 b33 | |
177 } | |
178 | |
179 // Horizontal pass and subsequent transpose. | |
180 { | |
181 // First pass, c and d calculations are longer because of the "trick" | |
182 // multiplications. | |
183 const __m128i four = _mm_set1_epi16(4); | |
184 const __m128i dc = _mm_add_epi16(T0, four); | |
185 const __m128i a = _mm_add_epi16(dc, T2); | |
186 const __m128i b = _mm_sub_epi16(dc, T2); | |
187 // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 | |
188 const __m128i c1 = _mm_mulhi_epi16(T1, k2); | |
189 const __m128i c2 = _mm_mulhi_epi16(T3, k1); | |
190 const __m128i c3 = _mm_sub_epi16(T1, T3); | |
191 const __m128i c4 = _mm_sub_epi16(c1, c2); | |
192 const __m128i c = _mm_add_epi16(c3, c4); | |
193 // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 | |
194 const __m128i d1 = _mm_mulhi_epi16(T1, k1); | |
195 const __m128i d2 = _mm_mulhi_epi16(T3, k2); | |
196 const __m128i d3 = _mm_add_epi16(T1, T3); | |
197 const __m128i d4 = _mm_add_epi16(d1, d2); | |
198 const __m128i d = _mm_add_epi16(d3, d4); | |
199 | |
200 // Second pass. | |
201 const __m128i tmp0 = _mm_add_epi16(a, d); | |
202 const __m128i tmp1 = _mm_add_epi16(b, c); | |
203 const __m128i tmp2 = _mm_sub_epi16(b, c); | |
204 const __m128i tmp3 = _mm_sub_epi16(a, d); | |
205 const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); | |
206 const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); | |
207 const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); | |
208 const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); | |
209 | |
210 // Transpose the two 4x4. | |
211 // a00 a01 a02 a03 b00 b01 b02 b03 | |
212 // a10 a11 a12 a13 b10 b11 b12 b13 | |
213 // a20 a21 a22 a23 b20 b21 b22 b23 | |
214 // a30 a31 a32 a33 b30 b31 b32 b33 | |
215 const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1); | |
216 const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3); | |
217 const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1); | |
218 const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3); | |
219 // a00 a10 a01 a11 a02 a12 a03 a13 | |
220 // a20 a30 a21 a31 a22 a32 a23 a33 | |
221 // b00 b10 b01 b11 b02 b12 b03 b13 | |
222 // b20 b30 b21 b31 b22 b32 b23 b33 | |
223 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); | |
224 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); | |
225 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); | |
226 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); | |
227 // a00 a10 a20 a30 a01 a11 a21 a31 | |
228 // b00 b10 b20 b30 b01 b11 b21 b31 | |
229 // a02 a12 a22 a32 a03 a13 a23 a33 | |
230 // b02 b12 a22 b32 b03 b13 b23 b33 | |
231 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); | |
232 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); | |
233 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); | |
234 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); | |
235 // a00 a10 a20 a30 b00 b10 b20 b30 | |
236 // a01 a11 a21 a31 b01 b11 b21 b31 | |
237 // a02 a12 a22 a32 b02 b12 b22 b32 | |
238 // a03 a13 a23 a33 b03 b13 b23 b33 | |
239 } | |
240 | |
241 // Add inverse transform to 'ref' and store. | |
242 { | |
243 const __m128i zero = _mm_set1_epi16(0); | |
244 // Load the reference(s). | |
245 __m128i ref0, ref1, ref2, ref3; | |
246 if (do_two) { | |
247 // Load eight bytes/pixels per line. | |
248 ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]); | |
249 ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]); | |
250 ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]); | |
251 ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]); | |
252 } else { | |
253 // Load four bytes/pixels per line. | |
254 ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]); | |
255 ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]); | |
256 ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]); | |
257 ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]); | |
258 } | |
259 // Convert to 16b. | |
260 ref0 = _mm_unpacklo_epi8(ref0, zero); | |
261 ref1 = _mm_unpacklo_epi8(ref1, zero); | |
262 ref2 = _mm_unpacklo_epi8(ref2, zero); | |
263 ref3 = _mm_unpacklo_epi8(ref3, zero); | |
264 // Add the inverse transform(s). | |
265 ref0 = _mm_add_epi16(ref0, T0); | |
266 ref1 = _mm_add_epi16(ref1, T1); | |
267 ref2 = _mm_add_epi16(ref2, T2); | |
268 ref3 = _mm_add_epi16(ref3, T3); | |
269 // Unsigned saturate to 8b. | |
270 ref0 = _mm_packus_epi16(ref0, ref0); | |
271 ref1 = _mm_packus_epi16(ref1, ref1); | |
272 ref2 = _mm_packus_epi16(ref2, ref2); | |
273 ref3 = _mm_packus_epi16(ref3, ref3); | |
274 // Store the results. | |
275 if (do_two) { | |
276 // Store eight bytes/pixels per line. | |
277 _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0); | |
278 _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1); | |
279 _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2); | |
280 _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3); | |
281 } else { | |
282 // Store four bytes/pixels per line. | |
283 *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0); | |
284 *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1); | |
285 *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2); | |
286 *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3); | |
287 } | |
288 } | |
289 } | |
290 | |
291 static void FTransformSSE2(const uint8_t* src, const uint8_t* ref, | |
292 int16_t* out) { | |
293 const __m128i zero = _mm_setzero_si128(); | |
294 const __m128i seven = _mm_set1_epi16(7); | |
295 const __m128i k7500 = _mm_set1_epi32(7500); | |
296 const __m128i k14500 = _mm_set1_epi32(14500); | |
297 const __m128i k51000 = _mm_set1_epi32(51000); | |
298 const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16)); | |
299 const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217, | |
300 5352, 2217, 5352, 2217); | |
301 const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352, | |
302 2217, -5352, 2217, -5352); | |
303 | |
304 __m128i v01, v32; | |
305 | |
306 // Difference between src and ref and initial transpose. | |
307 { | |
308 // Load src and convert to 16b. | |
309 const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]); | |
310 const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]); | |
311 const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]); | |
312 const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]); | |
313 const __m128i src_0 = _mm_unpacklo_epi8(src0, zero); | |
314 const __m128i src_1 = _mm_unpacklo_epi8(src1, zero); | |
315 const __m128i src_2 = _mm_unpacklo_epi8(src2, zero); | |
316 const __m128i src_3 = _mm_unpacklo_epi8(src3, zero); | |
317 // Load ref and convert to 16b. | |
318 const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]); | |
319 const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]); | |
320 const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]); | |
321 const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]); | |
322 const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero); | |
323 const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero); | |
324 const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero); | |
325 const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero); | |
326 // Compute difference. | |
327 const __m128i diff0 = _mm_sub_epi16(src_0, ref_0); | |
328 const __m128i diff1 = _mm_sub_epi16(src_1, ref_1); | |
329 const __m128i diff2 = _mm_sub_epi16(src_2, ref_2); | |
330 const __m128i diff3 = _mm_sub_epi16(src_3, ref_3); | |
331 | |
332 // Transpose. | |
333 // 00 01 02 03 0 0 0 0 | |
334 // 10 11 12 13 0 0 0 0 | |
335 // 20 21 22 23 0 0 0 0 | |
336 // 30 31 32 33 0 0 0 0 | |
337 const __m128i transpose0_0 = _mm_unpacklo_epi16(diff0, diff1); | |
338 const __m128i transpose0_1 = _mm_unpacklo_epi16(diff2, diff3); | |
339 // 00 10 01 11 02 12 03 13 | |
340 // 20 30 21 31 22 32 23 33 | |
341 const __m128i v23 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); | |
342 v01 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); | |
343 v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); | |
344 // a02 a12 a22 a32 a03 a13 a23 a33 | |
345 // a00 a10 a20 a30 a01 a11 a21 a31 | |
346 // a03 a13 a23 a33 a02 a12 a22 a32 | |
347 } | |
348 | |
349 // First pass and subsequent transpose. | |
350 { | |
351 // Same operations are done on the (0,3) and (1,2) pairs. | |
352 // b0 = (a0 + a3) << 3 | |
353 // b1 = (a1 + a2) << 3 | |
354 // b3 = (a0 - a3) << 3 | |
355 // b2 = (a1 - a2) << 3 | |
356 const __m128i a01 = _mm_add_epi16(v01, v32); | |
357 const __m128i a32 = _mm_sub_epi16(v01, v32); | |
358 const __m128i b01 = _mm_slli_epi16(a01, 3); | |
359 const __m128i b32 = _mm_slli_epi16(a32, 3); | |
360 const __m128i b11 = _mm_unpackhi_epi64(b01, b01); | |
361 const __m128i b22 = _mm_unpackhi_epi64(b32, b32); | |
362 | |
363 // e0 = b0 + b1 | |
364 // e2 = b0 - b1 | |
365 const __m128i e0 = _mm_add_epi16(b01, b11); | |
366 const __m128i e2 = _mm_sub_epi16(b01, b11); | |
367 const __m128i e02 = _mm_unpacklo_epi64(e0, e2); | |
368 | |
369 // e1 = (b3 * 5352 + b2 * 2217 + 14500) >> 12 | |
370 // e3 = (b3 * 2217 - b2 * 5352 + 7500) >> 12 | |
371 const __m128i b23 = _mm_unpacklo_epi16(b22, b32); | |
372 const __m128i c1 = _mm_madd_epi16(b23, k5352_2217); | |
373 const __m128i c3 = _mm_madd_epi16(b23, k2217_5352); | |
374 const __m128i d1 = _mm_add_epi32(c1, k14500); | |
375 const __m128i d3 = _mm_add_epi32(c3, k7500); | |
376 const __m128i e1 = _mm_srai_epi32(d1, 12); | |
377 const __m128i e3 = _mm_srai_epi32(d3, 12); | |
378 const __m128i e13 = _mm_packs_epi32(e1, e3); | |
379 | |
380 // Transpose. | |
381 // 00 01 02 03 20 21 22 23 | |
382 // 10 11 12 13 30 31 32 33 | |
383 const __m128i transpose0_0 = _mm_unpacklo_epi16(e02, e13); | |
384 const __m128i transpose0_1 = _mm_unpackhi_epi16(e02, e13); | |
385 // 00 10 01 11 02 12 03 13 | |
386 // 20 30 21 31 22 32 23 33 | |
387 const __m128i v23 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); | |
388 v01 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); | |
389 v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); | |
390 // 02 12 22 32 03 13 23 33 | |
391 // 00 10 20 30 01 11 21 31 | |
392 // 03 13 23 33 02 12 22 32 | |
393 } | |
394 | |
395 // Second pass | |
396 { | |
397 // Same operations are done on the (0,3) and (1,2) pairs. | |
398 // a0 = v0 + v3 | |
399 // a1 = v1 + v2 | |
400 // a3 = v0 - v3 | |
401 // a2 = v1 - v2 | |
402 const __m128i a01 = _mm_add_epi16(v01, v32); | |
403 const __m128i a32 = _mm_sub_epi16(v01, v32); | |
404 const __m128i a11 = _mm_unpackhi_epi64(a01, a01); | |
405 const __m128i a22 = _mm_unpackhi_epi64(a32, a32); | |
406 | |
407 // d0 = (a0 + a1 + 7) >> 4; | |
408 // d2 = (a0 - a1 + 7) >> 4; | |
409 const __m128i b0 = _mm_add_epi16(a01, a11); | |
410 const __m128i b2 = _mm_sub_epi16(a01, a11); | |
411 const __m128i c0 = _mm_add_epi16(b0, seven); | |
412 const __m128i c2 = _mm_add_epi16(b2, seven); | |
413 const __m128i d0 = _mm_srai_epi16(c0, 4); | |
414 const __m128i d2 = _mm_srai_epi16(c2, 4); | |
415 | |
416 // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16) | |
417 // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16) | |
418 const __m128i b23 = _mm_unpacklo_epi16(a22, a32); | |
419 const __m128i c1 = _mm_madd_epi16(b23, k5352_2217); | |
420 const __m128i c3 = _mm_madd_epi16(b23, k2217_5352); | |
421 const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one); | |
422 const __m128i d3 = _mm_add_epi32(c3, k51000); | |
423 const __m128i e1 = _mm_srai_epi32(d1, 16); | |
424 const __m128i e3 = _mm_srai_epi32(d3, 16); | |
425 const __m128i f1 = _mm_packs_epi32(e1, e1); | |
426 const __m128i f3 = _mm_packs_epi32(e3, e3); | |
427 // f1 = f1 + (a3 != 0); | |
428 // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the | |
429 // desired (0, 1), we add one earlier through k12000_plus_one. | |
430 const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero)); | |
431 | |
432 _mm_storel_epi64((__m128i*)&out[ 0], d0); | |
433 _mm_storel_epi64((__m128i*)&out[ 4], g1); | |
434 _mm_storel_epi64((__m128i*)&out[ 8], d2); | |
435 _mm_storel_epi64((__m128i*)&out[12], f3); | |
436 } | |
437 } | |
438 | |
439 //------------------------------------------------------------------------------ | |
440 // Metric | |
441 | |
442 static int SSE4x4SSE2(const uint8_t* a, const uint8_t* b) { | |
443 const __m128i zero = _mm_set1_epi16(0); | |
444 | |
445 // Load values. | |
446 const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]); | |
447 const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]); | |
448 const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]); | |
449 const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]); | |
450 const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]); | |
451 const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]); | |
452 const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]); | |
453 const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]); | |
454 | |
455 // Combine pair of lines and convert to 16b. | |
456 const __m128i a01 = _mm_unpacklo_epi32(a0, a1); | |
457 const __m128i a23 = _mm_unpacklo_epi32(a2, a3); | |
458 const __m128i b01 = _mm_unpacklo_epi32(b0, b1); | |
459 const __m128i b23 = _mm_unpacklo_epi32(b2, b3); | |
460 const __m128i a01s = _mm_unpacklo_epi8(a01, zero); | |
461 const __m128i a23s = _mm_unpacklo_epi8(a23, zero); | |
462 const __m128i b01s = _mm_unpacklo_epi8(b01, zero); | |
463 const __m128i b23s = _mm_unpacklo_epi8(b23, zero); | |
464 | |
465 // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2 | |
466 // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't | |
467 // need absolute values, there is no need to do calculation | |
468 // in 8bit as we are already in 16bit, ... Yet this is what | |
469 // benchmarks the fastest! | |
470 const __m128i d0 = _mm_subs_epu8(a01s, b01s); | |
471 const __m128i d1 = _mm_subs_epu8(b01s, a01s); | |
472 const __m128i d2 = _mm_subs_epu8(a23s, b23s); | |
473 const __m128i d3 = _mm_subs_epu8(b23s, a23s); | |
474 | |
475 // Square and add them all together. | |
476 const __m128i madd0 = _mm_madd_epi16(d0, d0); | |
477 const __m128i madd1 = _mm_madd_epi16(d1, d1); | |
478 const __m128i madd2 = _mm_madd_epi16(d2, d2); | |
479 const __m128i madd3 = _mm_madd_epi16(d3, d3); | |
480 const __m128i sum0 = _mm_add_epi32(madd0, madd1); | |
481 const __m128i sum1 = _mm_add_epi32(madd2, madd3); | |
482 const __m128i sum2 = _mm_add_epi32(sum0, sum1); | |
483 int32_t tmp[4]; | |
484 _mm_storeu_si128((__m128i*)tmp, sum2); | |
485 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); | |
486 } | |
487 | |
488 //------------------------------------------------------------------------------ | |
489 // Texture distortion | |
490 // | |
491 // We try to match the spectral content (weighted) between source and | |
492 // reconstructed samples. | |
493 | |
494 // Hadamard transform | |
495 // Returns the difference between the weighted sum of the absolute value of | |
496 // transformed coefficients. | |
497 static int TTransformSSE2(const uint8_t* inA, const uint8_t* inB, | |
498 const uint16_t* const w) { | |
499 int32_t sum[4]; | |
500 __m128i tmp_0, tmp_1, tmp_2, tmp_3; | |
501 const __m128i zero = _mm_setzero_si128(); | |
502 const __m128i one = _mm_set1_epi16(1); | |
503 const __m128i three = _mm_set1_epi16(3); | |
504 | |
505 // Load, combine and tranpose inputs. | |
506 { | |
507 const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]); | |
508 const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]); | |
509 const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]); | |
510 const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]); | |
511 const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]); | |
512 const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]); | |
513 const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]); | |
514 const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]); | |
515 | |
516 // Combine inA and inB (we'll do two transforms in parallel). | |
517 const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0); | |
518 const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1); | |
519 const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2); | |
520 const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3); | |
521 // a00 b00 a01 b01 a02 b03 a03 b03 0 0 0 0 0 0 0 0 | |
522 // a10 b10 a11 b11 a12 b12 a13 b13 0 0 0 0 0 0 0 0 | |
523 // a20 b20 a21 b21 a22 b22 a23 b23 0 0 0 0 0 0 0 0 | |
524 // a30 b30 a31 b31 a32 b32 a33 b33 0 0 0 0 0 0 0 0 | |
525 | |
526 // Transpose the two 4x4, discarding the filling zeroes. | |
527 const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2); | |
528 const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3); | |
529 // a00 a20 b00 b20 a01 a21 b01 b21 a02 a22 b02 b22 a03 a23 b03 b23 | |
530 // a10 a30 b10 b30 a11 a31 b11 b31 a12 a32 b12 b32 a13 a33 b13 b33 | |
531 const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1); | |
532 const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1); | |
533 // a00 a10 a20 a30 b00 b10 b20 b30 a01 a11 a21 a31 b01 b11 b21 b31 | |
534 // a02 a12 a22 a32 b02 b12 b22 b32 a03 a13 a23 a33 b03 b13 b23 b33 | |
535 | |
536 // Convert to 16b. | |
537 tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero); | |
538 tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero); | |
539 tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero); | |
540 tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero); | |
541 // a00 a10 a20 a30 b00 b10 b20 b30 | |
542 // a01 a11 a21 a31 b01 b11 b21 b31 | |
543 // a02 a12 a22 a32 b02 b12 b22 b32 | |
544 // a03 a13 a23 a33 b03 b13 b23 b33 | |
545 } | |
546 | |
547 // Horizontal pass and subsequent transpose. | |
548 { | |
549 // Calculate a and b (two 4x4 at once). | |
550 const __m128i a0 = _mm_slli_epi16(_mm_add_epi16(tmp_0, tmp_2), 2); | |
551 const __m128i a1 = _mm_slli_epi16(_mm_add_epi16(tmp_1, tmp_3), 2); | |
552 const __m128i a2 = _mm_slli_epi16(_mm_sub_epi16(tmp_1, tmp_3), 2); | |
553 const __m128i a3 = _mm_slli_epi16(_mm_sub_epi16(tmp_0, tmp_2), 2); | |
554 // b0_extra = (a0 != 0); | |
555 const __m128i b0_extra = _mm_andnot_si128(_mm_cmpeq_epi16 (a0, zero), one); | |
556 const __m128i b0_base = _mm_add_epi16(a0, a1); | |
557 const __m128i b1 = _mm_add_epi16(a3, a2); | |
558 const __m128i b2 = _mm_sub_epi16(a3, a2); | |
559 const __m128i b3 = _mm_sub_epi16(a0, a1); | |
560 const __m128i b0 = _mm_add_epi16(b0_base, b0_extra); | |
561 // a00 a01 a02 a03 b00 b01 b02 b03 | |
562 // a10 a11 a12 a13 b10 b11 b12 b13 | |
563 // a20 a21 a22 a23 b20 b21 b22 b23 | |
564 // a30 a31 a32 a33 b30 b31 b32 b33 | |
565 | |
566 // Transpose the two 4x4. | |
567 const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1); | |
568 const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3); | |
569 const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1); | |
570 const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3); | |
571 // a00 a10 a01 a11 a02 a12 a03 a13 | |
572 // a20 a30 a21 a31 a22 a32 a23 a33 | |
573 // b00 b10 b01 b11 b02 b12 b03 b13 | |
574 // b20 b30 b21 b31 b22 b32 b23 b33 | |
575 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); | |
576 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); | |
577 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); | |
578 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); | |
579 // a00 a10 a20 a30 a01 a11 a21 a31 | |
580 // b00 b10 b20 b30 b01 b11 b21 b31 | |
581 // a02 a12 a22 a32 a03 a13 a23 a33 | |
582 // b02 b12 a22 b32 b03 b13 b23 b33 | |
583 tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); | |
584 tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); | |
585 tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); | |
586 tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); | |
587 // a00 a10 a20 a30 b00 b10 b20 b30 | |
588 // a01 a11 a21 a31 b01 b11 b21 b31 | |
589 // a02 a12 a22 a32 b02 b12 b22 b32 | |
590 // a03 a13 a23 a33 b03 b13 b23 b33 | |
591 } | |
592 | |
593 // Vertical pass and difference of weighted sums. | |
594 { | |
595 // Load all inputs. | |
596 // TODO(cduvivier): Make variable declarations and allocations aligned so | |
597 // we can use _mm_load_si128 instead of _mm_loadu_si128. | |
598 const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]); | |
599 const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]); | |
600 | |
601 // Calculate a and b (two 4x4 at once). | |
602 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); | |
603 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); | |
604 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); | |
605 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); | |
606 const __m128i b0 = _mm_add_epi16(a0, a1); | |
607 const __m128i b1 = _mm_add_epi16(a3, a2); | |
608 const __m128i b2 = _mm_sub_epi16(a3, a2); | |
609 const __m128i b3 = _mm_sub_epi16(a0, a1); | |
610 | |
611 // Separate the transforms of inA and inB. | |
612 __m128i A_b0 = _mm_unpacklo_epi64(b0, b1); | |
613 __m128i A_b2 = _mm_unpacklo_epi64(b2, b3); | |
614 __m128i B_b0 = _mm_unpackhi_epi64(b0, b1); | |
615 __m128i B_b2 = _mm_unpackhi_epi64(b2, b3); | |
616 | |
617 { | |
618 // sign(b) = b >> 15 (0x0000 if positive, 0xffff if negative) | |
619 const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15); | |
620 const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15); | |
621 const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15); | |
622 const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15); | |
623 | |
624 // b = abs(b) = (b ^ sign) - sign | |
625 A_b0 = _mm_xor_si128(A_b0, sign_A_b0); | |
626 A_b2 = _mm_xor_si128(A_b2, sign_A_b2); | |
627 B_b0 = _mm_xor_si128(B_b0, sign_B_b0); | |
628 B_b2 = _mm_xor_si128(B_b2, sign_B_b2); | |
629 A_b0 = _mm_sub_epi16(A_b0, sign_A_b0); | |
630 A_b2 = _mm_sub_epi16(A_b2, sign_A_b2); | |
631 B_b0 = _mm_sub_epi16(B_b0, sign_B_b0); | |
632 B_b2 = _mm_sub_epi16(B_b2, sign_B_b2); | |
633 } | |
634 | |
635 // b = abs(b) + 3 | |
636 A_b0 = _mm_add_epi16(A_b0, three); | |
637 A_b2 = _mm_add_epi16(A_b2, three); | |
638 B_b0 = _mm_add_epi16(B_b0, three); | |
639 B_b2 = _mm_add_epi16(B_b2, three); | |
640 | |
641 // abs((b + (b<0) + 3) >> 3) = (abs(b) + 3) >> 3 | |
642 // b = (abs(b) + 3) >> 3 | |
643 A_b0 = _mm_srai_epi16(A_b0, 3); | |
644 A_b2 = _mm_srai_epi16(A_b2, 3); | |
645 B_b0 = _mm_srai_epi16(B_b0, 3); | |
646 B_b2 = _mm_srai_epi16(B_b2, 3); | |
647 | |
648 // weighted sums | |
649 A_b0 = _mm_madd_epi16(A_b0, w_0); | |
650 A_b2 = _mm_madd_epi16(A_b2, w_8); | |
651 B_b0 = _mm_madd_epi16(B_b0, w_0); | |
652 B_b2 = _mm_madd_epi16(B_b2, w_8); | |
653 A_b0 = _mm_add_epi32(A_b0, A_b2); | |
654 B_b0 = _mm_add_epi32(B_b0, B_b2); | |
655 | |
656 // difference of weighted sums | |
657 A_b0 = _mm_sub_epi32(A_b0, B_b0); | |
658 _mm_storeu_si128((__m128i*)&sum[0], A_b0); | |
659 } | |
660 return sum[0] + sum[1] + sum[2] + sum[3]; | |
661 } | |
662 | |
663 static int Disto4x4SSE2(const uint8_t* const a, const uint8_t* const b, | |
664 const uint16_t* const w) { | |
665 const int diff_sum = TTransformSSE2(a, b, w); | |
666 return (abs(diff_sum) + 8) >> 4; | |
667 } | |
668 | |
669 static int Disto16x16SSE2(const uint8_t* const a, const uint8_t* const b, | |
670 const uint16_t* const w) { | |
671 int D = 0; | |
672 int x, y; | |
673 for (y = 0; y < 16 * BPS; y += 4 * BPS) { | |
674 for (x = 0; x < 16; x += 4) { | |
675 D += Disto4x4SSE2(a + x + y, b + x + y, w); | |
676 } | |
677 } | |
678 return D; | |
679 } | |
680 | |
681 | |
682 //------------------------------------------------------------------------------ | |
683 // Quantization | |
684 // | |
685 | |
686 // Simple quantization | |
687 static int QuantizeBlockSSE2(int16_t in[16], int16_t out[16], | |
688 int n, const VP8Matrix* const mtx) { | |
689 const __m128i max_coeff_2047 = _mm_set1_epi16(2047); | |
690 const __m128i zero = _mm_set1_epi16(0); | |
691 __m128i sign0, sign8; | |
692 __m128i coeff0, coeff8; | |
693 __m128i out0, out8; | |
694 __m128i packed_out; | |
695 | |
696 // Load all inputs. | |
697 // TODO(cduvivier): Make variable declarations and allocations aligned so that | |
698 // we can use _mm_load_si128 instead of _mm_loadu_si128. | |
699 __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]); | |
700 __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]); | |
701 const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[0]); | |
702 const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[8]); | |
703 const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]); | |
704 const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]); | |
705 const __m128i bias0 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]); | |
706 const __m128i bias8 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]); | |
707 const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]); | |
708 const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]); | |
709 const __m128i zthresh0 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[0]); | |
710 const __m128i zthresh8 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[8]); | |
711 | |
712 // sign(in) = in >> 15 (0x0000 if positive, 0xffff if negative) | |
713 sign0 = _mm_srai_epi16(in0, 15); | |
714 sign8 = _mm_srai_epi16(in8, 15); | |
715 | |
716 // coeff = abs(in) = (in ^ sign) - sign | |
717 coeff0 = _mm_xor_si128(in0, sign0); | |
718 coeff8 = _mm_xor_si128(in8, sign8); | |
719 coeff0 = _mm_sub_epi16(coeff0, sign0); | |
720 coeff8 = _mm_sub_epi16(coeff8, sign8); | |
721 | |
722 // coeff = abs(in) + sharpen | |
723 coeff0 = _mm_add_epi16(coeff0, sharpen0); | |
724 coeff8 = _mm_add_epi16(coeff8, sharpen8); | |
725 | |
726 // if (coeff > 2047) coeff = 2047 | |
727 coeff0 = _mm_min_epi16(coeff0, max_coeff_2047); | |
728 coeff8 = _mm_min_epi16(coeff8, max_coeff_2047); | |
729 | |
730 // out = (coeff * iQ + B) >> QFIX; | |
731 { | |
732 // doing calculations with 32b precision (QFIX=17) | |
733 // out = (coeff * iQ) | |
734 __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0); | |
735 __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0); | |
736 __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8); | |
737 __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8); | |
738 __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H); | |
739 __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H); | |
740 __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H); | |
741 __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H); | |
742 // expand bias from 16b to 32b | |
743 __m128i bias_00 = _mm_unpacklo_epi16(bias0, zero); | |
744 __m128i bias_04 = _mm_unpackhi_epi16(bias0, zero); | |
745 __m128i bias_08 = _mm_unpacklo_epi16(bias8, zero); | |
746 __m128i bias_12 = _mm_unpackhi_epi16(bias8, zero); | |
747 // out = (coeff * iQ + B) | |
748 out_00 = _mm_add_epi32(out_00, bias_00); | |
749 out_04 = _mm_add_epi32(out_04, bias_04); | |
750 out_08 = _mm_add_epi32(out_08, bias_08); | |
751 out_12 = _mm_add_epi32(out_12, bias_12); | |
752 // out = (coeff * iQ + B) >> QFIX; | |
753 out_00 = _mm_srai_epi32(out_00, QFIX); | |
754 out_04 = _mm_srai_epi32(out_04, QFIX); | |
755 out_08 = _mm_srai_epi32(out_08, QFIX); | |
756 out_12 = _mm_srai_epi32(out_12, QFIX); | |
757 // pack result as 16b | |
758 out0 = _mm_packs_epi32(out_00, out_04); | |
759 out8 = _mm_packs_epi32(out_08, out_12); | |
760 } | |
761 | |
762 // get sign back (if (sign[j]) out_n = -out_n) | |
763 out0 = _mm_xor_si128(out0, sign0); | |
764 out8 = _mm_xor_si128(out8, sign8); | |
765 out0 = _mm_sub_epi16(out0, sign0); | |
766 out8 = _mm_sub_epi16(out8, sign8); | |
767 | |
768 // in = out * Q | |
769 in0 = _mm_mullo_epi16(out0, q0); | |
770 in8 = _mm_mullo_epi16(out8, q8); | |
771 | |
772 // if (coeff <= mtx->zthresh_) {in=0; out=0;} | |
773 { | |
774 __m128i cmp0 = _mm_cmpgt_epi16(coeff0, zthresh0); | |
775 __m128i cmp8 = _mm_cmpgt_epi16(coeff8, zthresh8); | |
776 in0 = _mm_and_si128(in0, cmp0); | |
777 in8 = _mm_and_si128(in8, cmp8); | |
778 _mm_storeu_si128((__m128i*)&in[0], in0); | |
779 _mm_storeu_si128((__m128i*)&in[8], in8); | |
780 out0 = _mm_and_si128(out0, cmp0); | |
781 out8 = _mm_and_si128(out8, cmp8); | |
782 } | |
783 | |
784 // zigzag the output before storing it. | |
785 // | |
786 // The zigzag pattern can almost be reproduced with a small sequence of | |
787 // shuffles. After it, we only need to swap the 7th (ending up in third | |
788 // position instead of twelfth) and 8th values. | |
789 { | |
790 __m128i outZ0, outZ8; | |
791 outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0)); | |
792 outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0)); | |
793 outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2)); | |
794 outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1)); | |
795 outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0)); | |
796 outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0)); | |
797 _mm_storeu_si128((__m128i*)&out[0], outZ0); | |
798 _mm_storeu_si128((__m128i*)&out[8], outZ8); | |
799 packed_out = _mm_packs_epi16(outZ0, outZ8); | |
800 } | |
801 { | |
802 const int16_t outZ_12 = out[12]; | |
803 const int16_t outZ_3 = out[3]; | |
804 out[3] = outZ_12; | |
805 out[12] = outZ_3; | |
806 } | |
807 | |
808 // detect if all 'out' values are zeroes or not | |
809 { | |
810 int32_t tmp[4]; | |
811 _mm_storeu_si128((__m128i*)tmp, packed_out); | |
812 if (n) { | |
813 tmp[0] &= ~0xff; | |
814 } | |
815 return (tmp[3] || tmp[2] || tmp[1] || tmp[0]); | |
816 } | |
817 } | |
818 | |
819 extern void VP8EncDspInitSSE2(void); | |
820 void VP8EncDspInitSSE2(void) { | |
821 VP8CollectHistogram = CollectHistogramSSE2; | |
822 VP8EncQuantizeBlock = QuantizeBlockSSE2; | |
823 VP8ITransform = ITransformSSE2; | |
824 VP8FTransform = FTransformSSE2; | |
825 VP8SSE4x4 = SSE4x4SSE2; | |
826 VP8TDisto4x4 = Disto4x4SSE2; | |
827 VP8TDisto16x16 = Disto16x16SSE2; | |
828 } | |
829 | |
830 #if defined(__cplusplus) || defined(c_plusplus) | |
831 } // extern "C" | |
832 #endif | |
833 | |
834 #endif //__SSE2__ | |
OLD | NEW |