Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(5)

Side by Side Diff: third_party/libwebp/enc/enc_sse2.c

Issue 9328013: remove 2 unused files that are from an old version (Closed) Base URL: svn://chrome-svn/chrome/trunk/src/
Patch Set: Created 8 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « third_party/libwebp/enc/enc.c ('k') | no next file » | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2011 Google Inc.
2 //
3 // This code is licensed under the same terms as WebM:
4 // Software License Agreement: http://www.webmproject.org/license/software/
5 // Additional IP Rights Grant: http://www.webmproject.org/license/additional/
6 // -----------------------------------------------------------------------------
7 //
8 // SSE2 version of speed-critical functions.
9 //
10 // Author: Christian Duvivier (cduvivier@google.com)
11
12 #if defined(__SSE2__) || defined(_MSC_VER)
13 #include <emmintrin.h>
14
15 #include "vp8enci.h"
16
17 #if defined(__cplusplus) || defined(c_plusplus)
18 extern "C" {
19 #endif
20
21 //------------------------------------------------------------------------------
22 // Compute susceptibility based on DCT-coeff histograms:
23 // the higher, the "easier" the macroblock is to compress.
24
25 static int CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred,
26 int start_block, int end_block) {
27 int histo[MAX_COEFF_THRESH + 1] = { 0 };
28 int16_t out[16];
29 int j, k;
30 const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
31 for (j = start_block; j < end_block; ++j) {
32 VP8FTransform(ref + VP8Scan[j], pred + VP8Scan[j], out);
33
34 // Convert coefficients to bin (within out[]).
35 {
36 // Load.
37 const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
38 const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
39 // sign(out) = out >> 15 (0x0000 if positive, 0xffff if negative)
40 const __m128i sign0 = _mm_srai_epi16(out0, 15);
41 const __m128i sign1 = _mm_srai_epi16(out1, 15);
42 // abs(out) = (out ^ sign) - sign
43 const __m128i xor0 = _mm_xor_si128(out0, sign0);
44 const __m128i xor1 = _mm_xor_si128(out1, sign1);
45 const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
46 const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
47 // v = abs(out) >> 2
48 const __m128i v0 = _mm_srai_epi16(abs0, 2);
49 const __m128i v1 = _mm_srai_epi16(abs1, 2);
50 // bin = min(v, MAX_COEFF_THRESH)
51 const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
52 const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
53 // Store.
54 _mm_storeu_si128((__m128i*)&out[0], bin0);
55 _mm_storeu_si128((__m128i*)&out[8], bin1);
56 }
57
58 // Use bin to update histogram.
59 for (k = 0; k < 16; ++k) {
60 histo[out[k]]++;
61 }
62 }
63
64 return VP8GetAlpha(histo);
65 }
66
67 //------------------------------------------------------------------------------
68 // Transforms (Paragraph 14.4)
69
70 // Does one or two inverse transforms.
71 static void ITransformSSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
72 int do_two) {
73 // This implementation makes use of 16-bit fixed point versions of two
74 // multiply constants:
75 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
76 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
77 //
78 // To be able to use signed 16-bit integers, we use the following trick to
79 // have constants within range:
80 // - Associated constants are obtained by subtracting the 16-bit fixed point
81 // version of one:
82 // k = K - (1 << 16) => K = k + (1 << 16)
83 // K1 = 85267 => k1 = 20091
84 // K2 = 35468 => k2 = -30068
85 // - The multiplication of a variable by a constant become the sum of the
86 // variable and the multiplication of that variable by the associated
87 // constant:
88 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
89 const __m128i k1 = _mm_set1_epi16(20091);
90 const __m128i k2 = _mm_set1_epi16(-30068);
91 __m128i T0, T1, T2, T3;
92
93 // Load and concatenate the transform coefficients (we'll do two inverse
94 // transforms in parallel). In the case of only one inverse transform, the
95 // second half of the vectors will just contain random value we'll never
96 // use nor store.
97 __m128i in0, in1, in2, in3;
98 {
99 in0 = _mm_loadl_epi64((__m128i*)&in[0]);
100 in1 = _mm_loadl_epi64((__m128i*)&in[4]);
101 in2 = _mm_loadl_epi64((__m128i*)&in[8]);
102 in3 = _mm_loadl_epi64((__m128i*)&in[12]);
103 // a00 a10 a20 a30 x x x x
104 // a01 a11 a21 a31 x x x x
105 // a02 a12 a22 a32 x x x x
106 // a03 a13 a23 a33 x x x x
107 if (do_two) {
108 const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
109 const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
110 const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
111 const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
112 in0 = _mm_unpacklo_epi64(in0, inB0);
113 in1 = _mm_unpacklo_epi64(in1, inB1);
114 in2 = _mm_unpacklo_epi64(in2, inB2);
115 in3 = _mm_unpacklo_epi64(in3, inB3);
116 // a00 a10 a20 a30 b00 b10 b20 b30
117 // a01 a11 a21 a31 b01 b11 b21 b31
118 // a02 a12 a22 a32 b02 b12 b22 b32
119 // a03 a13 a23 a33 b03 b13 b23 b33
120 }
121 }
122
123 // Vertical pass and subsequent transpose.
124 {
125 // First pass, c and d calculations are longer because of the "trick"
126 // multiplications.
127 const __m128i a = _mm_add_epi16(in0, in2);
128 const __m128i b = _mm_sub_epi16(in0, in2);
129 // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
130 const __m128i c1 = _mm_mulhi_epi16(in1, k2);
131 const __m128i c2 = _mm_mulhi_epi16(in3, k1);
132 const __m128i c3 = _mm_sub_epi16(in1, in3);
133 const __m128i c4 = _mm_sub_epi16(c1, c2);
134 const __m128i c = _mm_add_epi16(c3, c4);
135 // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
136 const __m128i d1 = _mm_mulhi_epi16(in1, k1);
137 const __m128i d2 = _mm_mulhi_epi16(in3, k2);
138 const __m128i d3 = _mm_add_epi16(in1, in3);
139 const __m128i d4 = _mm_add_epi16(d1, d2);
140 const __m128i d = _mm_add_epi16(d3, d4);
141
142 // Second pass.
143 const __m128i tmp0 = _mm_add_epi16(a, d);
144 const __m128i tmp1 = _mm_add_epi16(b, c);
145 const __m128i tmp2 = _mm_sub_epi16(b, c);
146 const __m128i tmp3 = _mm_sub_epi16(a, d);
147
148 // Transpose the two 4x4.
149 // a00 a01 a02 a03 b00 b01 b02 b03
150 // a10 a11 a12 a13 b10 b11 b12 b13
151 // a20 a21 a22 a23 b20 b21 b22 b23
152 // a30 a31 a32 a33 b30 b31 b32 b33
153 const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
154 const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
155 const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
156 const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
157 // a00 a10 a01 a11 a02 a12 a03 a13
158 // a20 a30 a21 a31 a22 a32 a23 a33
159 // b00 b10 b01 b11 b02 b12 b03 b13
160 // b20 b30 b21 b31 b22 b32 b23 b33
161 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
162 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
163 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
164 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
165 // a00 a10 a20 a30 a01 a11 a21 a31
166 // b00 b10 b20 b30 b01 b11 b21 b31
167 // a02 a12 a22 a32 a03 a13 a23 a33
168 // b02 b12 a22 b32 b03 b13 b23 b33
169 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
170 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
171 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
172 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
173 // a00 a10 a20 a30 b00 b10 b20 b30
174 // a01 a11 a21 a31 b01 b11 b21 b31
175 // a02 a12 a22 a32 b02 b12 b22 b32
176 // a03 a13 a23 a33 b03 b13 b23 b33
177 }
178
179 // Horizontal pass and subsequent transpose.
180 {
181 // First pass, c and d calculations are longer because of the "trick"
182 // multiplications.
183 const __m128i four = _mm_set1_epi16(4);
184 const __m128i dc = _mm_add_epi16(T0, four);
185 const __m128i a = _mm_add_epi16(dc, T2);
186 const __m128i b = _mm_sub_epi16(dc, T2);
187 // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
188 const __m128i c1 = _mm_mulhi_epi16(T1, k2);
189 const __m128i c2 = _mm_mulhi_epi16(T3, k1);
190 const __m128i c3 = _mm_sub_epi16(T1, T3);
191 const __m128i c4 = _mm_sub_epi16(c1, c2);
192 const __m128i c = _mm_add_epi16(c3, c4);
193 // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
194 const __m128i d1 = _mm_mulhi_epi16(T1, k1);
195 const __m128i d2 = _mm_mulhi_epi16(T3, k2);
196 const __m128i d3 = _mm_add_epi16(T1, T3);
197 const __m128i d4 = _mm_add_epi16(d1, d2);
198 const __m128i d = _mm_add_epi16(d3, d4);
199
200 // Second pass.
201 const __m128i tmp0 = _mm_add_epi16(a, d);
202 const __m128i tmp1 = _mm_add_epi16(b, c);
203 const __m128i tmp2 = _mm_sub_epi16(b, c);
204 const __m128i tmp3 = _mm_sub_epi16(a, d);
205 const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
206 const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
207 const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
208 const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
209
210 // Transpose the two 4x4.
211 // a00 a01 a02 a03 b00 b01 b02 b03
212 // a10 a11 a12 a13 b10 b11 b12 b13
213 // a20 a21 a22 a23 b20 b21 b22 b23
214 // a30 a31 a32 a33 b30 b31 b32 b33
215 const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
216 const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
217 const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
218 const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
219 // a00 a10 a01 a11 a02 a12 a03 a13
220 // a20 a30 a21 a31 a22 a32 a23 a33
221 // b00 b10 b01 b11 b02 b12 b03 b13
222 // b20 b30 b21 b31 b22 b32 b23 b33
223 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
224 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
225 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
226 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
227 // a00 a10 a20 a30 a01 a11 a21 a31
228 // b00 b10 b20 b30 b01 b11 b21 b31
229 // a02 a12 a22 a32 a03 a13 a23 a33
230 // b02 b12 a22 b32 b03 b13 b23 b33
231 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
232 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
233 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
234 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
235 // a00 a10 a20 a30 b00 b10 b20 b30
236 // a01 a11 a21 a31 b01 b11 b21 b31
237 // a02 a12 a22 a32 b02 b12 b22 b32
238 // a03 a13 a23 a33 b03 b13 b23 b33
239 }
240
241 // Add inverse transform to 'ref' and store.
242 {
243 const __m128i zero = _mm_set1_epi16(0);
244 // Load the reference(s).
245 __m128i ref0, ref1, ref2, ref3;
246 if (do_two) {
247 // Load eight bytes/pixels per line.
248 ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
249 ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
250 ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
251 ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
252 } else {
253 // Load four bytes/pixels per line.
254 ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]);
255 ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]);
256 ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]);
257 ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]);
258 }
259 // Convert to 16b.
260 ref0 = _mm_unpacklo_epi8(ref0, zero);
261 ref1 = _mm_unpacklo_epi8(ref1, zero);
262 ref2 = _mm_unpacklo_epi8(ref2, zero);
263 ref3 = _mm_unpacklo_epi8(ref3, zero);
264 // Add the inverse transform(s).
265 ref0 = _mm_add_epi16(ref0, T0);
266 ref1 = _mm_add_epi16(ref1, T1);
267 ref2 = _mm_add_epi16(ref2, T2);
268 ref3 = _mm_add_epi16(ref3, T3);
269 // Unsigned saturate to 8b.
270 ref0 = _mm_packus_epi16(ref0, ref0);
271 ref1 = _mm_packus_epi16(ref1, ref1);
272 ref2 = _mm_packus_epi16(ref2, ref2);
273 ref3 = _mm_packus_epi16(ref3, ref3);
274 // Store the results.
275 if (do_two) {
276 // Store eight bytes/pixels per line.
277 _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
278 _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
279 _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
280 _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
281 } else {
282 // Store four bytes/pixels per line.
283 *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0);
284 *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1);
285 *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2);
286 *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3);
287 }
288 }
289 }
290
291 static void FTransformSSE2(const uint8_t* src, const uint8_t* ref,
292 int16_t* out) {
293 const __m128i zero = _mm_setzero_si128();
294 const __m128i seven = _mm_set1_epi16(7);
295 const __m128i k7500 = _mm_set1_epi32(7500);
296 const __m128i k14500 = _mm_set1_epi32(14500);
297 const __m128i k51000 = _mm_set1_epi32(51000);
298 const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
299 const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217,
300 5352, 2217, 5352, 2217);
301 const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
302 2217, -5352, 2217, -5352);
303
304 __m128i v01, v32;
305
306 // Difference between src and ref and initial transpose.
307 {
308 // Load src and convert to 16b.
309 const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]);
310 const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]);
311 const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]);
312 const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]);
313 const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
314 const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
315 const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
316 const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
317 // Load ref and convert to 16b.
318 const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
319 const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
320 const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
321 const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
322 const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
323 const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
324 const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
325 const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
326 // Compute difference.
327 const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
328 const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
329 const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
330 const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
331
332 // Transpose.
333 // 00 01 02 03 0 0 0 0
334 // 10 11 12 13 0 0 0 0
335 // 20 21 22 23 0 0 0 0
336 // 30 31 32 33 0 0 0 0
337 const __m128i transpose0_0 = _mm_unpacklo_epi16(diff0, diff1);
338 const __m128i transpose0_1 = _mm_unpacklo_epi16(diff2, diff3);
339 // 00 10 01 11 02 12 03 13
340 // 20 30 21 31 22 32 23 33
341 const __m128i v23 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
342 v01 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
343 v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));
344 // a02 a12 a22 a32 a03 a13 a23 a33
345 // a00 a10 a20 a30 a01 a11 a21 a31
346 // a03 a13 a23 a33 a02 a12 a22 a32
347 }
348
349 // First pass and subsequent transpose.
350 {
351 // Same operations are done on the (0,3) and (1,2) pairs.
352 // b0 = (a0 + a3) << 3
353 // b1 = (a1 + a2) << 3
354 // b3 = (a0 - a3) << 3
355 // b2 = (a1 - a2) << 3
356 const __m128i a01 = _mm_add_epi16(v01, v32);
357 const __m128i a32 = _mm_sub_epi16(v01, v32);
358 const __m128i b01 = _mm_slli_epi16(a01, 3);
359 const __m128i b32 = _mm_slli_epi16(a32, 3);
360 const __m128i b11 = _mm_unpackhi_epi64(b01, b01);
361 const __m128i b22 = _mm_unpackhi_epi64(b32, b32);
362
363 // e0 = b0 + b1
364 // e2 = b0 - b1
365 const __m128i e0 = _mm_add_epi16(b01, b11);
366 const __m128i e2 = _mm_sub_epi16(b01, b11);
367 const __m128i e02 = _mm_unpacklo_epi64(e0, e2);
368
369 // e1 = (b3 * 5352 + b2 * 2217 + 14500) >> 12
370 // e3 = (b3 * 2217 - b2 * 5352 + 7500) >> 12
371 const __m128i b23 = _mm_unpacklo_epi16(b22, b32);
372 const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
373 const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
374 const __m128i d1 = _mm_add_epi32(c1, k14500);
375 const __m128i d3 = _mm_add_epi32(c3, k7500);
376 const __m128i e1 = _mm_srai_epi32(d1, 12);
377 const __m128i e3 = _mm_srai_epi32(d3, 12);
378 const __m128i e13 = _mm_packs_epi32(e1, e3);
379
380 // Transpose.
381 // 00 01 02 03 20 21 22 23
382 // 10 11 12 13 30 31 32 33
383 const __m128i transpose0_0 = _mm_unpacklo_epi16(e02, e13);
384 const __m128i transpose0_1 = _mm_unpackhi_epi16(e02, e13);
385 // 00 10 01 11 02 12 03 13
386 // 20 30 21 31 22 32 23 33
387 const __m128i v23 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
388 v01 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
389 v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));
390 // 02 12 22 32 03 13 23 33
391 // 00 10 20 30 01 11 21 31
392 // 03 13 23 33 02 12 22 32
393 }
394
395 // Second pass
396 {
397 // Same operations are done on the (0,3) and (1,2) pairs.
398 // a0 = v0 + v3
399 // a1 = v1 + v2
400 // a3 = v0 - v3
401 // a2 = v1 - v2
402 const __m128i a01 = _mm_add_epi16(v01, v32);
403 const __m128i a32 = _mm_sub_epi16(v01, v32);
404 const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
405 const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
406
407 // d0 = (a0 + a1 + 7) >> 4;
408 // d2 = (a0 - a1 + 7) >> 4;
409 const __m128i b0 = _mm_add_epi16(a01, a11);
410 const __m128i b2 = _mm_sub_epi16(a01, a11);
411 const __m128i c0 = _mm_add_epi16(b0, seven);
412 const __m128i c2 = _mm_add_epi16(b2, seven);
413 const __m128i d0 = _mm_srai_epi16(c0, 4);
414 const __m128i d2 = _mm_srai_epi16(c2, 4);
415
416 // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
417 // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
418 const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
419 const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
420 const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
421 const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
422 const __m128i d3 = _mm_add_epi32(c3, k51000);
423 const __m128i e1 = _mm_srai_epi32(d1, 16);
424 const __m128i e3 = _mm_srai_epi32(d3, 16);
425 const __m128i f1 = _mm_packs_epi32(e1, e1);
426 const __m128i f3 = _mm_packs_epi32(e3, e3);
427 // f1 = f1 + (a3 != 0);
428 // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
429 // desired (0, 1), we add one earlier through k12000_plus_one.
430 const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
431
432 _mm_storel_epi64((__m128i*)&out[ 0], d0);
433 _mm_storel_epi64((__m128i*)&out[ 4], g1);
434 _mm_storel_epi64((__m128i*)&out[ 8], d2);
435 _mm_storel_epi64((__m128i*)&out[12], f3);
436 }
437 }
438
439 //------------------------------------------------------------------------------
440 // Metric
441
442 static int SSE4x4SSE2(const uint8_t* a, const uint8_t* b) {
443 const __m128i zero = _mm_set1_epi16(0);
444
445 // Load values.
446 const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]);
447 const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]);
448 const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]);
449 const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]);
450 const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]);
451 const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]);
452 const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]);
453 const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]);
454
455 // Combine pair of lines and convert to 16b.
456 const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
457 const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
458 const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
459 const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
460 const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
461 const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
462 const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
463 const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
464
465 // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
466 // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
467 // need absolute values, there is no need to do calculation
468 // in 8bit as we are already in 16bit, ... Yet this is what
469 // benchmarks the fastest!
470 const __m128i d0 = _mm_subs_epu8(a01s, b01s);
471 const __m128i d1 = _mm_subs_epu8(b01s, a01s);
472 const __m128i d2 = _mm_subs_epu8(a23s, b23s);
473 const __m128i d3 = _mm_subs_epu8(b23s, a23s);
474
475 // Square and add them all together.
476 const __m128i madd0 = _mm_madd_epi16(d0, d0);
477 const __m128i madd1 = _mm_madd_epi16(d1, d1);
478 const __m128i madd2 = _mm_madd_epi16(d2, d2);
479 const __m128i madd3 = _mm_madd_epi16(d3, d3);
480 const __m128i sum0 = _mm_add_epi32(madd0, madd1);
481 const __m128i sum1 = _mm_add_epi32(madd2, madd3);
482 const __m128i sum2 = _mm_add_epi32(sum0, sum1);
483 int32_t tmp[4];
484 _mm_storeu_si128((__m128i*)tmp, sum2);
485 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
486 }
487
488 //------------------------------------------------------------------------------
489 // Texture distortion
490 //
491 // We try to match the spectral content (weighted) between source and
492 // reconstructed samples.
493
494 // Hadamard transform
495 // Returns the difference between the weighted sum of the absolute value of
496 // transformed coefficients.
497 static int TTransformSSE2(const uint8_t* inA, const uint8_t* inB,
498 const uint16_t* const w) {
499 int32_t sum[4];
500 __m128i tmp_0, tmp_1, tmp_2, tmp_3;
501 const __m128i zero = _mm_setzero_si128();
502 const __m128i one = _mm_set1_epi16(1);
503 const __m128i three = _mm_set1_epi16(3);
504
505 // Load, combine and tranpose inputs.
506 {
507 const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
508 const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
509 const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]);
510 const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]);
511 const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]);
512 const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]);
513 const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]);
514 const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]);
515
516 // Combine inA and inB (we'll do two transforms in parallel).
517 const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
518 const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
519 const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
520 const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
521 // a00 b00 a01 b01 a02 b03 a03 b03 0 0 0 0 0 0 0 0
522 // a10 b10 a11 b11 a12 b12 a13 b13 0 0 0 0 0 0 0 0
523 // a20 b20 a21 b21 a22 b22 a23 b23 0 0 0 0 0 0 0 0
524 // a30 b30 a31 b31 a32 b32 a33 b33 0 0 0 0 0 0 0 0
525
526 // Transpose the two 4x4, discarding the filling zeroes.
527 const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
528 const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
529 // a00 a20 b00 b20 a01 a21 b01 b21 a02 a22 b02 b22 a03 a23 b03 b23
530 // a10 a30 b10 b30 a11 a31 b11 b31 a12 a32 b12 b32 a13 a33 b13 b33
531 const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
532 const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
533 // a00 a10 a20 a30 b00 b10 b20 b30 a01 a11 a21 a31 b01 b11 b21 b31
534 // a02 a12 a22 a32 b02 b12 b22 b32 a03 a13 a23 a33 b03 b13 b23 b33
535
536 // Convert to 16b.
537 tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
538 tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
539 tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
540 tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
541 // a00 a10 a20 a30 b00 b10 b20 b30
542 // a01 a11 a21 a31 b01 b11 b21 b31
543 // a02 a12 a22 a32 b02 b12 b22 b32
544 // a03 a13 a23 a33 b03 b13 b23 b33
545 }
546
547 // Horizontal pass and subsequent transpose.
548 {
549 // Calculate a and b (two 4x4 at once).
550 const __m128i a0 = _mm_slli_epi16(_mm_add_epi16(tmp_0, tmp_2), 2);
551 const __m128i a1 = _mm_slli_epi16(_mm_add_epi16(tmp_1, tmp_3), 2);
552 const __m128i a2 = _mm_slli_epi16(_mm_sub_epi16(tmp_1, tmp_3), 2);
553 const __m128i a3 = _mm_slli_epi16(_mm_sub_epi16(tmp_0, tmp_2), 2);
554 // b0_extra = (a0 != 0);
555 const __m128i b0_extra = _mm_andnot_si128(_mm_cmpeq_epi16 (a0, zero), one);
556 const __m128i b0_base = _mm_add_epi16(a0, a1);
557 const __m128i b1 = _mm_add_epi16(a3, a2);
558 const __m128i b2 = _mm_sub_epi16(a3, a2);
559 const __m128i b3 = _mm_sub_epi16(a0, a1);
560 const __m128i b0 = _mm_add_epi16(b0_base, b0_extra);
561 // a00 a01 a02 a03 b00 b01 b02 b03
562 // a10 a11 a12 a13 b10 b11 b12 b13
563 // a20 a21 a22 a23 b20 b21 b22 b23
564 // a30 a31 a32 a33 b30 b31 b32 b33
565
566 // Transpose the two 4x4.
567 const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
568 const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
569 const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
570 const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
571 // a00 a10 a01 a11 a02 a12 a03 a13
572 // a20 a30 a21 a31 a22 a32 a23 a33
573 // b00 b10 b01 b11 b02 b12 b03 b13
574 // b20 b30 b21 b31 b22 b32 b23 b33
575 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
576 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
577 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
578 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
579 // a00 a10 a20 a30 a01 a11 a21 a31
580 // b00 b10 b20 b30 b01 b11 b21 b31
581 // a02 a12 a22 a32 a03 a13 a23 a33
582 // b02 b12 a22 b32 b03 b13 b23 b33
583 tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
584 tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
585 tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
586 tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
587 // a00 a10 a20 a30 b00 b10 b20 b30
588 // a01 a11 a21 a31 b01 b11 b21 b31
589 // a02 a12 a22 a32 b02 b12 b22 b32
590 // a03 a13 a23 a33 b03 b13 b23 b33
591 }
592
593 // Vertical pass and difference of weighted sums.
594 {
595 // Load all inputs.
596 // TODO(cduvivier): Make variable declarations and allocations aligned so
597 // we can use _mm_load_si128 instead of _mm_loadu_si128.
598 const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]);
599 const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]);
600
601 // Calculate a and b (two 4x4 at once).
602 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
603 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
604 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
605 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
606 const __m128i b0 = _mm_add_epi16(a0, a1);
607 const __m128i b1 = _mm_add_epi16(a3, a2);
608 const __m128i b2 = _mm_sub_epi16(a3, a2);
609 const __m128i b3 = _mm_sub_epi16(a0, a1);
610
611 // Separate the transforms of inA and inB.
612 __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
613 __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
614 __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
615 __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
616
617 {
618 // sign(b) = b >> 15 (0x0000 if positive, 0xffff if negative)
619 const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15);
620 const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15);
621 const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15);
622 const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15);
623
624 // b = abs(b) = (b ^ sign) - sign
625 A_b0 = _mm_xor_si128(A_b0, sign_A_b0);
626 A_b2 = _mm_xor_si128(A_b2, sign_A_b2);
627 B_b0 = _mm_xor_si128(B_b0, sign_B_b0);
628 B_b2 = _mm_xor_si128(B_b2, sign_B_b2);
629 A_b0 = _mm_sub_epi16(A_b0, sign_A_b0);
630 A_b2 = _mm_sub_epi16(A_b2, sign_A_b2);
631 B_b0 = _mm_sub_epi16(B_b0, sign_B_b0);
632 B_b2 = _mm_sub_epi16(B_b2, sign_B_b2);
633 }
634
635 // b = abs(b) + 3
636 A_b0 = _mm_add_epi16(A_b0, three);
637 A_b2 = _mm_add_epi16(A_b2, three);
638 B_b0 = _mm_add_epi16(B_b0, three);
639 B_b2 = _mm_add_epi16(B_b2, three);
640
641 // abs((b + (b<0) + 3) >> 3) = (abs(b) + 3) >> 3
642 // b = (abs(b) + 3) >> 3
643 A_b0 = _mm_srai_epi16(A_b0, 3);
644 A_b2 = _mm_srai_epi16(A_b2, 3);
645 B_b0 = _mm_srai_epi16(B_b0, 3);
646 B_b2 = _mm_srai_epi16(B_b2, 3);
647
648 // weighted sums
649 A_b0 = _mm_madd_epi16(A_b0, w_0);
650 A_b2 = _mm_madd_epi16(A_b2, w_8);
651 B_b0 = _mm_madd_epi16(B_b0, w_0);
652 B_b2 = _mm_madd_epi16(B_b2, w_8);
653 A_b0 = _mm_add_epi32(A_b0, A_b2);
654 B_b0 = _mm_add_epi32(B_b0, B_b2);
655
656 // difference of weighted sums
657 A_b0 = _mm_sub_epi32(A_b0, B_b0);
658 _mm_storeu_si128((__m128i*)&sum[0], A_b0);
659 }
660 return sum[0] + sum[1] + sum[2] + sum[3];
661 }
662
663 static int Disto4x4SSE2(const uint8_t* const a, const uint8_t* const b,
664 const uint16_t* const w) {
665 const int diff_sum = TTransformSSE2(a, b, w);
666 return (abs(diff_sum) + 8) >> 4;
667 }
668
669 static int Disto16x16SSE2(const uint8_t* const a, const uint8_t* const b,
670 const uint16_t* const w) {
671 int D = 0;
672 int x, y;
673 for (y = 0; y < 16 * BPS; y += 4 * BPS) {
674 for (x = 0; x < 16; x += 4) {
675 D += Disto4x4SSE2(a + x + y, b + x + y, w);
676 }
677 }
678 return D;
679 }
680
681
682 //------------------------------------------------------------------------------
683 // Quantization
684 //
685
686 // Simple quantization
687 static int QuantizeBlockSSE2(int16_t in[16], int16_t out[16],
688 int n, const VP8Matrix* const mtx) {
689 const __m128i max_coeff_2047 = _mm_set1_epi16(2047);
690 const __m128i zero = _mm_set1_epi16(0);
691 __m128i sign0, sign8;
692 __m128i coeff0, coeff8;
693 __m128i out0, out8;
694 __m128i packed_out;
695
696 // Load all inputs.
697 // TODO(cduvivier): Make variable declarations and allocations aligned so that
698 // we can use _mm_load_si128 instead of _mm_loadu_si128.
699 __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
700 __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
701 const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[0]);
702 const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[8]);
703 const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]);
704 const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]);
705 const __m128i bias0 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]);
706 const __m128i bias8 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]);
707 const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]);
708 const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]);
709 const __m128i zthresh0 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[0]);
710 const __m128i zthresh8 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[8]);
711
712 // sign(in) = in >> 15 (0x0000 if positive, 0xffff if negative)
713 sign0 = _mm_srai_epi16(in0, 15);
714 sign8 = _mm_srai_epi16(in8, 15);
715
716 // coeff = abs(in) = (in ^ sign) - sign
717 coeff0 = _mm_xor_si128(in0, sign0);
718 coeff8 = _mm_xor_si128(in8, sign8);
719 coeff0 = _mm_sub_epi16(coeff0, sign0);
720 coeff8 = _mm_sub_epi16(coeff8, sign8);
721
722 // coeff = abs(in) + sharpen
723 coeff0 = _mm_add_epi16(coeff0, sharpen0);
724 coeff8 = _mm_add_epi16(coeff8, sharpen8);
725
726 // if (coeff > 2047) coeff = 2047
727 coeff0 = _mm_min_epi16(coeff0, max_coeff_2047);
728 coeff8 = _mm_min_epi16(coeff8, max_coeff_2047);
729
730 // out = (coeff * iQ + B) >> QFIX;
731 {
732 // doing calculations with 32b precision (QFIX=17)
733 // out = (coeff * iQ)
734 __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
735 __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
736 __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
737 __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
738 __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
739 __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
740 __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
741 __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
742 // expand bias from 16b to 32b
743 __m128i bias_00 = _mm_unpacklo_epi16(bias0, zero);
744 __m128i bias_04 = _mm_unpackhi_epi16(bias0, zero);
745 __m128i bias_08 = _mm_unpacklo_epi16(bias8, zero);
746 __m128i bias_12 = _mm_unpackhi_epi16(bias8, zero);
747 // out = (coeff * iQ + B)
748 out_00 = _mm_add_epi32(out_00, bias_00);
749 out_04 = _mm_add_epi32(out_04, bias_04);
750 out_08 = _mm_add_epi32(out_08, bias_08);
751 out_12 = _mm_add_epi32(out_12, bias_12);
752 // out = (coeff * iQ + B) >> QFIX;
753 out_00 = _mm_srai_epi32(out_00, QFIX);
754 out_04 = _mm_srai_epi32(out_04, QFIX);
755 out_08 = _mm_srai_epi32(out_08, QFIX);
756 out_12 = _mm_srai_epi32(out_12, QFIX);
757 // pack result as 16b
758 out0 = _mm_packs_epi32(out_00, out_04);
759 out8 = _mm_packs_epi32(out_08, out_12);
760 }
761
762 // get sign back (if (sign[j]) out_n = -out_n)
763 out0 = _mm_xor_si128(out0, sign0);
764 out8 = _mm_xor_si128(out8, sign8);
765 out0 = _mm_sub_epi16(out0, sign0);
766 out8 = _mm_sub_epi16(out8, sign8);
767
768 // in = out * Q
769 in0 = _mm_mullo_epi16(out0, q0);
770 in8 = _mm_mullo_epi16(out8, q8);
771
772 // if (coeff <= mtx->zthresh_) {in=0; out=0;}
773 {
774 __m128i cmp0 = _mm_cmpgt_epi16(coeff0, zthresh0);
775 __m128i cmp8 = _mm_cmpgt_epi16(coeff8, zthresh8);
776 in0 = _mm_and_si128(in0, cmp0);
777 in8 = _mm_and_si128(in8, cmp8);
778 _mm_storeu_si128((__m128i*)&in[0], in0);
779 _mm_storeu_si128((__m128i*)&in[8], in8);
780 out0 = _mm_and_si128(out0, cmp0);
781 out8 = _mm_and_si128(out8, cmp8);
782 }
783
784 // zigzag the output before storing it.
785 //
786 // The zigzag pattern can almost be reproduced with a small sequence of
787 // shuffles. After it, we only need to swap the 7th (ending up in third
788 // position instead of twelfth) and 8th values.
789 {
790 __m128i outZ0, outZ8;
791 outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0));
792 outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
793 outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
794 outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1));
795 outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
796 outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
797 _mm_storeu_si128((__m128i*)&out[0], outZ0);
798 _mm_storeu_si128((__m128i*)&out[8], outZ8);
799 packed_out = _mm_packs_epi16(outZ0, outZ8);
800 }
801 {
802 const int16_t outZ_12 = out[12];
803 const int16_t outZ_3 = out[3];
804 out[3] = outZ_12;
805 out[12] = outZ_3;
806 }
807
808 // detect if all 'out' values are zeroes or not
809 {
810 int32_t tmp[4];
811 _mm_storeu_si128((__m128i*)tmp, packed_out);
812 if (n) {
813 tmp[0] &= ~0xff;
814 }
815 return (tmp[3] || tmp[2] || tmp[1] || tmp[0]);
816 }
817 }
818
819 extern void VP8EncDspInitSSE2(void);
820 void VP8EncDspInitSSE2(void) {
821 VP8CollectHistogram = CollectHistogramSSE2;
822 VP8EncQuantizeBlock = QuantizeBlockSSE2;
823 VP8ITransform = ITransformSSE2;
824 VP8FTransform = FTransformSSE2;
825 VP8SSE4x4 = SSE4x4SSE2;
826 VP8TDisto4x4 = Disto4x4SSE2;
827 VP8TDisto16x16 = Disto16x16SSE2;
828 }
829
830 #if defined(__cplusplus) || defined(c_plusplus)
831 } // extern "C"
832 #endif
833
834 #endif //__SSE2__
OLDNEW
« no previous file with comments | « third_party/libwebp/enc/enc.c ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698