| Index: src/spaces.cc
|
| ===================================================================
|
| --- src/spaces.cc (revision 10513)
|
| +++ src/spaces.cc (working copy)
|
| @@ -31,6 +31,7 @@
|
| #include "macro-assembler.h"
|
| #include "mark-compact.h"
|
| #include "platform.h"
|
| +#include "snapshot.h"
|
|
|
| namespace v8 {
|
| namespace internal {
|
| @@ -263,7 +264,7 @@
|
| : isolate_(isolate),
|
| capacity_(0),
|
| capacity_executable_(0),
|
| - size_(0),
|
| + memory_allocator_reserved_(0),
|
| size_executable_(0) {
|
| }
|
|
|
| @@ -273,7 +274,7 @@
|
| capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize);
|
| ASSERT_GE(capacity_, capacity_executable_);
|
|
|
| - size_ = 0;
|
| + memory_allocator_reserved_ = 0;
|
| size_executable_ = 0;
|
|
|
| return true;
|
| @@ -282,7 +283,7 @@
|
|
|
| void MemoryAllocator::TearDown() {
|
| // Check that spaces were torn down before MemoryAllocator.
|
| - ASSERT(size_ == 0);
|
| + CHECK_EQ(memory_allocator_reserved_, 0);
|
| // TODO(gc) this will be true again when we fix FreeMemory.
|
| // ASSERT(size_executable_ == 0);
|
| capacity_ = 0;
|
| @@ -295,8 +296,8 @@
|
| // TODO(gc) make code_range part of memory allocator?
|
| ASSERT(reservation->IsReserved());
|
| size_t size = reservation->size();
|
| - ASSERT(size_ >= size);
|
| - size_ -= size;
|
| + ASSERT(memory_allocator_reserved_ >= size);
|
| + memory_allocator_reserved_ -= size;
|
|
|
| isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
|
|
|
| @@ -316,8 +317,8 @@
|
| size_t size,
|
| Executability executable) {
|
| // TODO(gc) make code_range part of memory allocator?
|
| - ASSERT(size_ >= size);
|
| - size_ -= size;
|
| + ASSERT(memory_allocator_reserved_ >= size);
|
| + memory_allocator_reserved_ -= size;
|
|
|
| isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
|
|
|
| @@ -343,7 +344,7 @@
|
| VirtualMemory reservation(size, alignment);
|
|
|
| if (!reservation.IsReserved()) return NULL;
|
| - size_ += reservation.size();
|
| + memory_allocator_reserved_ += reservation.size();
|
| Address base = RoundUp(static_cast<Address>(reservation.address()),
|
| alignment);
|
| controller->TakeControl(&reservation);
|
| @@ -352,11 +353,14 @@
|
|
|
|
|
| Address MemoryAllocator::AllocateAlignedMemory(size_t size,
|
| + size_t reserved_size,
|
| size_t alignment,
|
| Executability executable,
|
| VirtualMemory* controller) {
|
| + ASSERT(RoundUp(reserved_size, OS::CommitPageSize()) >=
|
| + RoundUp(size, OS::CommitPageSize()));
|
| VirtualMemory reservation;
|
| - Address base = ReserveAlignedMemory(size, alignment, &reservation);
|
| + Address base = ReserveAlignedMemory(reserved_size, alignment, &reservation);
|
| if (base == NULL) return NULL;
|
| if (!reservation.Commit(base,
|
| size,
|
| @@ -375,6 +379,53 @@
|
| }
|
|
|
|
|
| +void Page::CommitMore(intptr_t space_needed) {
|
| + intptr_t reserved_page_size = reservation_.IsReserved() ?
|
| + reservation_.size() :
|
| + Page::kPageSize;
|
| + ASSERT(size() + space_needed <= reserved_page_size);
|
| + // At increase the page size by at least 64k (this also rounds to OS page
|
| + // size).
|
| + int expand = Min(reserved_page_size - size(),
|
| + RoundUp(size() + space_needed, Page::kGrowthUnit) - size());
|
| + ASSERT(expand <= kPageSize - size());
|
| + ASSERT(expand <= reserved_page_size - size());
|
| + Executability executable =
|
| + IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE;
|
| + Address old_end = ObjectAreaEnd();
|
| + if (!VirtualMemory::CommitRegion(old_end, expand, executable)) return;
|
| +
|
| + set_size(size() + expand);
|
| +
|
| + PagedSpace* paged_space = reinterpret_cast<PagedSpace*>(owner());
|
| + paged_space->heap()->isolate()->memory_allocator()->AllocationBookkeeping(
|
| + paged_space,
|
| + old_end,
|
| + 0, // No new memory was reserved.
|
| + expand, // New memory committed.
|
| + executable);
|
| + paged_space->IncreaseCapacity(expand);
|
| +
|
| + // In spaces with alignment requirements (e.g. map space) we have to align
|
| + // the expanded area with the correct object alignment.
|
| + uintptr_t object_area_size = old_end - ObjectAreaStart();
|
| + uintptr_t aligned_object_area_size =
|
| + object_area_size - object_area_size % paged_space->ObjectAlignment();
|
| + if (aligned_object_area_size != object_area_size) {
|
| + aligned_object_area_size += paged_space->ObjectAlignment();
|
| + }
|
| + Address new_area =
|
| + reinterpret_cast<Address>(ObjectAreaStart() + aligned_object_area_size);
|
| + // In spaces with alignment requirements, this will waste the space for one
|
| + // object per doubling of the page size until the next GC.
|
| + paged_space->AddToFreeLists(old_end, new_area - old_end);
|
| +
|
| + expand -= (new_area - old_end);
|
| +
|
| + paged_space->AddToFreeLists(new_area, expand);
|
| +}
|
| +
|
| +
|
| NewSpacePage* NewSpacePage::Initialize(Heap* heap,
|
| Address start,
|
| SemiSpace* semi_space) {
|
| @@ -460,9 +511,15 @@
|
|
|
|
|
| MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t body_size,
|
| + intptr_t committed_body_size,
|
| Executability executable,
|
| Space* owner) {
|
| - size_t chunk_size = MemoryChunk::kObjectStartOffset + body_size;
|
| + ASSERT(body_size >= committed_body_size);
|
| + size_t chunk_size = RoundUp(MemoryChunk::kObjectStartOffset + body_size,
|
| + OS::CommitPageSize());
|
| + intptr_t committed_chunk_size =
|
| + committed_body_size + MemoryChunk::kObjectStartOffset;
|
| + committed_chunk_size = RoundUp(committed_chunk_size, OS::CommitPageSize());
|
| Heap* heap = isolate_->heap();
|
| Address base = NULL;
|
| VirtualMemory reservation;
|
| @@ -482,20 +539,21 @@
|
| ASSERT(IsAligned(reinterpret_cast<intptr_t>(base),
|
| MemoryChunk::kAlignment));
|
| if (base == NULL) return NULL;
|
| - size_ += chunk_size;
|
| - // Update executable memory size.
|
| - size_executable_ += chunk_size;
|
| + // The AllocateAlignedMemory method will update the memory allocator
|
| + // memory used, but we are not using that if we have a code range, so
|
| + // we update it here.
|
| + memory_allocator_reserved_ += chunk_size;
|
| } else {
|
| - base = AllocateAlignedMemory(chunk_size,
|
| + base = AllocateAlignedMemory(committed_chunk_size,
|
| + chunk_size,
|
| MemoryChunk::kAlignment,
|
| executable,
|
| &reservation);
|
| if (base == NULL) return NULL;
|
| - // Update executable memory size.
|
| - size_executable_ += reservation.size();
|
| }
|
| } else {
|
| - base = AllocateAlignedMemory(chunk_size,
|
| + base = AllocateAlignedMemory(committed_chunk_size,
|
| + chunk_size,
|
| MemoryChunk::kAlignment,
|
| executable,
|
| &reservation);
|
| @@ -503,21 +561,12 @@
|
| if (base == NULL) return NULL;
|
| }
|
|
|
| -#ifdef DEBUG
|
| - ZapBlock(base, chunk_size);
|
| -#endif
|
| - isolate_->counters()->memory_allocated()->
|
| - Increment(static_cast<int>(chunk_size));
|
| + AllocationBookkeeping(
|
| + owner, base, chunk_size, committed_chunk_size, executable);
|
|
|
| - LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size));
|
| - if (owner != NULL) {
|
| - ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity());
|
| - PerformAllocationCallback(space, kAllocationActionAllocate, chunk_size);
|
| - }
|
| -
|
| MemoryChunk* result = MemoryChunk::Initialize(heap,
|
| base,
|
| - chunk_size,
|
| + committed_chunk_size,
|
| executable,
|
| owner);
|
| result->set_reserved_memory(&reservation);
|
| @@ -525,10 +574,41 @@
|
| }
|
|
|
|
|
| -Page* MemoryAllocator::AllocatePage(PagedSpace* owner,
|
| +void MemoryAllocator::AllocationBookkeeping(Space* owner,
|
| + Address base,
|
| + intptr_t reserved_chunk_size,
|
| + intptr_t committed_chunk_size,
|
| + Executability executable) {
|
| + if (executable == EXECUTABLE) {
|
| + // Update executable memory size.
|
| + size_executable_ += reserved_chunk_size;
|
| + }
|
| +
|
| +#ifdef DEBUG
|
| + ZapBlock(base, committed_chunk_size);
|
| +#endif
|
| + isolate_->counters()->memory_allocated()->
|
| + Increment(static_cast<int>(committed_chunk_size));
|
| +
|
| + LOG(isolate_, NewEvent("MemoryChunk", base, committed_chunk_size));
|
| + if (owner != NULL) {
|
| + ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity());
|
| + PerformAllocationCallback(
|
| + space, kAllocationActionAllocate, committed_chunk_size);
|
| + }
|
| +}
|
| +
|
| +
|
| +Page* MemoryAllocator::AllocatePage(intptr_t committed_object_area_size,
|
| + PagedSpace* owner,
|
| Executability executable) {
|
| - MemoryChunk* chunk = AllocateChunk(Page::kObjectAreaSize, executable, owner);
|
| + ASSERT(committed_object_area_size <= Page::kObjectAreaSize);
|
|
|
| + MemoryChunk* chunk = AllocateChunk(Page::kObjectAreaSize,
|
| + committed_object_area_size,
|
| + executable,
|
| + owner);
|
| +
|
| if (chunk == NULL) return NULL;
|
|
|
| return Page::Initialize(isolate_->heap(), chunk, executable, owner);
|
| @@ -538,7 +618,8 @@
|
| LargePage* MemoryAllocator::AllocateLargePage(intptr_t object_size,
|
| Executability executable,
|
| Space* owner) {
|
| - MemoryChunk* chunk = AllocateChunk(object_size, executable, owner);
|
| + MemoryChunk* chunk =
|
| + AllocateChunk(object_size, object_size, executable, owner);
|
| if (chunk == NULL) return NULL;
|
| return LargePage::Initialize(isolate_->heap(), chunk);
|
| }
|
| @@ -559,8 +640,12 @@
|
| if (reservation->IsReserved()) {
|
| FreeMemory(reservation, chunk->executable());
|
| } else {
|
| + // When we do not have a reservation that is because this allocation
|
| + // is part of the huge reserved chunk of memory reserved for code on
|
| + // x64. In that case the size was rounded up to the page size on
|
| + // allocation so we do the same now when freeing.
|
| FreeMemory(chunk->address(),
|
| - chunk->size(),
|
| + RoundUp(chunk->size(), Page::kPageSize),
|
| chunk->executable());
|
| }
|
| }
|
| @@ -640,11 +725,12 @@
|
|
|
| #ifdef DEBUG
|
| void MemoryAllocator::ReportStatistics() {
|
| - float pct = static_cast<float>(capacity_ - size_) / capacity_;
|
| + float pct =
|
| + static_cast<float>(capacity_ - memory_allocator_reserved_) / capacity_;
|
| PrintF(" capacity: %" V8_PTR_PREFIX "d"
|
| ", used: %" V8_PTR_PREFIX "d"
|
| ", available: %%%d\n\n",
|
| - capacity_, size_, static_cast<int>(pct*100));
|
| + capacity_, memory_allocator_reserved_, static_cast<int>(pct*100));
|
| }
|
| #endif
|
|
|
| @@ -723,7 +809,6 @@
|
|
|
| bool PagedSpace::CanExpand() {
|
| ASSERT(max_capacity_ % Page::kObjectAreaSize == 0);
|
| - ASSERT(Capacity() % Page::kObjectAreaSize == 0);
|
|
|
| if (Capacity() == max_capacity_) return false;
|
|
|
| @@ -735,11 +820,43 @@
|
| return true;
|
| }
|
|
|
| -bool PagedSpace::Expand() {
|
| +bool PagedSpace::Expand(intptr_t size_in_bytes) {
|
| if (!CanExpand()) return false;
|
|
|
| + Page* last_page = anchor_.prev_page();
|
| + if (last_page != &anchor_) {
|
| + // We have run out of linear allocation space. This may be because the
|
| + // most recently allocated page (stored last in the list) is a small one,
|
| + // that starts on a page aligned boundary, but has not a full kPageSize of
|
| + // committed memory. Let's commit more memory for the page.
|
| + intptr_t reserved_page_size = last_page->reserved_memory()->IsReserved() ?
|
| + last_page->reserved_memory()->size() :
|
| + Page::kPageSize;
|
| + if (last_page->size() < reserved_page_size &&
|
| + (reserved_page_size - last_page->size()) >= size_in_bytes &&
|
| + !last_page->IsEvacuationCandidate() &&
|
| + last_page->WasSwept()) {
|
| + last_page->CommitMore(size_in_bytes);
|
| + return true;
|
| + }
|
| + }
|
| +
|
| + // We initially only commit a part of the page, but the deserialization
|
| + // of the initial snapshot makes the assumption that it can deserialize
|
| + // into linear memory of a certain size per space, so some of the spaces
|
| + // need to have a little more committed memory.
|
| + int initial =
|
| + Max(OS::CommitPageSize(), static_cast<intptr_t>(Page::kGrowthUnit));
|
| +
|
| + ASSERT(Page::kPageSize - initial < Page::kObjectAreaSize);
|
| +
|
| + intptr_t expansion_size =
|
| + Max(initial,
|
| + RoundUpToPowerOf2(MemoryChunk::kObjectStartOffset + size_in_bytes)) -
|
| + MemoryChunk::kObjectStartOffset;
|
| +
|
| Page* p = heap()->isolate()->memory_allocator()->
|
| - AllocatePage(this, executable());
|
| + AllocatePage(expansion_size, this, executable());
|
| if (p == NULL) return false;
|
|
|
| ASSERT(Capacity() <= max_capacity_);
|
| @@ -784,6 +901,8 @@
|
| allocation_info_.top = allocation_info_.limit = NULL;
|
| }
|
|
|
| + intptr_t size = page->ObjectAreaEnd() - page->ObjectAreaStart();
|
| +
|
| page->Unlink();
|
| if (page->IsFlagSet(MemoryChunk::CONTAINS_ONLY_DATA)) {
|
| heap()->isolate()->memory_allocator()->Free(page);
|
| @@ -792,8 +911,7 @@
|
| }
|
|
|
| ASSERT(Capacity() > 0);
|
| - ASSERT(Capacity() % Page::kObjectAreaSize == 0);
|
| - accounting_stats_.ShrinkSpace(Page::kObjectAreaSize);
|
| + accounting_stats_.ShrinkSpace(size);
|
| }
|
|
|
|
|
| @@ -1671,7 +1789,7 @@
|
| // is big enough to be a FreeSpace with at least one extra word (the next
|
| // pointer), we set its map to be the free space map and its size to an
|
| // appropriate array length for the desired size from HeapObject::Size().
|
| - // If the block is too small (eg, one or two words), to hold both a size
|
| + // If the block is too small (e.g. one or two words), to hold both a size
|
| // field and a next pointer, we give it a filler map that gives it the
|
| // correct size.
|
| if (size_in_bytes > FreeSpace::kHeaderSize) {
|
| @@ -1775,69 +1893,102 @@
|
| }
|
|
|
|
|
| -FreeListNode* FreeList::PickNodeFromList(FreeListNode** list, int* node_size) {
|
| +FreeListNode* FreeList::PickNodeFromList(FreeListNode** list,
|
| + int* node_size,
|
| + int minimum_size) {
|
| FreeListNode* node = *list;
|
|
|
| if (node == NULL) return NULL;
|
|
|
| + ASSERT(node->map() == node->GetHeap()->raw_unchecked_free_space_map());
|
| +
|
| while (node != NULL &&
|
| Page::FromAddress(node->address())->IsEvacuationCandidate()) {
|
| available_ -= node->Size();
|
| node = node->next();
|
| }
|
|
|
| - if (node != NULL) {
|
| - *node_size = node->Size();
|
| - *list = node->next();
|
| - } else {
|
| + if (node == NULL) {
|
| *list = NULL;
|
| + return NULL;
|
| }
|
|
|
| + // Gets the size without checking the map. When we are booting we have
|
| + // a FreeListNode before we have created its map.
|
| + intptr_t size = reinterpret_cast<FreeSpace*>(node)->Size();
|
| +
|
| + // We don't search the list for one that fits, preferring to look in the
|
| + // list of larger nodes, but we do check the first in the list, because
|
| + // if we had to expand the space or page we may have placed an entry that
|
| + // was just long enough at the head of one of the lists.
|
| + if (size < minimum_size) return NULL;
|
| +
|
| + *node_size = size;
|
| + available_ -= size;
|
| + *list = node->next();
|
| +
|
| return node;
|
| }
|
|
|
|
|
| -FreeListNode* FreeList::FindNodeFor(int size_in_bytes, int* node_size) {
|
| +FreeListNode* FreeList::FindAbuttingNode(
|
| + int size_in_bytes, int* node_size, Address limit, FreeListNode** list_head) {
|
| + FreeListNode* first_node = *list_head;
|
| + if (first_node != NULL &&
|
| + first_node->address() == limit &&
|
| + reinterpret_cast<FreeSpace*>(first_node)->Size() >= size_in_bytes &&
|
| + !Page::FromAddress(first_node->address())->IsEvacuationCandidate()) {
|
| + FreeListNode* answer = first_node;
|
| + int size = reinterpret_cast<FreeSpace*>(first_node)->Size();
|
| + available_ -= size;
|
| + *node_size = size;
|
| + *list_head = first_node->next();
|
| + ASSERT(IsVeryLong() || available_ == SumFreeLists());
|
| + return answer;
|
| + }
|
| + return NULL;
|
| +}
|
| +
|
| +
|
| +FreeListNode* FreeList::FindNodeFor(int size_in_bytes,
|
| + int* node_size,
|
| + Address limit) {
|
| FreeListNode* node = NULL;
|
|
|
| - if (size_in_bytes <= kSmallAllocationMax) {
|
| - node = PickNodeFromList(&small_list_, node_size);
|
| + if (limit != NULL) {
|
| + // We may have a memory area at the head of the free list, which abuts the
|
| + // old linear allocation area. This happens if the linear allocation area
|
| + // has been shortened to allow an incremental marking step to be performed.
|
| + // In that case we prefer to return the free memory area that is contiguous
|
| + // with the old linear allocation area.
|
| + node = FindAbuttingNode(size_in_bytes, node_size, limit, &large_list_);
|
| if (node != NULL) return node;
|
| - }
|
| -
|
| - if (size_in_bytes <= kMediumAllocationMax) {
|
| - node = PickNodeFromList(&medium_list_, node_size);
|
| + node = FindAbuttingNode(size_in_bytes, node_size, limit, &huge_list_);
|
| if (node != NULL) return node;
|
| }
|
|
|
| - if (size_in_bytes <= kLargeAllocationMax) {
|
| - node = PickNodeFromList(&large_list_, node_size);
|
| - if (node != NULL) return node;
|
| - }
|
| + node = PickNodeFromList(&small_list_, node_size, size_in_bytes);
|
| + ASSERT(IsVeryLong() || available_ == SumFreeLists());
|
| + if (node != NULL) return node;
|
|
|
| + node = PickNodeFromList(&medium_list_, node_size, size_in_bytes);
|
| + ASSERT(IsVeryLong() || available_ == SumFreeLists());
|
| + if (node != NULL) return node;
|
| +
|
| + node = PickNodeFromList(&large_list_, node_size, size_in_bytes);
|
| + ASSERT(IsVeryLong() || available_ == SumFreeLists());
|
| + if (node != NULL) return node;
|
| +
|
| + // The tricky third clause in this for statement is due to the fact that
|
| + // PickNodeFromList can cut pages out of the list if they are unavailable for
|
| + // new allocation (e.g. if they are on a page that has been scheduled for
|
| + // evacuation).
|
| for (FreeListNode** cur = &huge_list_;
|
| *cur != NULL;
|
| - cur = (*cur)->next_address()) {
|
| - FreeListNode* cur_node = *cur;
|
| - while (cur_node != NULL &&
|
| - Page::FromAddress(cur_node->address())->IsEvacuationCandidate()) {
|
| - available_ -= reinterpret_cast<FreeSpace*>(cur_node)->Size();
|
| - cur_node = cur_node->next();
|
| - }
|
| -
|
| - *cur = cur_node;
|
| - if (cur_node == NULL) break;
|
| -
|
| - ASSERT((*cur)->map() == HEAP->raw_unchecked_free_space_map());
|
| - FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(*cur);
|
| - int size = cur_as_free_space->Size();
|
| - if (size >= size_in_bytes) {
|
| - // Large enough node found. Unlink it from the list.
|
| - node = *cur;
|
| - *node_size = size;
|
| - *cur = node->next();
|
| - break;
|
| - }
|
| + cur = (*cur) == NULL ? cur : (*cur)->next_address()) {
|
| + node = PickNodeFromList(cur, node_size, size_in_bytes);
|
| + ASSERT(IsVeryLong() || available_ == SumFreeLists());
|
| + if (node != NULL) return node;
|
| }
|
|
|
| return node;
|
| @@ -1856,10 +2007,23 @@
|
| ASSERT(owner_->limit() - owner_->top() < size_in_bytes);
|
|
|
| int new_node_size = 0;
|
| - FreeListNode* new_node = FindNodeFor(size_in_bytes, &new_node_size);
|
| + FreeListNode* new_node =
|
| + FindNodeFor(size_in_bytes, &new_node_size, owner_->limit());
|
| if (new_node == NULL) return NULL;
|
|
|
| - available_ -= new_node_size;
|
| + if (new_node->address() == owner_->limit()) {
|
| + // The new freelist node we were given is an extension of the one we had
|
| + // last. This is a common thing to happen when we extend a small page by
|
| + // committing more memory. In this case we just add the new node to the
|
| + // linear allocation area and recurse.
|
| + owner_->Allocate(new_node_size);
|
| + owner_->SetTop(owner_->top(), new_node->address() + new_node_size);
|
| + MaybeObject* allocation = owner_->AllocateRaw(size_in_bytes);
|
| + Object* answer;
|
| + if (!allocation->ToObject(&answer)) return NULL;
|
| + return HeapObject::cast(answer);
|
| + }
|
| +
|
| ASSERT(IsVeryLong() || available_ == SumFreeLists());
|
|
|
| int bytes_left = new_node_size - size_in_bytes;
|
| @@ -1869,7 +2033,9 @@
|
| // Mark the old linear allocation area with a free space map so it can be
|
| // skipped when scanning the heap. This also puts it back in the free list
|
| // if it is big enough.
|
| - owner_->Free(owner_->top(), old_linear_size);
|
| + if (old_linear_size != 0) {
|
| + owner_->AddToFreeLists(owner_->top(), old_linear_size);
|
| + }
|
|
|
| #ifdef DEBUG
|
| for (int i = 0; i < size_in_bytes / kPointerSize; i++) {
|
| @@ -1898,8 +2064,8 @@
|
| // We don't want to give too large linear areas to the allocator while
|
| // incremental marking is going on, because we won't check again whether
|
| // we want to do another increment until the linear area is used up.
|
| - owner_->Free(new_node->address() + size_in_bytes + linear_size,
|
| - new_node_size - size_in_bytes - linear_size);
|
| + owner_->AddToFreeLists(new_node->address() + size_in_bytes + linear_size,
|
| + new_node_size - size_in_bytes - linear_size);
|
| owner_->SetTop(new_node->address() + size_in_bytes,
|
| new_node->address() + size_in_bytes + linear_size);
|
| } else if (bytes_left > 0) {
|
| @@ -1908,6 +2074,7 @@
|
| owner_->SetTop(new_node->address() + size_in_bytes,
|
| new_node->address() + new_node_size);
|
| } else {
|
| + ASSERT(bytes_left == 0);
|
| // TODO(gc) Try not freeing linear allocation region when bytes_left
|
| // are zero.
|
| owner_->SetTop(NULL, NULL);
|
| @@ -2040,7 +2207,9 @@
|
| HeapObject* allocation = HeapObject::cast(object);
|
| Address top = allocation_info_.top;
|
| if ((top - bytes) == allocation->address()) {
|
| - allocation_info_.top = allocation->address();
|
| + Address new_top = allocation->address();
|
| + ASSERT(new_top >= Page::FromAddress(new_top - 1)->ObjectAreaStart());
|
| + allocation_info_.top = new_top;
|
| return true;
|
| }
|
| // There may be a borderline case here where the allocation succeeded, but
|
| @@ -2055,7 +2224,7 @@
|
| // Mark the old linear allocation area with a free space map so it can be
|
| // skipped when scanning the heap.
|
| int old_linear_size = static_cast<int>(limit() - top());
|
| - Free(top(), old_linear_size);
|
| + AddToFreeLists(top(), old_linear_size);
|
| SetTop(NULL, NULL);
|
|
|
| // Stop lazy sweeping and clear marking bits for unswept pages.
|
| @@ -2098,10 +2267,13 @@
|
| // Mark the old linear allocation area with a free space so it can be
|
| // skipped when scanning the heap. This also puts it back in the free list
|
| // if it is big enough.
|
| - Free(top(), old_linear_size);
|
| + AddToFreeLists(top(), old_linear_size);
|
|
|
| SetTop(new_area->address(), new_area->address() + size_in_bytes);
|
| - Allocate(size_in_bytes);
|
| + // The AddToFreeLists call above will reduce the size of the space in the
|
| + // allocation stats. We don't need to add this linear area to the size
|
| + // with an Allocate(size_in_bytes) call here, because the
|
| + // free_list_.Allocate() call above already accounted for this memory.
|
| return true;
|
| }
|
|
|
| @@ -2182,7 +2354,7 @@
|
| }
|
|
|
| // Try to expand the space and allocate in the new next page.
|
| - if (Expand()) {
|
| + if (Expand(size_in_bytes)) {
|
| return free_list_.Allocate(size_in_bytes);
|
| }
|
|
|
| @@ -2543,6 +2715,7 @@
|
| heap()->mark_compact_collector()->ReportDeleteIfNeeded(
|
| object, heap()->isolate());
|
| size_ -= static_cast<int>(page->size());
|
| + ASSERT(size_ >= 0);
|
| objects_size_ -= object->Size();
|
| page_count_--;
|
|
|
|
|