Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(3)

Side by Side Diff: src/grisu3.cc

Issue 619005: Fast algorithm for double->string conversion. (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge/
Patch Set: '' Created 10 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "grisu3.h"
31
32 // diy_fp.h must be included before cached_powers and double.
33 #include "diy_fp.h"
34 #include "cached_powers.h"
35 #include "double.h"
36
37 namespace v8 {
38 namespace internal {
39
40 template <int alpha = -60, int gamma = -32>
41 class Grisu3 {
42 public:
43 // Provides a decimal representation of v.
44 // Returns true if it succeeds, otherwise the result can not be trusted.
45 // There will be *length digits inside the buffer (not null-terminated).
46 // If the function returns true then
47 // v == (double) (buffer * 10^decimal_exponent).
48 // The digits in the buffer are the shortest representation possible: no
49 // 0.099999999999 instead of 0.1.
50 // The last digit will be closest to the actual v. That is, even if several
51 // digits might correctly yield 'v' when read again, the closest will be
52 // computed.
53 static bool grisu3(double v,
54 char* buffer, int* length, int* decimal_exponent);
55
56 private:
57 static bool RoundWeed(char* buffer, int len, uint64_t wp_W, uint64_t Delta,
58 uint64_t rest, uint64_t ten_kappa, uint64_t ulp);
59 static bool DigitGen(DiyFp low, DiyFp w, DiyFp high,
60 char* buffer, int* len, int* kappa);
61 static bool DigitGen_m60_m32(DiyFp low, DiyFp w, DiyFp high,
62 char* buffer, int* length, int* kappa);
63 };
64
65
66 template<int alpha, int gamma>
67 bool Grisu3<alpha, gamma>::grisu3(
68 double v, char* buffer, int* length, int* decimal_exponent) {
69 DiyFp w = Double(v).AsNormalizedDiyFp();
70 // boundary_minus and boundary_plus are the boundaries between w and its
71 // neighbors. Any number x such that boundary_minus < x < boundary_plus will
72 // round to v when read as double. When boundary_minus == x or
73 // boundary_plus == y then the rounding direction depends on v. Grisu3 does
74 // not need to deal with this case, as its precision is not sufficient for
75 // this case anyways.
76 DiyFp boundary_minus, boundary_plus;
77 Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
78 ASSERT(boundary_plus.e() == w.e());
79 DiyFp ten_mk; // Cached power of ten: 10^-k
80 int mk; // -k
81 GetCachedPower(w.e() + DiyFp::kSignificandSize, alpha, gamma, &mk, &ten_mk);
82 ASSERT(alpha <= w.e() + ten_mk.e() + DiyFp::kSignificandSize &&
83 gamma >= w.e() + ten_mk.e() + DiyFp::kSignificandSize);
84 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
85 // 64 bit significand and ten_mk is thus only precise up to 64 bits.
86
87 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
88 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
89 // off by a small amount.
90 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
91 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
92 // (f-1) * 2^e < w*10^k < (f+1) * 2^e
93 DiyFp scaled_w = DiyFp::Times(w, ten_mk);
94 ASSERT(scaled_w.e() ==
95 boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
96 // In theory it would be possible to avoid some recomputations by computing
97 // the difference between w and boundary_minus/plus (a power of 2) and to
98 // compute scaled_boundary_minus/plus by subtracting/adding from
99 // scaled_w. However the code becomes much less readable and the speed
100 // enhancements are not terriffic.
101 DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
102 DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
103
104 // DigitGen will generate the digits of scaled_w. Therefore we have
105 // v == (double) (scaled_w * 10^-mk).
106 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is a
107 // comma-number it will be updated.
108 int kappa;
109 bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
110 buffer, length, &kappa);
111 *decimal_exponent = -mk + kappa;
112 return result;
113 }
114
115 // Generates the digits of input number w.
116 // w is a floating-point number (DiyFp), consisting of a significand and an
117 // exponent. Its exponent is bounded by alpha and gamma. Typically alpha >= -63
118 // and gamma <= 3.
119 // Returns false if it fails, in which case the generated digits in the buffer
120 // should not be used.
121 // Preconditions:
122 // * low, w and high are correct up to 1 ulp (unit in the last place). That
123 // is, their error must be less that a unit of their last digits.
124 // * low.e() == w.e() == high.e()
125 // * low < w < high, and taking into account their error: low~ <= high~
126 // * alpha <= w.e() <= gamma
127 // Postconditions: returns false if procedure fails.
128 // otherwise:
129 // * buffer is not null-terminated, but len contains the number of digits.
130 // * buffer contains the shortest possible decimal digit-sequence
131 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
132 // correct values of low and high (without their error).
133 // * if more than one decimal representation gives the minimal number of
134 // decimal digits then the one closest to W (where W is the correct value
135 // of w) is chosen.
136 // Remark: this procedure takes into account the imprecission of its input
137 // numbers. If the precision is not enough to guarantee all the postconditions
138 // then false is returned. This usually happens rarely (~0.5%).
139 template<int alpha, int gamma>
140 bool Grisu3<alpha, gamma>::DigitGen(
141 DiyFp low, DiyFp w, DiyFp high, char* buffer, int* len, int* kappa) {
142 ASSERT(low.e() == w.e() && w.e() == high.e());
143 ASSERT(low.f() + 1 <= high.f() - 1);
144 ASSERT(alpha <= w.e() && w.e() <= gamma);
145 // The following tests use alpha and gamma to avoid unnecessary dynamic tests.
146 if ((alpha >= -60 && gamma <= -32) || // -60 <= w.e() <= -32
147 (alpha <= -32 && gamma >= -60 && // Alpha/gamma overlaps -60/-32 region.
148 -60 <= w.e() && w.e() <= -32)) {
149 return DigitGen_m60_m32(low, w, high, buffer, len, kappa);
150 } else {
151 // A simple adaption of the special case -60/-32 would allow greater ranges
152 // of alpha/gamma and thus reduce the number of precomputed cached powers of
153 // ten.
154 UNIMPLEMENTED();
155 return false;
156 }
157 }
158
159 static const uint32_t kTen4 = 10000;
160 static const uint32_t kTen5 = 100000;
161 static const uint32_t kTen6 = 1000000;
162 static const uint32_t kTen7 = 10000000;
163 static const uint32_t kTen8 = 100000000;
164 static const uint32_t kTen9 = 1000000000;
165
166 // Returns the biggest power of ten that is <= than the given number. We
167 // furthermore receive the maximum number of bits 'number' has.
168 // If number_bits == 0 then 0^-1 is returned
169 // The number of bits must be <= 32.
170 static void BiggestPowerTen(uint32_t number, int number_bits,
171 uint32_t* power, int* exponent) {
172 switch (number_bits) {
173 case 32:
174 case 31:
175 case 30:
176 if (kTen9 <= number) {
177 *power = kTen9;
178 *exponent = 9;
179 break;
180 } // else fallthrough
181 case 29:
182 case 28:
183 case 27:
184 if (kTen8 <= number) {
185 *power = kTen8;
186 *exponent = 8;
187 break;
188 } // else fallthrough
189 case 26:
190 case 25:
191 case 24:
192 if (kTen7 <= number) {
193 *power = kTen7;
194 *exponent = 7;
195 break;
196 } // else fallthrough
197 case 23:
198 case 22:
199 case 21:
200 case 20:
201 if (kTen6 <= number) {
202 *power = kTen6;
203 *exponent = 6;
204 break;
205 } // else fallthrough
206 case 19:
207 case 18:
208 case 17:
209 if (kTen5 <= number) {
210 *power = kTen5;
211 *exponent = 5;
212 break;
213 } // else fallthrough
214 case 16:
215 case 15:
216 case 14:
217 if (kTen4 <= number) {
218 *power = kTen4;
219 *exponent = 4;
220 break;
221 } // else fallthrough
222 case 13:
223 case 12:
224 case 11:
225 case 10:
226 if (1000 <= number) {
227 *power = 1000;
228 *exponent = 3;
229 break;
230 } // else fallthrough
231 case 9:
232 case 8:
233 case 7:
234 if (100 <= number) {
235 *power = 100;
236 *exponent = 2;
237 break;
238 } // else fallthrough
239 case 6:
240 case 5:
241 case 4:
242 if (10 <= number) {
243 *power = 10;
244 *exponent = 1;
245 break;
246 } // else fallthrough
247 case 3:
248 case 2:
249 case 1:
250 if (1 <= number) {
251 *power = 1;
252 *exponent = 0;
253 break;
254 } // else fallthrough
255 case 0:
256 *power = 0;
257 *exponent = -1;
258 break;
259 default:
260 // Following assignments are here to silence compiler warnings.
261 *power = 0;
262 *exponent = 0;
263 UNREACHABLE();
264 }
265 }
266
267
268 // Same comments as for DigitGen but with additional precondition:
269 // -60 <= w.e() <= -32
270 //
271 // Say, for the sake of example, that
272 // w.e() == -48, and w.f() == 0x1234567890abcdef
273 // w's value can be computed by w.f() * 2^w.e()
274 // We can obtain w's integral by simply shifting w.f() by -w.e().
275 // -> w's integral is 0x1234
276 // w's fractional part is therefore 0x567890abcdef.
277 // Printing w's integral part is easy (simply print 0x1234 in decimal).
278 // In order to print its fraction we repeatedly multiply the fraction by 10 and
279 // get each digit. Example the first digit after the comma would be computed by
280 // (0x567890abcdef * 10) >> 48. -> 3
281 // The whole thing becomes slightly more complicated because we want to stop
282 // once we have enough digits. That is, once the digits inside the buffer
283 // represent 'w' we can stop. Everything inside the interval low - high
284 // represents w. However we have to pay attention to low, high and w's
285 // imprecision.
286 template<int alpha, int gamma>
287 bool Grisu3<alpha, gamma>::DigitGen_m60_m32(
288 DiyFp low, DiyFp w, DiyFp high, char* buffer, int* length, int* kappa) {
289 // low, w and high are imprecise, but by less than one ulp (unit in the last
290 // place).
291 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
292 // the new numbers are outside of the interval we want the final
293 // representation to lie in.
294 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
295 // numbers that are certain to lie in the interval. We will use this fact
296 // later on.
297 // We will now start by generating the digits within the uncertain
298 // interval. Later we will weed out representations that lie outside the safe
299 // interval and thus _might_ lie outside the correct interval.
300 uint64_t unit = 1;
301 DiyFp too_low = DiyFp(low.f() - unit, low.e());
302 DiyFp too_high = DiyFp(high.f() + unit, high.e());
303 // too_low and too_high are guaranteed to lie outside the interval we want the
304 // generated number in.
305 DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
306 // We now cut the input number into two parts: the integrals and the
307 // fractionals. We will not write any decimal separator though, but adapt
308 // kappa instead.
309 // Reminder: we are currently computing the digits (stored inside the buffer)
310 // such that: too_low < buffer * 10^kappa < too_high
311 // We use too_high for the digit_generation and stop as soon as possible.
312 // If we stop early we effectively round down.
313 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
314 uint32_t integrals = too_high.f() >> -one.e(); // Division by one.
315 uint64_t fractionals = too_high.f() & (one.f() - 1); // Modulo by one.
316 uint32_t divider;
317 int divider_exponent;
318 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
319 &divider, &divider_exponent);
320 *kappa = divider_exponent + 1;
321 *length = 0;
322 // Loop invariant: buffer = too_high / 10^kappa (integer division)
323 // The invariant holds for the first iteration: kappa has been initialized
324 // with the divider exponent + 1. And the divider is the biggest power of ten
325 // that fits into the bits that had been reserved for the integrals.
326 while (*kappa > 0) {
327 int digit = integrals / divider;
328 buffer[*length] = '0' + digit;
329 (*length)++;
330 integrals %= divider;
331 (*kappa)--;
332 // Note that kappa now equals the exponent of the divider and that the
333 // invariant thus holds again.
334 uint64_t rest =
335 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
336 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
337 // Reminder: unsafe_interval.e() == one.e()
338 if (rest < unsafe_interval.f()) {
339 // Rounding down (by not emitting the remaining digits) yields a number
340 // that lies within the unsafe interval.
341 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
342 unsafe_interval.f(), rest,
343 static_cast<uint64_t>(divider) << -one.e(), unit);
344 }
345 divider /= 10;
346 }
347
348 // The integrals have been generated. We are at the point of the decimal
349 // separator. In the following loop we simply multiply the remaining digits by
350 // 10 and divide by one. We just need to pay attention to multiply associated
351 // data (like the interval or 'unit'), too.
352 // Instead of multiplying by 10 we multiply by 5 (cheaper operation) and
353 // increase its (imaginary) exponent. At the same time we decrease the
354 // divider's (one's) exponent and shift its significand.
355 // Basically, if fractionals was a DiyFp (with fractionals.e == one.e):
356 // fractionals.f *= 10;
357 // fractionals.f >>= 1; fractionals.e++; // value remains unchanged.
358 // one.f >>= 1; one.e++; // value remains unchanged.
359 // and we have again fractionals.e == one.e which allows us to divide
360 // fractionals.f() by one.f()
361 // We simply combine the *= 10 and the >>= 1.
362 while (true) {
363 fractionals *= 5;
364 unit *= 5;
365 unsafe_interval.set_f(unsafe_interval.f() * 5);
366 unsafe_interval.set_e(unsafe_interval.e() + 1); // Will be optimized out.
367 one.set_f(one.f() >> 1);
368 one.set_e(one.e() + 1);
369 int digit = fractionals >> -one.e(); // Integer division by one.
370 buffer[*length] = '0' + digit;
371 (*length)++;
372 fractionals &= one.f() - 1; // Modulo by one.
373 (*kappa)--;
374 if (fractionals < unsafe_interval.f()) {
375 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
376 unsafe_interval.f(), fractionals, one.f(), unit);
377 }
378 }
379 }
380
381
382 // Rounds the given generated digits in the buffer and weeds out generated
383 // digits that are not in the safe interval, or where we cannot find a rounded
384 // representation.
385 // Input: * buffer containing the digits of too_high / 10^kappa
386 // * the buffer's length
387 // * distance_too_high_w == (too_high - w).f() * unit
388 // * unsafe_interval == (too_high - too_low).f() * unit
389 // * rest = (too_high - buffer * 10^kappa).f() * unit
390 // * ten_kappa = 10^kappa * unit
391 // * unit = the common multiplier
392 // Output: returns true on success.
393 // Modifies the generated digits in the buffer to approach (round towards) w.
394 template<int alpha, int gamma>
395 bool Grisu3<alpha, gamma>::RoundWeed(
396 char* buffer, int length, uint64_t distance_too_high_w,
397 uint64_t unsafe_interval, uint64_t rest, uint64_t ten_kappa,
398 uint64_t unit) {
399 uint64_t small_distance = distance_too_high_w - unit;
400 uint64_t big_distance = distance_too_high_w + unit;
401 // Let w- = too_high - big_distance, and
402 // w+ = too_high - small_distance.
403 // Note: w- < w < w+
404 //
405 // The real w (* unit) must lie somewhere inside the interval
406 // ]w-; w+[ (often written as "(w-; w+)")
407
408 // Basically the buffer currently contains a number in the unsafe interval
409 // ]too_low; too_high[ with too_low < w < too_high
410 //
411 // By generating the digits of too_high we got the biggest last digit.
412 // In the case that w+ < buffer < too_high we try to decrement the buffer.
413 // This way the buffer approaches (rounds towards) w.
414 // There are 3 conditions that stop the decrementation process:
415 // 1) the buffer is already below w+
416 // 2) decrementing the buffer would make it leave the unsafe interval
417 // 3) decrementing the buffer would yield a number below w+ and farther away
418 // than the current number. In other words:
419 // (buffer{-1} < w+) && w+ - buffer{-1} > buffer - w+
420 // Instead of using the buffer directly we use its distance to too_high.
421 // Conceptually rest ~= too_high - buffer
422 while (rest < small_distance && // Negated condition 1
423 unsafe_interval - rest >= ten_kappa && // Negated condition 2
424 (rest + ten_kappa < small_distance || // buffer{-1} > w+
425 small_distance - rest >= rest + ten_kappa - small_distance)) {
426 buffer[length - 1]--;
427 rest += ten_kappa;
428 }
429
430 // We have approached w+ as much as possible. We now test if approaching w-
431 // would require changing the buffer. If yes, then we have two possible
432 // representations close to w, but we cannot decide which one is closer.
433 if (rest < big_distance &&
434 unsafe_interval - rest >= ten_kappa &&
435 (rest + ten_kappa < big_distance ||
436 big_distance - rest > rest + ten_kappa - big_distance)) {
437 return false;
438 }
439
440 // Weeding test.
441 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
442 // Since too_low = too_high - unsafe_interval this is equivalent too
443 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
444 // Conceptually we have: rest ~= too_high - buffer
445 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
446 }
447
448
449 bool grisu3(
450 double v, char* buffer, int* sign, int* length, int* decimal_point) {
451 if (v < 0) {
452 v = -v;
453 *sign = 1;
454 } else {
455 *sign = 0;
456 }
457 int decimal_exponent;
458 bool result = Grisu3<-60, -32>::grisu3(v, buffer, length, &decimal_exponent);
459 *decimal_point = *length + decimal_exponent;
460 buffer[*length] = '\0';
461 return result;
462 }
463
464 } } // namespace v8::internal
OLDNEW
« src/cached_powers.h ('K') | « src/grisu3.h ('k') | src/powers_ten.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698