Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(2)

Side by Side Diff: src/grisu3.cc

Issue 619005: Fast algorithm for double->string conversion. (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge/
Patch Set: '' Created 10 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "grisu3.h"
31 #include "cached_powers.h"
32 #include "diy_fp.h"
33 #include "double.h"
34
35 namespace v8 {
36 namespace internal {
37
38 template <int alpha = -60, int gamma = -32>
39 class Grisu3 {
40 public:
41 // Provides a decimal representation of v.
42 // Returns true if it succeeds, otherwise the result can not be trusted.
43 // There will be *length digits inside the buffer (not null-terminated).
44 // If the function returns true then v == (double) (buffer * 10^K).
45 // The digits in the buffer are the shortest representation possible: no
46 // 0.099999999999 instead of 0.1.
47 // The last digit will be closest to the actual v. That is, even if several
48 // digits might correctly yield 'v' when read again, the closest will be
49 // computed.
50 static bool grisu3(double v, char* buffer, int* length, int* K);
51
52 private:
53 static bool RoundWeed(char* buffer, int len, uint64_t wp_W, uint64_t Delta,
54 uint64_t rest, uint64_t ten_kappa, uint64_t ulp);
55 static bool DigitGen(DiyFp low, DiyFp w, DiyFp high,
56 char* buffer, int* len, int* kappa);
57 static bool DigitGen_m60_m32(DiyFp low, DiyFp w, DiyFp high,
58 char* buffer, int* length, int* kappa);
59 };
60
61
62 template<int alpha, int gamma>
63 bool Grisu3<alpha, gamma>::grisu3(double v, char* buffer, int* length, int* K) {
64 DiyFp w = Double(v).AsNormalizedDiyFp();
65 // m_minus and m_plus are the boundaries between w and its neighbors. Any
66 // number x such that m_minus < x < m_plus will round to v when read as
67 // double. When m_minus == x or m_plus == y then the rounding direction
68 // depends on v. Grisu3 does not need to deal with this case, as its precision
69 // is not sufficient for this case anyways.
70 DiyFp m_minus, m_plus;
71 Double(v).NormalizedBoundaries(&m_minus, &m_plus);
72 ASSERT(m_plus.e() == w.e());
73 DiyFp ten_mk; // Cached power of ten: 10^-k
74 int mk; // -k
75 GetCachedPower(w.e() + DiyFp::kSignificandSize, alpha, gamma, &mk, &ten_mk);
76 ASSERT(alpha <= w.e() + ten_mk.e() + DiyFp::kSignificandSize &&
77 gamma >= w.e() + ten_mk.e() + DiyFp::kSignificandSize);
78 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
79 // 64 bit significand and ten_mk is thus only precise up to 64 bits.
80
81 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
82 // too. The variable scaled_w (as well as scaled_m_minus/plus) are now off
83 // by a small amount.
84 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
85 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
86 // (f-1) * 2^e < w*10^k < (f+1) * 2^e
87 DiyFp scaled_w = DiyFp::Times(w, ten_mk);
88 ASSERT(scaled_w.e() == m_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
89 // In theory it would be possible to avoid some recomputations by computing
90 // the difference between w and m_minus/plus (a power of 2) and to compute
91 // scaled_m_minus/plus by subtracting/adding from scaled_w. However the
92 // code becomes much less readable and the speed enhancements are not
93 // terrible.
94 DiyFp scaled_m_minus = DiyFp::Times(m_minus, ten_mk);
95 DiyFp scaled_m_plus = DiyFp::Times(m_plus, ten_mk);
96
97 // DigitGen will generate the digits of scaled_w. Therefore we have
98 // v == (double) (scaled_w * 10^-mk).
99 // Set K == -mk and pass it to DigitGen. If scaled_w is a comma-number it will
100 // be updated.
101 int kappa;
102 bool result =
103 DigitGen(scaled_m_minus, scaled_w, scaled_m_plus, buffer, length, &kappa);
104 *K = -mk + kappa;
105 return result;
106 }
107
108 // Generates the digits of input number w.
109 // w is a floating-point number (DiyFp), consisting of a significand and an
110 // exponent. Its exponent is bounded by alpha and gamma. Typically alpha >= -63
111 // and gamma <= 3.
112 // Returns false if it fails, in which case the generated digits in the buffer
113 // should not be used.
114 // Preconditions:
115 // * low, w and high are correct up to 1 ulp (unit in the last place). That
116 // is, their error must be less that a unit of their last digits.
117 // * low.e() == w.e() == high.e()
118 // * low < w < high, and taking into account their error: low~ <= high~
119 // * alpha <= w.e() <= gamma
120 // Postconditions: returns false if procedure fails.
121 // otherwise:
122 // * buffer is not null-terminated, but len contains the number of digits.
123 // * buffer contains the shortest possible decimal digit-sequence
124 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
125 // correct values of low and high (without their error).
126 // * if more than one decimal representation gives the minimal number of
127 // decimal digits then the one closest to W (where W is the correct value
128 // of w) is chosen.
129 // Remark: this procedure takes into account the imprecission of its input
fschneider 2010/02/22 16:25:24 Typo: -> precision
Florian Loitsch 2010/02/23 09:05:10 Done.
130 // numbers. If the precision is not enough to guarantee all the postconditions
131 // then false is returned. This usually happens rarely (~0.5%).
132 template<int alpha, int gamma>
133 bool Grisu3<alpha, gamma>::DigitGen(DiyFp low, DiyFp w, DiyFp high,
134 char* buffer, int* len, int* kappa) {
135 ASSERT(low.e() == w.e() && w.e() == high.e());
136 ASSERT(low.f() + 1 <= high.f() - 1);
137 ASSERT(alpha <= w.e() && w.e() <= gamma);
138 // The following tests use alpha and gamma to avoid unnecessary dynamic tests.
139 if ((alpha >= -60 && gamma <= -32) || // -60 <= w.e() <= -32
140 (alpha <= -32 && gamma >= -60 && // Alpha/gamma overlaps -60/-32 region.
141 -60 <= w.e() && w.e() <= -32)) {
142 return DigitGen_m60_m32(low, w, high, buffer, len, kappa);
143 } else {
144 // A simple adaption of the special case -60/-32 would allow greater ranges
145 // of alpha/gamma and thus reduce the number of precomputed cached powers of
146 // ten.
147 UNIMPLEMENTED();
148 return false;
149 }
150 }
151
152 static const uint32_t kTen4 = 10000;
153 static const uint32_t kTen5 = 100000;
154 static const uint32_t kTen6 = 1000000;
155 static const uint32_t kTen7 = 10000000;
156 static const uint32_t kTen8 = 100000000;
157 static const uint32_t kTen9 = 1000000000;
158
159 // Returns the biggest power of ten that is <= than the given number. We
160 // furthermore receive the maximum number of bits 'number' has.
161 // If number_bits == 0 then 0^-1 is returned
162 // The number of bits must be <= 32.
163 static void BiggestPowerTen(uint32_t number, int number_bits, uint32_t* power, i nt* exponent) {
164 switch (number_bits) {
165 case 30:
166 case 31:
167 case 32:
Lasse Reichstein 2010/02/22 11:31:36 For readability, could you reverse the order of th
Florian Loitsch 2010/02/22 15:52:53 Done.
floitsch 2012/04/10 15:54:34 Done.
168 if (kTen9 <= number) {
169 *power = kTen9;
170 *exponent = 9;
171 break;
172 } // else fallthrough
173 case 27:
174 case 28:
175 case 29:
176 if (kTen8 <= number) {
177 *power = kTen8;
178 *exponent = 8;
179 break;
180 } // else fallthrough
181 case 24:
182 case 25:
183 case 26:
184 if (kTen7 <= number) {
185 *power = kTen7;
186 *exponent = 7;
187 break;
188 } // else fallthrough
189 case 20:
190 case 21:
191 case 22:
192 case 23:
193 if (kTen6 <= number) {
194 *power = kTen6;
195 *exponent = 6;
196 break;
197 } // else fallthrough
198 case 17:
199 case 18:
200 case 19:
201 if (kTen5 <= number) {
202 *power = kTen5;
203 *exponent = 5;
204 break;
205 } // else fallthrough
206 case 14:
207 case 15:
208 case 16:
209 if (kTen4 <= number) {
210 *power = kTen4;
211 *exponent = 4;
212 break;
213 } // else fallthrough
214 case 10:
215 case 11:
216 case 12:
217 case 13:
218 if (1000 <= number) {
219 *power = 1000;
220 *exponent = 3;
221 break;
222 } // else fallthrough
223 case 7:
224 case 8:
225 case 9:
226 if (100 <= number) {
227 *power = 100;
228 *exponent = 2;
229 break;
230 } // else fallthrough
231 case 4:
232 case 5:
233 case 6:
234 if (10 <= number) {
235 *power = 10;
236 *exponent = 1;
237 break;
238 } // else fallthrough
239 case 1:
240 case 2:
241 case 3:
242 if (1 <= number) {
243 *power = 1;
244 *exponent = 0;
245 break;
246 } // else fallthrough
247 case 0:
248 *power = 0;
249 *exponent = -1;
250 break;
251 default:
252 // Following assignments are here to silence compiler warnings.
253 *power = 0;
254 *exponent = 0;
255 UNREACHABLE();
256 }
257 }
258
259
260 // Same comments as for DigitGen but with additional precondition:
261 // -60 <= w.e() <= -32
262 //
263 // Say, for the sake of example, that
264 // w.e() == -48, and w.f() == 0x1234567890abcdef
265 // w's value can be computed by w.f() * 2^w.e()
266 // We can obtain w's integral by simply shifting w.f() by -w.e().
267 // -> w's integral is 0x1234
268 // w's fractional part is therefore 0x567890abcdef.
269 // Printing w's integral part is easy (simply print 0x1234 in decimal).
270 // In order to print its fraction we repeatedly multiply the fraction by 10 and
271 // get each digit. Example the first digit after the comma would be computed by
272 // (0x567890abcdef * 10) >> 48. -> 3
273 // The whole thing becomes slightly more complicated because we want to stop
274 // once we have enough digits. That is, once the digits inside the buffer
275 // represent 'w' we can stop. Everything inside the interval low - high
276 // represents w. However we have to pay attention to low, high and w's
277 // imprecision.
278 template<int alpha, int gamma>
279 bool Grisu3<alpha, gamma>::DigitGen_m60_m32(
280 DiyFp low, DiyFp w, DiyFp high, char* buffer, int* length, int* kappa) {
281 // low, w and high are imprecise, but by less than one ulp (unit in the last
282 // place).
283 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
284 // the new numbers are outside of the interval we want the final
285 // representation to lie in.
286 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
287 // numbers that are certain to lie in the interval. We will use this fact
288 // later on.
289 // We will now start by generating the digits within the uncertain
290 // interval. Later we will weed out representations that lie outside the safe
291 // interval and thus _might_ lie outside the correct interval.
292 uint64_t unit = 1;
293 DiyFp too_low = DiyFp(low.f() - unit, low.e());
294 DiyFp too_high = DiyFp(high.f() + unit, high.e());
295 // too_low and too_high are guaranteed to lie outside the interval we want the
296 // generated number in.
297 DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
298 // We now cut the input number into two parts: the integrals and the
299 // fractionals. We will not write any decimal separator though, but adapt
300 // kappa instead.
301 // Reminder: we are currently computing the digits (stored inside the buffer)
302 // such that: too_low < buffer * 10^kappa < too_high
303 // We use too_high for the digit_generation and stop as soon as possible.
304 // If we stop early we effectively round down.
305 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
306 uint32_t integrals = too_high.f() >> -one.e(); // Division by one.
307 uint64_t fractionals = too_high.f() & (one.f() - 1); // Modulo by one.
308 uint32_t divider;
309 int divider_exponent;
310 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
311 &divider, &divider_exponent);
312 *kappa = divider_exponent + 1;
313 *length = 0;
314 // Loop invariant: buffer = too_high / 10^kappa (integer division)
315 // The invariant holds for the first iteration: kappa has been initialized
316 // with the divider exponent + 1. And the divider is the biggest power of ten
317 // that fits into the bits that had been reserved for the integrals.
318 while (*kappa > 0) {
319 int digit = integrals / divider;
320 buffer[*length] = '0' + digit;
321 (*length)++;
322 integrals %= divider;
323 (*kappa)--;
324 // Note that kappa now equals the exponent of the divider and that the
325 // invariant thus holds again.
326 uint64_t rest =
327 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
328 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
329 // Reminder: unsafe_interval.e() == one.e()
330 if (rest < unsafe_interval.f()) {
331 // Rounding down (by not emitting the remaining digits) yields a number
332 // that lies within the unsafe interval.
333 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
334 unsafe_interval.f(), rest,
335 static_cast<uint64_t>(divider) << -one.e(), unit);
336 }
337 divider /= 10;
338 }
339 // The integrals have been generated. We are at the point of the decimal
340 // separator. In the following loop we simply multiply the remaining digits by
341 // 10 and divide by one. We just need to pay attention to multiply associated
342 // data (like the interval or 'unit'), too.
343 // Instead of multiplying by 10 we multiply by 5 (cheaper operation) and
344 // increase its (imaginary) exponent. At the same time we decrease the
345 // divider's (one's) exponent and shift its significand.
346 // Basically, if fractionals was a DiyFp (with fractionals.e == one.e):
347 // fractionals.f *= 10;
348 // fractionals.f >>= 1; fractionals.e++; // value remains unchanged.
349 // one.f >>= 1; one.e++; // value remains unchanged.
350 // and we have again fractionals.e == one.e which allows us to divide
351 // fractionals.f() by one.f()
352 // We simply combine the *= 10 and the >>= 1.
353 while (true) {
354 fractionals *= 5;
355 unit *= 5;
356 unsafe_interval.set_f(unsafe_interval.f() * 5);
357 unsafe_interval.set_e(unsafe_interval.e() + 1); // Will be optimized out.
358 one.set_f(one.f() >> 1);
359 one.set_e(one.e() + 1);
360 int digit = fractionals >> -one.e(); // Integer division by one.
361 buffer[*length] = '0' + digit;
362 (*length)++;
363 fractionals &= one.f() - 1; // Modulo by one.
364 (*kappa)--;
365 if (fractionals < unsafe_interval.f()) {
366 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
367 unsafe_interval.f(), fractionals, one.f(), unit);
368 }
369 }
370 }
371
372
373 // Rounds the given generated digits in the buffer and weeds out generated
374 // digits that are not in the safe interval, or where we cannot find a rounded
375 // representation.
376 // Input: * buffer containing the digits of too_high / 10^kappa
377 // * the buffer's length
378 // * distance_too_high_w == (too_high - w).f() * unit
379 // * unsafe_interval == (too_high - too_low).f() * unit
380 // * rest = (too_high - buffer * 10^kappa).f() * unit
381 // * ten_kappa = 10^kappa * unit
382 // * unit = the common multiplier
383 // Output: returns true on success.
384 // Modifies the generated digits in the buffer to approach (round towards) w.
385 template<int alpha, int gamma>
386 bool Grisu3<alpha, gamma>::RoundWeed(
387 char* buffer, int length, uint64_t distance_too_high_w,
388 uint64_t unsafe_interval, uint64_t rest, uint64_t ten_kappa,
389 uint64_t unit) {
390 uint64_t small_distance = distance_too_high_w - unit;
391 uint64_t big_distance = distance_too_high_w + unit;
392 // Let w- = too_high - big_distance, and
393 // w+ = too_high - small_distance.
394 // Note: w- < w < w+
395 //
396 // The real w (* unit) must lie somewhere inside the interval
397 // ]w-; w+[ (also often written as (w-; w+))
398
399 // Basically the buffer currently contains a number in the unsafe interval
400 // ]too_low; too_high[ with too_low < w < too_high
401 //
402 // By generating the digits of too_high we got the biggest last digit.
403 // In the case that w+ < buffer < too_high we try to decrement the buffer.
404 // This way the buffer approaches (rounds towards) w.
405 // There are 3 conditions that stop the decrementation process:
406 // 1) the buffer is already below w+
407 // 2) decrementing the buffer would make it leave the unsafe interval
408 // 3) decrementing the buffer would yield a number below w+ and farther away
409 // than the current number. In other words:
410 // (buffer{-1} < w+) && w+ - buffer{-1} > buffer - w+
411 // Instead of using the buffer directly we use its distance to too_high.
412 // Conceptually rest ~= too_high - buffer
413 while (rest < small_distance && // condition 1
414 unsafe_interval - rest >= ten_kappa && // condition 2
415 (rest + ten_kappa < small_distance || // buffer{-1} > w+
416 small_distance - rest >= rest + ten_kappa - small_distance)) {
417 buffer[length - 1]--;
418 rest += ten_kappa;
419 }
420
421 // We have approached w+ as much as possible. We now test if approaching w-
422 // would require changing the buffer. If yes, then we have two possible
423 // representations close to w, but we cannot decide which one is closer.
424 if (rest < big_distance &&
425 unsafe_interval - rest >= ten_kappa &&
426 (rest + ten_kappa < big_distance ||
427 big_distance - rest > rest + ten_kappa - big_distance)) {
428 return false;
429 }
430
431 // Weeding test.
432 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
433 // Since too_low = too_high - unsafe_interval this is equivalent too
434 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
435 // Conceptually we have: rest ~= too_high - buffer
436 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
437 }
438
439
440 bool grisu3(double v, char* buffer, int* sign, int* length, int* decimal_point) {
441 if (v < 0) {
442 v = -v;
443 *sign = 1;
444 } else {
445 *sign = 0;
446 }
447 int K;
Lasse Reichstein 2010/02/22 11:31:36 Lower case variable names (and preferably not sing
Florian Loitsch 2010/02/22 15:52:53 Done.
floitsch 2012/04/10 15:54:34 Done.
448 bool result = Grisu3<-60, -32>::grisu3(v, buffer, length, &K);
449 *decimal_point = *length + K;
450 buffer[*length] = '\0';
451 return result;
452 }
453
454 } } // namespace v8::internal
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698