Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. | |
| 2 // Redistribution and use in source and binary forms, with or without | |
| 3 // modification, are permitted provided that the following conditions are | |
| 4 // met: | |
| 5 // | |
| 6 // * Redistributions of source code must retain the above copyright | |
| 7 // notice, this list of conditions and the following disclaimer. | |
| 8 // * Redistributions in binary form must reproduce the above | |
| 9 // copyright notice, this list of conditions and the following | |
| 10 // disclaimer in the documentation and/or other materials provided | |
| 11 // with the distribution. | |
| 12 // * Neither the name of Google Inc. nor the names of its | |
| 13 // contributors may be used to endorse or promote products derived | |
| 14 // from this software without specific prior written permission. | |
| 15 // | |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 27 | |
| 28 #include "v8.h" | |
| 29 | |
| 30 #include "grisu3.h" | |
| 31 #include "cached_powers.h" | |
| 32 #include "diy_fp.h" | |
| 33 #include "double.h" | |
| 34 | |
| 35 namespace v8 { | |
| 36 namespace internal { | |
| 37 | |
| 38 template <int alpha = -60, int gamma = -32> | |
| 39 class Grisu3 { | |
| 40 public: | |
| 41 // Provides a decimal representation of v. | |
| 42 // Returns true if it succeeds, otherwise the result can not be trusted. | |
| 43 // There will be *length digits inside the buffer (not null-terminated). | |
| 44 // If the function returns true then v == (double) (buffer * 10^K). | |
| 45 // The digits in the buffer are the shortest representation possible: no | |
| 46 // 0.099999999999 instead of 0.1. | |
| 47 // The last digit will be closest to the actual v. That is, even if several | |
| 48 // digits might correctly yield 'v' when read again, the closest will be | |
| 49 // computed. | |
| 50 static bool grisu3(double v, char* buffer, int* length, int* K); | |
| 51 | |
| 52 private: | |
| 53 static bool RoundWeed(char* buffer, int len, uint64_t wp_W, uint64_t Delta, | |
| 54 uint64_t rest, uint64_t ten_kappa, uint64_t ulp); | |
| 55 static bool DigitGen(DiyFp low, DiyFp w, DiyFp high, | |
| 56 char* buffer, int* len, int* kappa); | |
| 57 static bool DigitGen_m60_m32(DiyFp low, DiyFp w, DiyFp high, | |
| 58 char* buffer, int* length, int* kappa); | |
| 59 }; | |
| 60 | |
| 61 | |
| 62 template<int alpha, int gamma> | |
| 63 bool Grisu3<alpha, gamma>::grisu3(double v, char* buffer, int* length, int* K) { | |
| 64 DiyFp w = Double(v).AsNormalizedDiyFp(); | |
| 65 // m_minus and m_plus are the boundaries between w and its neighbors. Any | |
| 66 // number x such that m_minus < x < m_plus will round to v when read as | |
| 67 // double. When m_minus == x or m_plus == y then the rounding direction | |
| 68 // depends on v. Grisu3 does not need to deal with this case, as its precision | |
| 69 // is not sufficient for this case anyways. | |
| 70 DiyFp m_minus, m_plus; | |
| 71 Double(v).NormalizedBoundaries(&m_minus, &m_plus); | |
| 72 ASSERT(m_plus.e() == w.e()); | |
| 73 DiyFp ten_mk; // Cached power of ten: 10^-k | |
| 74 int mk; // -k | |
| 75 GetCachedPower(w.e() + DiyFp::kSignificandSize, alpha, gamma, &mk, &ten_mk); | |
| 76 ASSERT(alpha <= w.e() + ten_mk.e() + DiyFp::kSignificandSize && | |
| 77 gamma >= w.e() + ten_mk.e() + DiyFp::kSignificandSize); | |
| 78 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a | |
| 79 // 64 bit significand and ten_mk is thus only precise up to 64 bits. | |
| 80 | |
| 81 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated | |
| 82 // too. The variable scaled_w (as well as scaled_m_minus/plus) are now off | |
| 83 // by a small amount. | |
| 84 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. | |
| 85 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then | |
| 86 // (f-1) * 2^e < w*10^k < (f+1) * 2^e | |
| 87 DiyFp scaled_w = DiyFp::Times(w, ten_mk); | |
| 88 ASSERT(scaled_w.e() == m_plus.e() + ten_mk.e() + DiyFp::kSignificandSize); | |
| 89 // In theory it would be possible to avoid some recomputations by computing | |
| 90 // the difference between w and m_minus/plus (a power of 2) and to compute | |
| 91 // scaled_m_minus/plus by subtracting/adding from scaled_w. However the | |
| 92 // code becomes much less readable and the speed enhancements are not | |
| 93 // terrible. | |
| 94 DiyFp scaled_m_minus = DiyFp::Times(m_minus, ten_mk); | |
| 95 DiyFp scaled_m_plus = DiyFp::Times(m_plus, ten_mk); | |
| 96 | |
| 97 // DigitGen will generate the digits of scaled_w. Therefore we have | |
| 98 // v == (double) (scaled_w * 10^-mk). | |
| 99 // Set K == -mk and pass it to DigitGen. If scaled_w is a comma-number it will | |
| 100 // be updated. | |
| 101 int kappa; | |
| 102 bool result = | |
| 103 DigitGen(scaled_m_minus, scaled_w, scaled_m_plus, buffer, length, &kappa); | |
| 104 *K = -mk + kappa; | |
| 105 return result; | |
| 106 } | |
| 107 | |
| 108 // Generates the digits of input number w. | |
| 109 // w is a floating-point number (DiyFp), consisting of a significand and an | |
| 110 // exponent. Its exponent is bounded by alpha and gamma. Typically alpha >= -63 | |
| 111 // and gamma <= 3. | |
| 112 // Returns false if it fails, in which case the generated digits in the buffer | |
| 113 // should not be used. | |
| 114 // Preconditions: | |
| 115 // * low, w and high are correct up to 1 ulp (unit in the last place). That | |
| 116 // is, their error must be less that a unit of their last digits. | |
| 117 // * low.e() == w.e() == high.e() | |
| 118 // * low < w < high, and taking into account their error: low~ <= high~ | |
| 119 // * alpha <= w.e() <= gamma | |
| 120 // Postconditions: returns false if procedure fails. | |
| 121 // otherwise: | |
| 122 // * buffer is not null-terminated, but len contains the number of digits. | |
| 123 // * buffer contains the shortest possible decimal digit-sequence | |
| 124 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the | |
| 125 // correct values of low and high (without their error). | |
| 126 // * if more than one decimal representation gives the minimal number of | |
| 127 // decimal digits then the one closest to W (where W is the correct value | |
| 128 // of w) is chosen. | |
| 129 // Remark: this procedure takes into account the imprecission of its input | |
|
fschneider
2010/02/22 16:25:24
Typo: -> precision
Florian Loitsch
2010/02/23 09:05:10
Done.
| |
| 130 // numbers. If the precision is not enough to guarantee all the postconditions | |
| 131 // then false is returned. This usually happens rarely (~0.5%). | |
| 132 template<int alpha, int gamma> | |
| 133 bool Grisu3<alpha, gamma>::DigitGen(DiyFp low, DiyFp w, DiyFp high, | |
| 134 char* buffer, int* len, int* kappa) { | |
| 135 ASSERT(low.e() == w.e() && w.e() == high.e()); | |
| 136 ASSERT(low.f() + 1 <= high.f() - 1); | |
| 137 ASSERT(alpha <= w.e() && w.e() <= gamma); | |
| 138 // The following tests use alpha and gamma to avoid unnecessary dynamic tests. | |
| 139 if ((alpha >= -60 && gamma <= -32) || // -60 <= w.e() <= -32 | |
| 140 (alpha <= -32 && gamma >= -60 && // Alpha/gamma overlaps -60/-32 region. | |
| 141 -60 <= w.e() && w.e() <= -32)) { | |
| 142 return DigitGen_m60_m32(low, w, high, buffer, len, kappa); | |
| 143 } else { | |
| 144 // A simple adaption of the special case -60/-32 would allow greater ranges | |
| 145 // of alpha/gamma and thus reduce the number of precomputed cached powers of | |
| 146 // ten. | |
| 147 UNIMPLEMENTED(); | |
| 148 return false; | |
| 149 } | |
| 150 } | |
| 151 | |
| 152 static const uint32_t kTen4 = 10000; | |
| 153 static const uint32_t kTen5 = 100000; | |
| 154 static const uint32_t kTen6 = 1000000; | |
| 155 static const uint32_t kTen7 = 10000000; | |
| 156 static const uint32_t kTen8 = 100000000; | |
| 157 static const uint32_t kTen9 = 1000000000; | |
| 158 | |
| 159 // Returns the biggest power of ten that is <= than the given number. We | |
| 160 // furthermore receive the maximum number of bits 'number' has. | |
| 161 // If number_bits == 0 then 0^-1 is returned | |
| 162 // The number of bits must be <= 32. | |
| 163 static void BiggestPowerTen(uint32_t number, int number_bits, uint32_t* power, i nt* exponent) { | |
| 164 switch (number_bits) { | |
| 165 case 30: | |
| 166 case 31: | |
| 167 case 32: | |
|
Lasse Reichstein
2010/02/22 11:31:36
For readability, could you reverse the order of th
Florian Loitsch
2010/02/22 15:52:53
Done.
floitsch
2012/04/10 15:54:34
Done.
| |
| 168 if (kTen9 <= number) { | |
| 169 *power = kTen9; | |
| 170 *exponent = 9; | |
| 171 break; | |
| 172 } // else fallthrough | |
| 173 case 27: | |
| 174 case 28: | |
| 175 case 29: | |
| 176 if (kTen8 <= number) { | |
| 177 *power = kTen8; | |
| 178 *exponent = 8; | |
| 179 break; | |
| 180 } // else fallthrough | |
| 181 case 24: | |
| 182 case 25: | |
| 183 case 26: | |
| 184 if (kTen7 <= number) { | |
| 185 *power = kTen7; | |
| 186 *exponent = 7; | |
| 187 break; | |
| 188 } // else fallthrough | |
| 189 case 20: | |
| 190 case 21: | |
| 191 case 22: | |
| 192 case 23: | |
| 193 if (kTen6 <= number) { | |
| 194 *power = kTen6; | |
| 195 *exponent = 6; | |
| 196 break; | |
| 197 } // else fallthrough | |
| 198 case 17: | |
| 199 case 18: | |
| 200 case 19: | |
| 201 if (kTen5 <= number) { | |
| 202 *power = kTen5; | |
| 203 *exponent = 5; | |
| 204 break; | |
| 205 } // else fallthrough | |
| 206 case 14: | |
| 207 case 15: | |
| 208 case 16: | |
| 209 if (kTen4 <= number) { | |
| 210 *power = kTen4; | |
| 211 *exponent = 4; | |
| 212 break; | |
| 213 } // else fallthrough | |
| 214 case 10: | |
| 215 case 11: | |
| 216 case 12: | |
| 217 case 13: | |
| 218 if (1000 <= number) { | |
| 219 *power = 1000; | |
| 220 *exponent = 3; | |
| 221 break; | |
| 222 } // else fallthrough | |
| 223 case 7: | |
| 224 case 8: | |
| 225 case 9: | |
| 226 if (100 <= number) { | |
| 227 *power = 100; | |
| 228 *exponent = 2; | |
| 229 break; | |
| 230 } // else fallthrough | |
| 231 case 4: | |
| 232 case 5: | |
| 233 case 6: | |
| 234 if (10 <= number) { | |
| 235 *power = 10; | |
| 236 *exponent = 1; | |
| 237 break; | |
| 238 } // else fallthrough | |
| 239 case 1: | |
| 240 case 2: | |
| 241 case 3: | |
| 242 if (1 <= number) { | |
| 243 *power = 1; | |
| 244 *exponent = 0; | |
| 245 break; | |
| 246 } // else fallthrough | |
| 247 case 0: | |
| 248 *power = 0; | |
| 249 *exponent = -1; | |
| 250 break; | |
| 251 default: | |
| 252 // Following assignments are here to silence compiler warnings. | |
| 253 *power = 0; | |
| 254 *exponent = 0; | |
| 255 UNREACHABLE(); | |
| 256 } | |
| 257 } | |
| 258 | |
| 259 | |
| 260 // Same comments as for DigitGen but with additional precondition: | |
| 261 // -60 <= w.e() <= -32 | |
| 262 // | |
| 263 // Say, for the sake of example, that | |
| 264 // w.e() == -48, and w.f() == 0x1234567890abcdef | |
| 265 // w's value can be computed by w.f() * 2^w.e() | |
| 266 // We can obtain w's integral by simply shifting w.f() by -w.e(). | |
| 267 // -> w's integral is 0x1234 | |
| 268 // w's fractional part is therefore 0x567890abcdef. | |
| 269 // Printing w's integral part is easy (simply print 0x1234 in decimal). | |
| 270 // In order to print its fraction we repeatedly multiply the fraction by 10 and | |
| 271 // get each digit. Example the first digit after the comma would be computed by | |
| 272 // (0x567890abcdef * 10) >> 48. -> 3 | |
| 273 // The whole thing becomes slightly more complicated because we want to stop | |
| 274 // once we have enough digits. That is, once the digits inside the buffer | |
| 275 // represent 'w' we can stop. Everything inside the interval low - high | |
| 276 // represents w. However we have to pay attention to low, high and w's | |
| 277 // imprecision. | |
| 278 template<int alpha, int gamma> | |
| 279 bool Grisu3<alpha, gamma>::DigitGen_m60_m32( | |
| 280 DiyFp low, DiyFp w, DiyFp high, char* buffer, int* length, int* kappa) { | |
| 281 // low, w and high are imprecise, but by less than one ulp (unit in the last | |
| 282 // place). | |
| 283 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that | |
| 284 // the new numbers are outside of the interval we want the final | |
| 285 // representation to lie in. | |
| 286 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield | |
| 287 // numbers that are certain to lie in the interval. We will use this fact | |
| 288 // later on. | |
| 289 // We will now start by generating the digits within the uncertain | |
| 290 // interval. Later we will weed out representations that lie outside the safe | |
| 291 // interval and thus _might_ lie outside the correct interval. | |
| 292 uint64_t unit = 1; | |
| 293 DiyFp too_low = DiyFp(low.f() - unit, low.e()); | |
| 294 DiyFp too_high = DiyFp(high.f() + unit, high.e()); | |
| 295 // too_low and too_high are guaranteed to lie outside the interval we want the | |
| 296 // generated number in. | |
| 297 DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low); | |
| 298 // We now cut the input number into two parts: the integrals and the | |
| 299 // fractionals. We will not write any decimal separator though, but adapt | |
| 300 // kappa instead. | |
| 301 // Reminder: we are currently computing the digits (stored inside the buffer) | |
| 302 // such that: too_low < buffer * 10^kappa < too_high | |
| 303 // We use too_high for the digit_generation and stop as soon as possible. | |
| 304 // If we stop early we effectively round down. | |
| 305 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); | |
| 306 uint32_t integrals = too_high.f() >> -one.e(); // Division by one. | |
| 307 uint64_t fractionals = too_high.f() & (one.f() - 1); // Modulo by one. | |
| 308 uint32_t divider; | |
| 309 int divider_exponent; | |
| 310 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), | |
| 311 ÷r, ÷r_exponent); | |
| 312 *kappa = divider_exponent + 1; | |
| 313 *length = 0; | |
| 314 // Loop invariant: buffer = too_high / 10^kappa (integer division) | |
| 315 // The invariant holds for the first iteration: kappa has been initialized | |
| 316 // with the divider exponent + 1. And the divider is the biggest power of ten | |
| 317 // that fits into the bits that had been reserved for the integrals. | |
| 318 while (*kappa > 0) { | |
| 319 int digit = integrals / divider; | |
| 320 buffer[*length] = '0' + digit; | |
| 321 (*length)++; | |
| 322 integrals %= divider; | |
| 323 (*kappa)--; | |
| 324 // Note that kappa now equals the exponent of the divider and that the | |
| 325 // invariant thus holds again. | |
| 326 uint64_t rest = | |
| 327 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; | |
| 328 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e()) | |
| 329 // Reminder: unsafe_interval.e() == one.e() | |
| 330 if (rest < unsafe_interval.f()) { | |
| 331 // Rounding down (by not emitting the remaining digits) yields a number | |
| 332 // that lies within the unsafe interval. | |
| 333 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(), | |
| 334 unsafe_interval.f(), rest, | |
| 335 static_cast<uint64_t>(divider) << -one.e(), unit); | |
| 336 } | |
| 337 divider /= 10; | |
| 338 } | |
| 339 // The integrals have been generated. We are at the point of the decimal | |
| 340 // separator. In the following loop we simply multiply the remaining digits by | |
| 341 // 10 and divide by one. We just need to pay attention to multiply associated | |
| 342 // data (like the interval or 'unit'), too. | |
| 343 // Instead of multiplying by 10 we multiply by 5 (cheaper operation) and | |
| 344 // increase its (imaginary) exponent. At the same time we decrease the | |
| 345 // divider's (one's) exponent and shift its significand. | |
| 346 // Basically, if fractionals was a DiyFp (with fractionals.e == one.e): | |
| 347 // fractionals.f *= 10; | |
| 348 // fractionals.f >>= 1; fractionals.e++; // value remains unchanged. | |
| 349 // one.f >>= 1; one.e++; // value remains unchanged. | |
| 350 // and we have again fractionals.e == one.e which allows us to divide | |
| 351 // fractionals.f() by one.f() | |
| 352 // We simply combine the *= 10 and the >>= 1. | |
| 353 while (true) { | |
| 354 fractionals *= 5; | |
| 355 unit *= 5; | |
| 356 unsafe_interval.set_f(unsafe_interval.f() * 5); | |
| 357 unsafe_interval.set_e(unsafe_interval.e() + 1); // Will be optimized out. | |
| 358 one.set_f(one.f() >> 1); | |
| 359 one.set_e(one.e() + 1); | |
| 360 int digit = fractionals >> -one.e(); // Integer division by one. | |
| 361 buffer[*length] = '0' + digit; | |
| 362 (*length)++; | |
| 363 fractionals &= one.f() - 1; // Modulo by one. | |
| 364 (*kappa)--; | |
| 365 if (fractionals < unsafe_interval.f()) { | |
| 366 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit, | |
| 367 unsafe_interval.f(), fractionals, one.f(), unit); | |
| 368 } | |
| 369 } | |
| 370 } | |
| 371 | |
| 372 | |
| 373 // Rounds the given generated digits in the buffer and weeds out generated | |
| 374 // digits that are not in the safe interval, or where we cannot find a rounded | |
| 375 // representation. | |
| 376 // Input: * buffer containing the digits of too_high / 10^kappa | |
| 377 // * the buffer's length | |
| 378 // * distance_too_high_w == (too_high - w).f() * unit | |
| 379 // * unsafe_interval == (too_high - too_low).f() * unit | |
| 380 // * rest = (too_high - buffer * 10^kappa).f() * unit | |
| 381 // * ten_kappa = 10^kappa * unit | |
| 382 // * unit = the common multiplier | |
| 383 // Output: returns true on success. | |
| 384 // Modifies the generated digits in the buffer to approach (round towards) w. | |
| 385 template<int alpha, int gamma> | |
| 386 bool Grisu3<alpha, gamma>::RoundWeed( | |
| 387 char* buffer, int length, uint64_t distance_too_high_w, | |
| 388 uint64_t unsafe_interval, uint64_t rest, uint64_t ten_kappa, | |
| 389 uint64_t unit) { | |
| 390 uint64_t small_distance = distance_too_high_w - unit; | |
| 391 uint64_t big_distance = distance_too_high_w + unit; | |
| 392 // Let w- = too_high - big_distance, and | |
| 393 // w+ = too_high - small_distance. | |
| 394 // Note: w- < w < w+ | |
| 395 // | |
| 396 // The real w (* unit) must lie somewhere inside the interval | |
| 397 // ]w-; w+[ (also often written as (w-; w+)) | |
| 398 | |
| 399 // Basically the buffer currently contains a number in the unsafe interval | |
| 400 // ]too_low; too_high[ with too_low < w < too_high | |
| 401 // | |
| 402 // By generating the digits of too_high we got the biggest last digit. | |
| 403 // In the case that w+ < buffer < too_high we try to decrement the buffer. | |
| 404 // This way the buffer approaches (rounds towards) w. | |
| 405 // There are 3 conditions that stop the decrementation process: | |
| 406 // 1) the buffer is already below w+ | |
| 407 // 2) decrementing the buffer would make it leave the unsafe interval | |
| 408 // 3) decrementing the buffer would yield a number below w+ and farther away | |
| 409 // than the current number. In other words: | |
| 410 // (buffer{-1} < w+) && w+ - buffer{-1} > buffer - w+ | |
| 411 // Instead of using the buffer directly we use its distance to too_high. | |
| 412 // Conceptually rest ~= too_high - buffer | |
| 413 while (rest < small_distance && // condition 1 | |
| 414 unsafe_interval - rest >= ten_kappa && // condition 2 | |
| 415 (rest + ten_kappa < small_distance || // buffer{-1} > w+ | |
| 416 small_distance - rest >= rest + ten_kappa - small_distance)) { | |
| 417 buffer[length - 1]--; | |
| 418 rest += ten_kappa; | |
| 419 } | |
| 420 | |
| 421 // We have approached w+ as much as possible. We now test if approaching w- | |
| 422 // would require changing the buffer. If yes, then we have two possible | |
| 423 // representations close to w, but we cannot decide which one is closer. | |
| 424 if (rest < big_distance && | |
| 425 unsafe_interval - rest >= ten_kappa && | |
| 426 (rest + ten_kappa < big_distance || | |
| 427 big_distance - rest > rest + ten_kappa - big_distance)) { | |
| 428 return false; | |
| 429 } | |
| 430 | |
| 431 // Weeding test. | |
| 432 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp] | |
| 433 // Since too_low = too_high - unsafe_interval this is equivalent too | |
| 434 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] | |
| 435 // Conceptually we have: rest ~= too_high - buffer | |
| 436 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit); | |
| 437 } | |
| 438 | |
| 439 | |
| 440 bool grisu3(double v, char* buffer, int* sign, int* length, int* decimal_point) { | |
| 441 if (v < 0) { | |
| 442 v = -v; | |
| 443 *sign = 1; | |
| 444 } else { | |
| 445 *sign = 0; | |
| 446 } | |
| 447 int K; | |
|
Lasse Reichstein
2010/02/22 11:31:36
Lower case variable names (and preferably not sing
Florian Loitsch
2010/02/22 15:52:53
Done.
floitsch
2012/04/10 15:54:34
Done.
| |
| 448 bool result = Grisu3<-60, -32>::grisu3(v, buffer, length, &K); | |
| 449 *decimal_point = *length + K; | |
| 450 buffer[*length] = '\0'; | |
| 451 return result; | |
| 452 } | |
| 453 | |
| 454 } } // namespace v8::internal | |
| OLD | NEW |