Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. | |
| 2 // Redistribution and use in source and binary forms, with or without | |
| 3 // modification, are permitted provided that the following conditions are | |
| 4 // met: | |
| 5 // | |
| 6 // * Redistributions of source code must retain the above copyright | |
| 7 // notice, this list of conditions and the following disclaimer. | |
| 8 // * Redistributions in binary form must reproduce the above | |
| 9 // copyright notice, this list of conditions and the following | |
| 10 // disclaimer in the documentation and/or other materials provided | |
| 11 // with the distribution. | |
| 12 // * Neither the name of Google Inc. nor the names of its | |
| 13 // contributors may be used to endorse or promote products derived | |
| 14 // from this software without specific prior written permission. | |
| 15 // | |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 27 | |
| 28 #ifndef V8_DOUBLE_H_ | |
| 29 #define V8_DOUBLE_H_ | |
| 30 | |
| 31 #include "diy_fp.h" | |
|
Lasse Reichstein
2010/02/22 11:31:36
For consistency with the remaining code, please do
Florian Loitsch
2010/02/22 15:52:53
Done.
floitsch
2012/04/10 15:54:34
Done.
| |
| 32 | |
| 33 namespace v8 { | |
| 34 namespace internal { | |
| 35 | |
| 36 typedef union { | |
|
Lasse Reichstein
2010/02/22 11:31:36
Using a union to convert is bound to give problems
Florian Loitsch
2010/02/22 15:52:53
Done.
floitsch
2012/04/10 15:54:34
Done.
| |
| 37 double d; | |
| 38 uint64_t n; | |
| 39 } converter_t; | |
| 40 | |
| 41 // TODO(floitsch): the following conversion functions only work when uint64 and | |
| 42 // doubles share the same endianess. | |
| 43 static uint64_t double_to_uint64(double d) { | |
| 44 converter_t tmp; | |
| 45 tmp.d = d; | |
| 46 return tmp.n; | |
| 47 } | |
| 48 | |
| 49 static double uint64_to_double(uint64_t d64) { | |
| 50 converter_t tmp; | |
| 51 tmp.n = d64; | |
| 52 return tmp.d; | |
| 53 } | |
| 54 | |
| 55 // Helper functions for doubles. | |
| 56 class Double { | |
| 57 public: | |
| 58 static const int kSignificandSize = 52; // excluding the hidden bit | |
|
Lasse Reichstein
2010/02/22 11:31:36
Format comments as full sentences (capital start l
Florian Loitsch
2010/02/22 15:52:53
Done.
floitsch
2012/04/10 15:54:34
Done.
| |
| 59 | |
| 60 Double() : d64_(0.0) {} | |
| 61 explicit Double(double d) : d64_(double_to_uint64(d)) {} | |
| 62 explicit Double(uint64_t d64) : d64_(d64) {} | |
| 63 | |
| 64 DiyFp AsDiyFp() const { | |
|
Lasse Reichstein
2010/02/22 11:31:36
Do you have any suggested pronunciation of DiyFp?
Florian Loitsch
2010/02/22 15:52:53
Do It Yourself Floating Point. Name is copied from
floitsch
2012/04/10 15:54:34
Do It Yourself Floating Point. This name is copied
| |
| 65 ASSERT(!IsSpecial()); | |
| 66 return DiyFp(Significand(), Exponent()); | |
| 67 } | |
| 68 | |
| 69 DiyFp AsNormalizedDiyFp() const { | |
| 70 uint64_t f = Significand(); | |
| 71 int e = Exponent(); | |
| 72 | |
| 73 // the current double could be a denormal. | |
| 74 while ((f & kHiddenBit) == 0) { | |
| 75 f <<= 1; | |
| 76 e--; | |
| 77 } | |
| 78 /* do the final shifts in one go. Don't forget the hidden bit (the '-1') */ | |
| 79 f <<= DiyFp::kSignificandSize - kSignificandSize - 1; | |
| 80 e -= DiyFp::kSignificandSize - kSignificandSize - 1; | |
| 81 return DiyFp(f, e); | |
| 82 } | |
| 83 | |
| 84 int Exponent() const { | |
| 85 if (IsDenormal()) return kDenormalExponent; | |
| 86 | |
| 87 uint64_t d64 = AsUint64(); | |
| 88 int biased_e = (d64 & kExponentMask) >> kSignificandSize; | |
| 89 return biased_e - kExponentBias; | |
| 90 } | |
| 91 | |
| 92 uint64_t Significand() const { | |
| 93 uint64_t d64 = AsUint64(); | |
| 94 uint64_t significand = d64 & kSignificandMask; | |
| 95 if (!IsDenormal()) { | |
| 96 return significand + kHiddenBit; | |
| 97 } else { | |
| 98 return significand; | |
| 99 } | |
| 100 } | |
| 101 | |
| 102 // Returns true if the double is a denormal. | |
| 103 bool IsDenormal() const { | |
| 104 uint64_t d64 = AsUint64(); | |
| 105 return (d64 & kExponentMask) == 0; | |
| 106 } | |
| 107 | |
| 108 // We consider denormals not to be special. | |
| 109 // Hence only Infinity and NaN are special. | |
| 110 bool IsSpecial() const { | |
| 111 uint64_t d64 = AsUint64(); | |
| 112 return (d64 & kExponentMask) == kExponentMask; | |
| 113 } | |
| 114 | |
| 115 // Returns the two boundaries of this. | |
| 116 // The bigger boundary (m_plus) is normalized. The lower boundary has the same | |
| 117 // exponent as m_plus. | |
| 118 void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { | |
| 119 DiyFp v = this->AsDiyFp(); | |
| 120 bool significand_is_zero = (v.f() == kHiddenBit); | |
| 121 DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); | |
| 122 DiyFp m_minus; | |
| 123 if (significand_is_zero && v.e() != kDenormalExponent) { | |
| 124 // The boundary is closer. Think of v = 1000e10 and v- = 9999e9. | |
| 125 // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but | |
| 126 // at a distance of 1e8. | |
| 127 // The only exception is for the smallest normal: the largest denormal is | |
| 128 // at the same distance as its successor. | |
| 129 // Note: denormals have the same exponent as the smallest normals. | |
| 130 m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); | |
| 131 } else { | |
| 132 m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); | |
| 133 } | |
| 134 m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); | |
| 135 m_minus.set_e(m_plus.e()); | |
| 136 *out_m_plus = m_plus; | |
| 137 *out_m_minus = m_minus; | |
| 138 } | |
| 139 | |
| 140 double value() const { return uint64_to_double(d64_); } | |
| 141 | |
| 142 private: | |
| 143 static const int kExponentBias = 0x3FF + kSignificandSize; | |
| 144 static const int kDenormalExponent = -kExponentBias + 1; | |
| 145 static const uint64_t kExponentMask = V8_2PART_UINT64_C(0x7FF00000,00000000 ); | |
| 146 static const uint64_t kSignificandMask = V8_2PART_UINT64_C(0x000FFFFF,FFFFFFFF ); | |
| 147 static const uint64_t kHiddenBit = V8_2PART_UINT64_C(0x00100000,00000000 ); | |
| 148 | |
| 149 uint64_t d64_; | |
| 150 | |
| 151 // Returns the double's bit as uint64. | |
| 152 uint64_t AsUint64() const { | |
| 153 return d64_; | |
| 154 } | |
| 155 }; | |
| 156 | |
| 157 } } // namespace v8::internal | |
| 158 | |
| 159 #endif // V8_DOUBLE_H_ | |
| OLD | NEW |