| Index: third_party/cython/src/Cython/Compiler/FusedNode.py
|
| diff --git a/third_party/cython/src/Cython/Compiler/FusedNode.py b/third_party/cython/src/Cython/Compiler/FusedNode.py
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..7a9d1ab48bc6fd8ab64c58fe1c43deed16703cf8
|
| --- /dev/null
|
| +++ b/third_party/cython/src/Cython/Compiler/FusedNode.py
|
| @@ -0,0 +1,790 @@
|
| +import copy
|
| +
|
| +from Cython.Compiler import (ExprNodes, PyrexTypes, MemoryView,
|
| + ParseTreeTransforms, StringEncoding,
|
| + Errors)
|
| +from Cython.Compiler.ExprNodes import CloneNode, ProxyNode, TupleNode
|
| +from Cython.Compiler.Nodes import (FuncDefNode, CFuncDefNode, StatListNode,
|
| + DefNode)
|
| +
|
| +class FusedCFuncDefNode(StatListNode):
|
| + """
|
| + This node replaces a function with fused arguments. It deep-copies the
|
| + function for every permutation of fused types, and allocates a new local
|
| + scope for it. It keeps track of the original function in self.node, and
|
| + the entry of the original function in the symbol table is given the
|
| + 'fused_cfunction' attribute which points back to us.
|
| + Then when a function lookup occurs (to e.g. call it), the call can be
|
| + dispatched to the right function.
|
| +
|
| + node FuncDefNode the original function
|
| + nodes [FuncDefNode] list of copies of node with different specific types
|
| + py_func DefNode the fused python function subscriptable from
|
| + Python space
|
| + __signatures__ A DictNode mapping signature specialization strings
|
| + to PyCFunction nodes
|
| + resulting_fused_function PyCFunction for the fused DefNode that delegates
|
| + to specializations
|
| + fused_func_assignment Assignment of the fused function to the function name
|
| + defaults_tuple TupleNode of defaults (letting PyCFunctionNode build
|
| + defaults would result in many different tuples)
|
| + specialized_pycfuncs List of synthesized pycfunction nodes for the
|
| + specializations
|
| + code_object CodeObjectNode shared by all specializations and the
|
| + fused function
|
| +
|
| + fused_compound_types All fused (compound) types (e.g. floating[:])
|
| + """
|
| +
|
| + __signatures__ = None
|
| + resulting_fused_function = None
|
| + fused_func_assignment = None
|
| + defaults_tuple = None
|
| + decorators = None
|
| +
|
| + child_attrs = StatListNode.child_attrs + [
|
| + '__signatures__', 'resulting_fused_function', 'fused_func_assignment']
|
| +
|
| + def __init__(self, node, env):
|
| + super(FusedCFuncDefNode, self).__init__(node.pos)
|
| +
|
| + self.nodes = []
|
| + self.node = node
|
| +
|
| + is_def = isinstance(self.node, DefNode)
|
| + if is_def:
|
| + # self.node.decorators = []
|
| + self.copy_def(env)
|
| + else:
|
| + self.copy_cdef(env)
|
| +
|
| + # Perform some sanity checks. If anything fails, it's a bug
|
| + for n in self.nodes:
|
| + assert not n.entry.type.is_fused
|
| + assert not n.local_scope.return_type.is_fused
|
| + if node.return_type.is_fused:
|
| + assert not n.return_type.is_fused
|
| +
|
| + if not is_def and n.cfunc_declarator.optional_arg_count:
|
| + assert n.type.op_arg_struct
|
| +
|
| + node.entry.fused_cfunction = self
|
| + # Copy the nodes as AnalyseDeclarationsTransform will prepend
|
| + # self.py_func to self.stats, as we only want specialized
|
| + # CFuncDefNodes in self.nodes
|
| + self.stats = self.nodes[:]
|
| +
|
| + def copy_def(self, env):
|
| + """
|
| + Create a copy of the original def or lambda function for specialized
|
| + versions.
|
| + """
|
| + fused_compound_types = PyrexTypes.unique(
|
| + [arg.type for arg in self.node.args if arg.type.is_fused])
|
| + permutations = PyrexTypes.get_all_specialized_permutations(fused_compound_types)
|
| +
|
| + self.fused_compound_types = fused_compound_types
|
| +
|
| + if self.node.entry in env.pyfunc_entries:
|
| + env.pyfunc_entries.remove(self.node.entry)
|
| +
|
| + for cname, fused_to_specific in permutations:
|
| + copied_node = copy.deepcopy(self.node)
|
| +
|
| + self._specialize_function_args(copied_node.args, fused_to_specific)
|
| + copied_node.return_type = self.node.return_type.specialize(
|
| + fused_to_specific)
|
| +
|
| + copied_node.analyse_declarations(env)
|
| + # copied_node.is_staticmethod = self.node.is_staticmethod
|
| + # copied_node.is_classmethod = self.node.is_classmethod
|
| + self.create_new_local_scope(copied_node, env, fused_to_specific)
|
| + self.specialize_copied_def(copied_node, cname, self.node.entry,
|
| + fused_to_specific, fused_compound_types)
|
| +
|
| + PyrexTypes.specialize_entry(copied_node.entry, cname)
|
| + copied_node.entry.used = True
|
| + env.entries[copied_node.entry.name] = copied_node.entry
|
| +
|
| + if not self.replace_fused_typechecks(copied_node):
|
| + break
|
| +
|
| + self.orig_py_func = self.node
|
| + self.py_func = self.make_fused_cpdef(self.node, env, is_def=True)
|
| +
|
| + def copy_cdef(self, env):
|
| + """
|
| + Create a copy of the original c(p)def function for all specialized
|
| + versions.
|
| + """
|
| + permutations = self.node.type.get_all_specialized_permutations()
|
| + # print 'Node %s has %d specializations:' % (self.node.entry.name,
|
| + # len(permutations))
|
| + # import pprint; pprint.pprint([d for cname, d in permutations])
|
| +
|
| + if self.node.entry in env.cfunc_entries:
|
| + env.cfunc_entries.remove(self.node.entry)
|
| +
|
| + # Prevent copying of the python function
|
| + self.orig_py_func = orig_py_func = self.node.py_func
|
| + self.node.py_func = None
|
| + if orig_py_func:
|
| + env.pyfunc_entries.remove(orig_py_func.entry)
|
| +
|
| + fused_types = self.node.type.get_fused_types()
|
| + self.fused_compound_types = fused_types
|
| +
|
| + for cname, fused_to_specific in permutations:
|
| + copied_node = copy.deepcopy(self.node)
|
| +
|
| + # Make the types in our CFuncType specific
|
| + type = copied_node.type.specialize(fused_to_specific)
|
| + entry = copied_node.entry
|
| +
|
| + copied_node.type = type
|
| + entry.type, type.entry = type, entry
|
| +
|
| + entry.used = (entry.used or
|
| + self.node.entry.defined_in_pxd or
|
| + env.is_c_class_scope or
|
| + entry.is_cmethod)
|
| +
|
| + if self.node.cfunc_declarator.optional_arg_count:
|
| + self.node.cfunc_declarator.declare_optional_arg_struct(
|
| + type, env, fused_cname=cname)
|
| +
|
| + copied_node.return_type = type.return_type
|
| + self.create_new_local_scope(copied_node, env, fused_to_specific)
|
| +
|
| + # Make the argument types in the CFuncDeclarator specific
|
| + self._specialize_function_args(copied_node.cfunc_declarator.args,
|
| + fused_to_specific)
|
| +
|
| + type.specialize_entry(entry, cname)
|
| + env.cfunc_entries.append(entry)
|
| +
|
| + # If a cpdef, declare all specialized cpdefs (this
|
| + # also calls analyse_declarations)
|
| + copied_node.declare_cpdef_wrapper(env)
|
| + if copied_node.py_func:
|
| + env.pyfunc_entries.remove(copied_node.py_func.entry)
|
| +
|
| + self.specialize_copied_def(
|
| + copied_node.py_func, cname, self.node.entry.as_variable,
|
| + fused_to_specific, fused_types)
|
| +
|
| + if not self.replace_fused_typechecks(copied_node):
|
| + break
|
| +
|
| + if orig_py_func:
|
| + self.py_func = self.make_fused_cpdef(orig_py_func, env,
|
| + is_def=False)
|
| + else:
|
| + self.py_func = orig_py_func
|
| +
|
| + def _specialize_function_args(self, args, fused_to_specific):
|
| + for arg in args:
|
| + if arg.type.is_fused:
|
| + arg.type = arg.type.specialize(fused_to_specific)
|
| + if arg.type.is_memoryviewslice:
|
| + MemoryView.validate_memslice_dtype(arg.pos, arg.type.dtype)
|
| +
|
| + def create_new_local_scope(self, node, env, f2s):
|
| + """
|
| + Create a new local scope for the copied node and append it to
|
| + self.nodes. A new local scope is needed because the arguments with the
|
| + fused types are aready in the local scope, and we need the specialized
|
| + entries created after analyse_declarations on each specialized version
|
| + of the (CFunc)DefNode.
|
| + f2s is a dict mapping each fused type to its specialized version
|
| + """
|
| + node.create_local_scope(env)
|
| + node.local_scope.fused_to_specific = f2s
|
| +
|
| + # This is copied from the original function, set it to false to
|
| + # stop recursion
|
| + node.has_fused_arguments = False
|
| + self.nodes.append(node)
|
| +
|
| + def specialize_copied_def(self, node, cname, py_entry, f2s, fused_types):
|
| + """Specialize the copy of a DefNode given the copied node,
|
| + the specialization cname and the original DefNode entry"""
|
| + type_strings = [
|
| + PyrexTypes.specialization_signature_string(fused_type, f2s)
|
| + for fused_type in fused_types
|
| + ]
|
| +
|
| + node.specialized_signature_string = '|'.join(type_strings)
|
| +
|
| + node.entry.pymethdef_cname = PyrexTypes.get_fused_cname(
|
| + cname, node.entry.pymethdef_cname)
|
| + node.entry.doc = py_entry.doc
|
| + node.entry.doc_cname = py_entry.doc_cname
|
| +
|
| + def replace_fused_typechecks(self, copied_node):
|
| + """
|
| + Branch-prune fused type checks like
|
| +
|
| + if fused_t is int:
|
| + ...
|
| +
|
| + Returns whether an error was issued and whether we should stop in
|
| + in order to prevent a flood of errors.
|
| + """
|
| + num_errors = Errors.num_errors
|
| + transform = ParseTreeTransforms.ReplaceFusedTypeChecks(
|
| + copied_node.local_scope)
|
| + transform(copied_node)
|
| +
|
| + if Errors.num_errors > num_errors:
|
| + return False
|
| +
|
| + return True
|
| +
|
| + def _fused_instance_checks(self, normal_types, pyx_code, env):
|
| + """
|
| + Genereate Cython code for instance checks, matching an object to
|
| + specialized types.
|
| + """
|
| + if_ = 'if'
|
| + for specialized_type in normal_types:
|
| + # all_numeric = all_numeric and specialized_type.is_numeric
|
| + py_type_name = specialized_type.py_type_name()
|
| + specialized_type_name = specialized_type.specialization_string
|
| + pyx_code.context.update(locals())
|
| + pyx_code.put_chunk(
|
| + u"""
|
| + {{if_}} isinstance(arg, {{py_type_name}}):
|
| + dest_sig[{{dest_sig_idx}}] = '{{specialized_type_name}}'
|
| + """)
|
| + if_ = 'elif'
|
| +
|
| + if not normal_types:
|
| + # we need an 'if' to match the following 'else'
|
| + pyx_code.putln("if 0: pass")
|
| +
|
| + def _dtype_name(self, dtype):
|
| + if dtype.is_typedef:
|
| + return '___pyx_%s' % dtype
|
| + return str(dtype).replace(' ', '_')
|
| +
|
| + def _dtype_type(self, dtype):
|
| + if dtype.is_typedef:
|
| + return self._dtype_name(dtype)
|
| + return str(dtype)
|
| +
|
| + def _sizeof_dtype(self, dtype):
|
| + if dtype.is_pyobject:
|
| + return 'sizeof(void *)'
|
| + else:
|
| + return "sizeof(%s)" % self._dtype_type(dtype)
|
| +
|
| + def _buffer_check_numpy_dtype_setup_cases(self, pyx_code):
|
| + "Setup some common cases to match dtypes against specializations"
|
| + if pyx_code.indenter("if dtype.kind in ('i', 'u'):"):
|
| + pyx_code.putln("pass")
|
| + pyx_code.named_insertion_point("dtype_int")
|
| + pyx_code.dedent()
|
| +
|
| + if pyx_code.indenter("elif dtype.kind == 'f':"):
|
| + pyx_code.putln("pass")
|
| + pyx_code.named_insertion_point("dtype_float")
|
| + pyx_code.dedent()
|
| +
|
| + if pyx_code.indenter("elif dtype.kind == 'c':"):
|
| + pyx_code.putln("pass")
|
| + pyx_code.named_insertion_point("dtype_complex")
|
| + pyx_code.dedent()
|
| +
|
| + if pyx_code.indenter("elif dtype.kind == 'O':"):
|
| + pyx_code.putln("pass")
|
| + pyx_code.named_insertion_point("dtype_object")
|
| + pyx_code.dedent()
|
| +
|
| + match = "dest_sig[{{dest_sig_idx}}] = '{{specialized_type_name}}'"
|
| + no_match = "dest_sig[{{dest_sig_idx}}] = None"
|
| + def _buffer_check_numpy_dtype(self, pyx_code, specialized_buffer_types):
|
| + """
|
| + Match a numpy dtype object to the individual specializations.
|
| + """
|
| + self._buffer_check_numpy_dtype_setup_cases(pyx_code)
|
| +
|
| + for specialized_type in specialized_buffer_types:
|
| + dtype = specialized_type.dtype
|
| + pyx_code.context.update(
|
| + itemsize_match=self._sizeof_dtype(dtype) + " == itemsize",
|
| + signed_match="not (%s_is_signed ^ dtype_signed)" % self._dtype_name(dtype),
|
| + dtype=dtype,
|
| + specialized_type_name=specialized_type.specialization_string)
|
| +
|
| + dtypes = [
|
| + (dtype.is_int, pyx_code.dtype_int),
|
| + (dtype.is_float, pyx_code.dtype_float),
|
| + (dtype.is_complex, pyx_code.dtype_complex)
|
| + ]
|
| +
|
| + for dtype_category, codewriter in dtypes:
|
| + if dtype_category:
|
| + cond = '{{itemsize_match}} and arg.ndim == %d' % (
|
| + specialized_type.ndim,)
|
| + if dtype.is_int:
|
| + cond += ' and {{signed_match}}'
|
| +
|
| + if codewriter.indenter("if %s:" % cond):
|
| + # codewriter.putln("print 'buffer match found based on numpy dtype'")
|
| + codewriter.putln(self.match)
|
| + codewriter.putln("break")
|
| + codewriter.dedent()
|
| +
|
| + def _buffer_parse_format_string_check(self, pyx_code, decl_code,
|
| + specialized_type, env):
|
| + """
|
| + For each specialized type, try to coerce the object to a memoryview
|
| + slice of that type. This means obtaining a buffer and parsing the
|
| + format string.
|
| + TODO: separate buffer acquisition from format parsing
|
| + """
|
| + dtype = specialized_type.dtype
|
| + if specialized_type.is_buffer:
|
| + axes = [('direct', 'strided')] * specialized_type.ndim
|
| + else:
|
| + axes = specialized_type.axes
|
| +
|
| + memslice_type = PyrexTypes.MemoryViewSliceType(dtype, axes)
|
| + memslice_type.create_from_py_utility_code(env)
|
| + pyx_code.context.update(
|
| + coerce_from_py_func=memslice_type.from_py_function,
|
| + dtype=dtype)
|
| + decl_code.putln(
|
| + "{{memviewslice_cname}} {{coerce_from_py_func}}(object)")
|
| +
|
| + pyx_code.context.update(
|
| + specialized_type_name=specialized_type.specialization_string,
|
| + sizeof_dtype=self._sizeof_dtype(dtype))
|
| +
|
| + pyx_code.put_chunk(
|
| + u"""
|
| + # try {{dtype}}
|
| + if itemsize == -1 or itemsize == {{sizeof_dtype}}:
|
| + memslice = {{coerce_from_py_func}}(arg)
|
| + if memslice.memview:
|
| + __PYX_XDEC_MEMVIEW(&memslice, 1)
|
| + # print 'found a match for the buffer through format parsing'
|
| + %s
|
| + break
|
| + else:
|
| + __pyx_PyErr_Clear()
|
| + """ % self.match)
|
| +
|
| + def _buffer_checks(self, buffer_types, pyx_code, decl_code, env):
|
| + """
|
| + Generate Cython code to match objects to buffer specializations.
|
| + First try to get a numpy dtype object and match it against the individual
|
| + specializations. If that fails, try naively to coerce the object
|
| + to each specialization, which obtains the buffer each time and tries
|
| + to match the format string.
|
| + """
|
| + from Cython.Compiler import ExprNodes
|
| + if buffer_types:
|
| + if pyx_code.indenter(u"else:"):
|
| + # The first thing to find a match in this loop breaks out of the loop
|
| + if pyx_code.indenter(u"while 1:"):
|
| + pyx_code.put_chunk(
|
| + u"""
|
| + if numpy is not None:
|
| + if isinstance(arg, numpy.ndarray):
|
| + dtype = arg.dtype
|
| + elif (__pyx_memoryview_check(arg) and
|
| + isinstance(arg.base, numpy.ndarray)):
|
| + dtype = arg.base.dtype
|
| + else:
|
| + dtype = None
|
| +
|
| + itemsize = -1
|
| + if dtype is not None:
|
| + itemsize = dtype.itemsize
|
| + kind = ord(dtype.kind)
|
| + dtype_signed = kind == ord('i')
|
| + """)
|
| + pyx_code.indent(2)
|
| + pyx_code.named_insertion_point("numpy_dtype_checks")
|
| + self._buffer_check_numpy_dtype(pyx_code, buffer_types)
|
| + pyx_code.dedent(2)
|
| +
|
| + for specialized_type in buffer_types:
|
| + self._buffer_parse_format_string_check(
|
| + pyx_code, decl_code, specialized_type, env)
|
| +
|
| + pyx_code.putln(self.no_match)
|
| + pyx_code.putln("break")
|
| + pyx_code.dedent()
|
| +
|
| + pyx_code.dedent()
|
| + else:
|
| + pyx_code.putln("else: %s" % self.no_match)
|
| +
|
| + def _buffer_declarations(self, pyx_code, decl_code, all_buffer_types):
|
| + """
|
| + If we have any buffer specializations, write out some variable
|
| + declarations and imports.
|
| + """
|
| + decl_code.put_chunk(
|
| + u"""
|
| + ctypedef struct {{memviewslice_cname}}:
|
| + void *memview
|
| +
|
| + void __PYX_XDEC_MEMVIEW({{memviewslice_cname}} *, int have_gil)
|
| + bint __pyx_memoryview_check(object)
|
| + """)
|
| +
|
| + pyx_code.local_variable_declarations.put_chunk(
|
| + u"""
|
| + cdef {{memviewslice_cname}} memslice
|
| + cdef Py_ssize_t itemsize
|
| + cdef bint dtype_signed
|
| + cdef char kind
|
| +
|
| + itemsize = -1
|
| + """)
|
| +
|
| + pyx_code.imports.put_chunk(
|
| + u"""
|
| + try:
|
| + import numpy
|
| + except ImportError:
|
| + numpy = None
|
| + """)
|
| +
|
| + seen_int_dtypes = set()
|
| + for buffer_type in all_buffer_types:
|
| + dtype = buffer_type.dtype
|
| + if dtype.is_typedef:
|
| + #decl_code.putln("ctypedef %s %s" % (dtype.resolve(),
|
| + # self._dtype_name(dtype)))
|
| + decl_code.putln('ctypedef %s %s "%s"' % (dtype.resolve(),
|
| + self._dtype_name(dtype),
|
| + dtype.declaration_code("")))
|
| +
|
| + if buffer_type.dtype.is_int:
|
| + if str(dtype) not in seen_int_dtypes:
|
| + seen_int_dtypes.add(str(dtype))
|
| + pyx_code.context.update(dtype_name=self._dtype_name(dtype),
|
| + dtype_type=self._dtype_type(dtype))
|
| + pyx_code.local_variable_declarations.put_chunk(
|
| + u"""
|
| + cdef bint {{dtype_name}}_is_signed
|
| + {{dtype_name}}_is_signed = <{{dtype_type}}> -1 < 0
|
| + """)
|
| +
|
| + def _split_fused_types(self, arg):
|
| + """
|
| + Specialize fused types and split into normal types and buffer types.
|
| + """
|
| + specialized_types = PyrexTypes.get_specialized_types(arg.type)
|
| + # Prefer long over int, etc
|
| + # specialized_types.sort()
|
| + seen_py_type_names = set()
|
| + normal_types, buffer_types = [], []
|
| + for specialized_type in specialized_types:
|
| + py_type_name = specialized_type.py_type_name()
|
| + if py_type_name:
|
| + if py_type_name in seen_py_type_names:
|
| + continue
|
| + seen_py_type_names.add(py_type_name)
|
| + normal_types.append(specialized_type)
|
| + elif specialized_type.is_buffer or specialized_type.is_memoryviewslice:
|
| + buffer_types.append(specialized_type)
|
| +
|
| + return normal_types, buffer_types
|
| +
|
| + def _unpack_argument(self, pyx_code):
|
| + pyx_code.put_chunk(
|
| + u"""
|
| + # PROCESSING ARGUMENT {{arg_tuple_idx}}
|
| + if {{arg_tuple_idx}} < len(args):
|
| + arg = args[{{arg_tuple_idx}}]
|
| + elif '{{arg.name}}' in kwargs:
|
| + arg = kwargs['{{arg.name}}']
|
| + else:
|
| + {{if arg.default:}}
|
| + arg = defaults[{{default_idx}}]
|
| + {{else}}
|
| + raise TypeError("Expected at least %d arguments" % len(args))
|
| + {{endif}}
|
| + """)
|
| +
|
| + def make_fused_cpdef(self, orig_py_func, env, is_def):
|
| + """
|
| + This creates the function that is indexable from Python and does
|
| + runtime dispatch based on the argument types. The function gets the
|
| + arg tuple and kwargs dict (or None) and the defaults tuple
|
| + as arguments from the Binding Fused Function's tp_call.
|
| + """
|
| + from Cython.Compiler import TreeFragment, Code, MemoryView, UtilityCode
|
| +
|
| + # { (arg_pos, FusedType) : specialized_type }
|
| + seen_fused_types = set()
|
| +
|
| + context = {
|
| + 'memviewslice_cname': MemoryView.memviewslice_cname,
|
| + 'func_args': self.node.args,
|
| + 'n_fused': len([arg for arg in self.node.args]),
|
| + 'name': orig_py_func.entry.name,
|
| + }
|
| +
|
| + pyx_code = Code.PyxCodeWriter(context=context)
|
| + decl_code = Code.PyxCodeWriter(context=context)
|
| + decl_code.put_chunk(
|
| + u"""
|
| + cdef extern from *:
|
| + void __pyx_PyErr_Clear "PyErr_Clear" ()
|
| + """)
|
| + decl_code.indent()
|
| +
|
| + pyx_code.put_chunk(
|
| + u"""
|
| + def __pyx_fused_cpdef(signatures, args, kwargs, defaults):
|
| + dest_sig = [{{for _ in range(n_fused)}}None,{{endfor}}]
|
| +
|
| + if kwargs is None:
|
| + kwargs = {}
|
| +
|
| + cdef Py_ssize_t i
|
| +
|
| + # instance check body
|
| + """)
|
| + pyx_code.indent() # indent following code to function body
|
| + pyx_code.named_insertion_point("imports")
|
| + pyx_code.named_insertion_point("local_variable_declarations")
|
| +
|
| + fused_index = 0
|
| + default_idx = 0
|
| + all_buffer_types = set()
|
| + for i, arg in enumerate(self.node.args):
|
| + if arg.type.is_fused and arg.type not in seen_fused_types:
|
| + seen_fused_types.add(arg.type)
|
| +
|
| + context.update(
|
| + arg_tuple_idx=i,
|
| + arg=arg,
|
| + dest_sig_idx=fused_index,
|
| + default_idx=default_idx,
|
| + )
|
| +
|
| + normal_types, buffer_types = self._split_fused_types(arg)
|
| + self._unpack_argument(pyx_code)
|
| + self._fused_instance_checks(normal_types, pyx_code, env)
|
| + self._buffer_checks(buffer_types, pyx_code, decl_code, env)
|
| + fused_index += 1
|
| +
|
| + all_buffer_types.update(buffer_types)
|
| +
|
| + if arg.default:
|
| + default_idx += 1
|
| +
|
| + if all_buffer_types:
|
| + self._buffer_declarations(pyx_code, decl_code, all_buffer_types)
|
| + env.use_utility_code(Code.UtilityCode.load_cached("Import", "ImportExport.c"))
|
| +
|
| + pyx_code.put_chunk(
|
| + u"""
|
| + candidates = []
|
| + for sig in signatures:
|
| + match_found = False
|
| + for src_type, dst_type in zip(sig.strip('()').split('|'), dest_sig):
|
| + if dst_type is not None:
|
| + if src_type == dst_type:
|
| + match_found = True
|
| + else:
|
| + match_found = False
|
| + break
|
| +
|
| + if match_found:
|
| + candidates.append(sig)
|
| +
|
| + if not candidates:
|
| + raise TypeError("No matching signature found")
|
| + elif len(candidates) > 1:
|
| + raise TypeError("Function call with ambiguous argument types")
|
| + else:
|
| + return signatures[candidates[0]]
|
| + """)
|
| +
|
| + fragment_code = pyx_code.getvalue()
|
| + # print decl_code.getvalue()
|
| + # print fragment_code
|
| + fragment = TreeFragment.TreeFragment(fragment_code, level='module')
|
| + ast = TreeFragment.SetPosTransform(self.node.pos)(fragment.root)
|
| + UtilityCode.declare_declarations_in_scope(decl_code.getvalue(),
|
| + env.global_scope())
|
| + ast.scope = env
|
| + ast.analyse_declarations(env)
|
| + py_func = ast.stats[-1] # the DefNode
|
| + self.fragment_scope = ast.scope
|
| +
|
| + if isinstance(self.node, DefNode):
|
| + py_func.specialized_cpdefs = self.nodes[:]
|
| + else:
|
| + py_func.specialized_cpdefs = [n.py_func for n in self.nodes]
|
| +
|
| + return py_func
|
| +
|
| + def update_fused_defnode_entry(self, env):
|
| + copy_attributes = (
|
| + 'name', 'pos', 'cname', 'func_cname', 'pyfunc_cname',
|
| + 'pymethdef_cname', 'doc', 'doc_cname', 'is_member',
|
| + 'scope'
|
| + )
|
| +
|
| + entry = self.py_func.entry
|
| +
|
| + for attr in copy_attributes:
|
| + setattr(entry, attr,
|
| + getattr(self.orig_py_func.entry, attr))
|
| +
|
| + self.py_func.name = self.orig_py_func.name
|
| + self.py_func.doc = self.orig_py_func.doc
|
| +
|
| + env.entries.pop('__pyx_fused_cpdef', None)
|
| + if isinstance(self.node, DefNode):
|
| + env.entries[entry.name] = entry
|
| + else:
|
| + env.entries[entry.name].as_variable = entry
|
| +
|
| + env.pyfunc_entries.append(entry)
|
| +
|
| + self.py_func.entry.fused_cfunction = self
|
| + for node in self.nodes:
|
| + if isinstance(self.node, DefNode):
|
| + node.fused_py_func = self.py_func
|
| + else:
|
| + node.py_func.fused_py_func = self.py_func
|
| + node.entry.as_variable = entry
|
| +
|
| + self.synthesize_defnodes()
|
| + self.stats.append(self.__signatures__)
|
| +
|
| + def analyse_expressions(self, env):
|
| + """
|
| + Analyse the expressions. Take care to only evaluate default arguments
|
| + once and clone the result for all specializations
|
| + """
|
| + for fused_compound_type in self.fused_compound_types:
|
| + for fused_type in fused_compound_type.get_fused_types():
|
| + for specialization_type in fused_type.types:
|
| + if specialization_type.is_complex:
|
| + specialization_type.create_declaration_utility_code(env)
|
| +
|
| + if self.py_func:
|
| + self.__signatures__ = self.__signatures__.analyse_expressions(env)
|
| + self.py_func = self.py_func.analyse_expressions(env)
|
| + self.resulting_fused_function = self.resulting_fused_function.analyse_expressions(env)
|
| + self.fused_func_assignment = self.fused_func_assignment.analyse_expressions(env)
|
| +
|
| + self.defaults = defaults = []
|
| +
|
| + for arg in self.node.args:
|
| + if arg.default:
|
| + arg.default = arg.default.analyse_expressions(env)
|
| + defaults.append(ProxyNode(arg.default))
|
| + else:
|
| + defaults.append(None)
|
| +
|
| + for i, stat in enumerate(self.stats):
|
| + stat = self.stats[i] = stat.analyse_expressions(env)
|
| + if isinstance(stat, FuncDefNode):
|
| + for arg, default in zip(stat.args, defaults):
|
| + if default is not None:
|
| + arg.default = CloneNode(default).coerce_to(arg.type, env)
|
| +
|
| + if self.py_func:
|
| + args = [CloneNode(default) for default in defaults if default]
|
| + self.defaults_tuple = TupleNode(self.pos, args=args)
|
| + self.defaults_tuple = self.defaults_tuple.analyse_types(env, skip_children=True)
|
| + self.defaults_tuple = ProxyNode(self.defaults_tuple)
|
| + self.code_object = ProxyNode(self.specialized_pycfuncs[0].code_object)
|
| +
|
| + fused_func = self.resulting_fused_function.arg
|
| + fused_func.defaults_tuple = CloneNode(self.defaults_tuple)
|
| + fused_func.code_object = CloneNode(self.code_object)
|
| +
|
| + for i, pycfunc in enumerate(self.specialized_pycfuncs):
|
| + pycfunc.code_object = CloneNode(self.code_object)
|
| + pycfunc = self.specialized_pycfuncs[i] = pycfunc.analyse_types(env)
|
| + pycfunc.defaults_tuple = CloneNode(self.defaults_tuple)
|
| + return self
|
| +
|
| + def synthesize_defnodes(self):
|
| + """
|
| + Create the __signatures__ dict of PyCFunctionNode specializations.
|
| + """
|
| + if isinstance(self.nodes[0], CFuncDefNode):
|
| + nodes = [node.py_func for node in self.nodes]
|
| + else:
|
| + nodes = self.nodes
|
| +
|
| + signatures = [
|
| + StringEncoding.EncodedString(node.specialized_signature_string)
|
| + for node in nodes]
|
| + keys = [ExprNodes.StringNode(node.pos, value=sig)
|
| + for node, sig in zip(nodes, signatures)]
|
| + values = [ExprNodes.PyCFunctionNode.from_defnode(node, True)
|
| + for node in nodes]
|
| + self.__signatures__ = ExprNodes.DictNode.from_pairs(self.pos,
|
| + zip(keys, values))
|
| +
|
| + self.specialized_pycfuncs = values
|
| + for pycfuncnode in values:
|
| + pycfuncnode.is_specialization = True
|
| +
|
| + def generate_function_definitions(self, env, code):
|
| + if self.py_func:
|
| + self.py_func.pymethdef_required = True
|
| + self.fused_func_assignment.generate_function_definitions(env, code)
|
| +
|
| + for stat in self.stats:
|
| + if isinstance(stat, FuncDefNode) and stat.entry.used:
|
| + code.mark_pos(stat.pos)
|
| + stat.generate_function_definitions(env, code)
|
| +
|
| + def generate_execution_code(self, code):
|
| + # Note: all def function specialization are wrapped in PyCFunction
|
| + # nodes in the self.__signatures__ dictnode.
|
| + for default in self.defaults:
|
| + if default is not None:
|
| + default.generate_evaluation_code(code)
|
| +
|
| + if self.py_func:
|
| + self.defaults_tuple.generate_evaluation_code(code)
|
| + self.code_object.generate_evaluation_code(code)
|
| +
|
| + for stat in self.stats:
|
| + code.mark_pos(stat.pos)
|
| + if isinstance(stat, ExprNodes.ExprNode):
|
| + stat.generate_evaluation_code(code)
|
| + else:
|
| + stat.generate_execution_code(code)
|
| +
|
| + if self.__signatures__:
|
| + self.resulting_fused_function.generate_evaluation_code(code)
|
| +
|
| + code.putln(
|
| + "((__pyx_FusedFunctionObject *) %s)->__signatures__ = %s;" %
|
| + (self.resulting_fused_function.result(),
|
| + self.__signatures__.result()))
|
| + code.put_giveref(self.__signatures__.result())
|
| +
|
| + self.fused_func_assignment.generate_execution_code(code)
|
| +
|
| + # Dispose of results
|
| + self.resulting_fused_function.generate_disposal_code(code)
|
| + self.defaults_tuple.generate_disposal_code(code)
|
| + self.code_object.generate_disposal_code(code)
|
| +
|
| + for default in self.defaults:
|
| + if default is not None:
|
| + default.generate_disposal_code(code)
|
| +
|
| + def annotate(self, code):
|
| + for stat in self.stats:
|
| + stat.annotate(code)
|
|
|