OLD | NEW |
(Empty) | |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are |
| 4 // met: |
| 5 // |
| 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. |
| 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 |
| 28 // This file is an internal atomic implementation, use atomicops.h instead. |
| 29 |
| 30 #ifndef V8_BASE_ATOMICOPS_INTERNALS_MIPS_GCC_H_ |
| 31 #define V8_BASE_ATOMICOPS_INTERNALS_MIPS_GCC_H_ |
| 32 |
| 33 namespace v8 { |
| 34 namespace base { |
| 35 |
| 36 // Atomically execute: |
| 37 // result = *ptr; |
| 38 // if (*ptr == old_value) |
| 39 // *ptr = new_value; |
| 40 // return result; |
| 41 // |
| 42 // I.e., replace "*ptr" with "new_value" if "*ptr" used to be "old_value". |
| 43 // Always return the old value of "*ptr" |
| 44 // |
| 45 // This routine implies no memory barriers. |
| 46 inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr, |
| 47 Atomic32 old_value, |
| 48 Atomic32 new_value) { |
| 49 Atomic32 prev, tmp; |
| 50 __asm__ __volatile__(".set push\n" |
| 51 ".set noreorder\n" |
| 52 "1:\n" |
| 53 "ll %0, %5\n" // prev = *ptr |
| 54 "bne %0, %3, 2f\n" // if (prev != old_value) goto 2 |
| 55 "move %2, %4\n" // tmp = new_value |
| 56 "sc %2, %1\n" // *ptr = tmp (with atomic check) |
| 57 "beqz %2, 1b\n" // start again on atomic error |
| 58 "nop\n" // delay slot nop |
| 59 "2:\n" |
| 60 ".set pop\n" |
| 61 : "=&r" (prev), "=m" (*ptr), "=&r" (tmp) |
| 62 : "r" (old_value), "r" (new_value), "m" (*ptr) |
| 63 : "memory"); |
| 64 return prev; |
| 65 } |
| 66 |
| 67 // Atomically store new_value into *ptr, returning the previous value held in |
| 68 // *ptr. This routine implies no memory barriers. |
| 69 inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr, |
| 70 Atomic32 new_value) { |
| 71 Atomic32 temp, old; |
| 72 __asm__ __volatile__(".set push\n" |
| 73 ".set noreorder\n" |
| 74 "1:\n" |
| 75 "ll %1, %2\n" // old = *ptr |
| 76 "move %0, %3\n" // temp = new_value |
| 77 "sc %0, %2\n" // *ptr = temp (with atomic check) |
| 78 "beqz %0, 1b\n" // start again on atomic error |
| 79 "nop\n" // delay slot nop |
| 80 ".set pop\n" |
| 81 : "=&r" (temp), "=&r" (old), "=m" (*ptr) |
| 82 : "r" (new_value), "m" (*ptr) |
| 83 : "memory"); |
| 84 |
| 85 return old; |
| 86 } |
| 87 |
| 88 // Atomically increment *ptr by "increment". Returns the new value of |
| 89 // *ptr with the increment applied. This routine implies no memory barriers. |
| 90 inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr, |
| 91 Atomic32 increment) { |
| 92 Atomic32 temp, temp2; |
| 93 |
| 94 __asm__ __volatile__( |
| 95 ".set push\n" |
| 96 ".set noreorder\n" |
| 97 "1:\n" |
| 98 "ll %0, %2\n" // temp = *ptr |
| 99 "addu %1, %0, %3\n" // temp2 = temp + increment |
| 100 "sc %1, %2\n" // *ptr = temp2 (with atomic check) |
| 101 "beqz %1, 1b\n" // start again on atomic error |
| 102 "addu %1, %0, %3\n" // temp2 = temp + increment |
| 103 ".set pop\n" |
| 104 : "=&r"(temp), "=&r"(temp2), "=ZC"(*ptr) |
| 105 : "Ir"(increment), "m"(*ptr) |
| 106 : "memory"); |
| 107 // temp2 now holds the final value. |
| 108 return temp2; |
| 109 } |
| 110 |
| 111 inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr, |
| 112 Atomic32 increment) { |
| 113 MemoryBarrier(); |
| 114 Atomic32 res = NoBarrier_AtomicIncrement(ptr, increment); |
| 115 MemoryBarrier(); |
| 116 return res; |
| 117 } |
| 118 |
| 119 // "Acquire" operations |
| 120 // ensure that no later memory access can be reordered ahead of the operation. |
| 121 // "Release" operations ensure that no previous memory access can be reordered |
| 122 // after the operation. "Barrier" operations have both "Acquire" and "Release" |
| 123 // semantics. A MemoryBarrier() has "Barrier" semantics, but does no memory |
| 124 // access. |
| 125 inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr, |
| 126 Atomic32 old_value, |
| 127 Atomic32 new_value) { |
| 128 Atomic32 res = NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
| 129 MemoryBarrier(); |
| 130 return res; |
| 131 } |
| 132 |
| 133 inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr, |
| 134 Atomic32 old_value, |
| 135 Atomic32 new_value) { |
| 136 MemoryBarrier(); |
| 137 return NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
| 138 } |
| 139 |
| 140 inline void NoBarrier_Store(volatile Atomic8* ptr, Atomic8 value) { |
| 141 *ptr = value; |
| 142 } |
| 143 |
| 144 inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) { |
| 145 *ptr = value; |
| 146 } |
| 147 |
| 148 inline void MemoryBarrier() { |
| 149 __asm__ __volatile__("sync" : : : "memory"); |
| 150 } |
| 151 |
| 152 inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) { |
| 153 *ptr = value; |
| 154 MemoryBarrier(); |
| 155 } |
| 156 |
| 157 inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) { |
| 158 MemoryBarrier(); |
| 159 *ptr = value; |
| 160 } |
| 161 |
| 162 inline Atomic8 NoBarrier_Load(volatile const Atomic8* ptr) { |
| 163 return *ptr; |
| 164 } |
| 165 |
| 166 inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) { |
| 167 return *ptr; |
| 168 } |
| 169 |
| 170 inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) { |
| 171 Atomic32 value = *ptr; |
| 172 MemoryBarrier(); |
| 173 return value; |
| 174 } |
| 175 |
| 176 inline Atomic32 Release_Load(volatile const Atomic32* ptr) { |
| 177 MemoryBarrier(); |
| 178 return *ptr; |
| 179 } |
| 180 |
| 181 |
| 182 // 64-bit versions of the atomic ops. |
| 183 |
| 184 inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr, |
| 185 Atomic64 old_value, |
| 186 Atomic64 new_value) { |
| 187 Atomic64 prev, tmp; |
| 188 __asm__ __volatile__(".set push\n" |
| 189 ".set noreorder\n" |
| 190 "1:\n" |
| 191 "lld %0, %5\n" // prev = *ptr |
| 192 "bne %0, %3, 2f\n" // if (prev != old_value) goto 2 |
| 193 "move %2, %4\n" // tmp = new_value |
| 194 "scd %2, %1\n" // *ptr = tmp (with atomic check) |
| 195 "beqz %2, 1b\n" // start again on atomic error |
| 196 "nop\n" // delay slot nop |
| 197 "2:\n" |
| 198 ".set pop\n" |
| 199 : "=&r" (prev), "=m" (*ptr), "=&r" (tmp) |
| 200 : "r" (old_value), "r" (new_value), "m" (*ptr) |
| 201 : "memory"); |
| 202 return prev; |
| 203 } |
| 204 |
| 205 // Atomically store new_value into *ptr, returning the previous value held in |
| 206 // *ptr. This routine implies no memory barriers. |
| 207 inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr, |
| 208 Atomic64 new_value) { |
| 209 Atomic64 temp, old; |
| 210 __asm__ __volatile__(".set push\n" |
| 211 ".set noreorder\n" |
| 212 "1:\n" |
| 213 "lld %1, %2\n" // old = *ptr |
| 214 "move %0, %3\n" // temp = new_value |
| 215 "scd %0, %2\n" // *ptr = temp (with atomic check) |
| 216 "beqz %0, 1b\n" // start again on atomic error |
| 217 "nop\n" // delay slot nop |
| 218 ".set pop\n" |
| 219 : "=&r" (temp), "=&r" (old), "=m" (*ptr) |
| 220 : "r" (new_value), "m" (*ptr) |
| 221 : "memory"); |
| 222 |
| 223 return old; |
| 224 } |
| 225 |
| 226 // Atomically increment *ptr by "increment". Returns the new value of |
| 227 // *ptr with the increment applied. This routine implies no memory barriers. |
| 228 inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr, |
| 229 Atomic64 increment) { |
| 230 Atomic64 temp, temp2; |
| 231 |
| 232 __asm__ __volatile__( |
| 233 ".set push\n" |
| 234 ".set noreorder\n" |
| 235 "1:\n" |
| 236 "lld %0, %2\n" // temp = *ptr |
| 237 "daddu %1, %0, %3\n" // temp2 = temp + increment |
| 238 "scd %1, %2\n" // *ptr = temp2 (with atomic check) |
| 239 "beqz %1, 1b\n" // start again on atomic error |
| 240 "daddu %1, %0, %3\n" // temp2 = temp + increment |
| 241 ".set pop\n" |
| 242 : "=&r"(temp), "=&r"(temp2), "=ZC"(*ptr) |
| 243 : "Ir"(increment), "m"(*ptr) |
| 244 : "memory"); |
| 245 // temp2 now holds the final value. |
| 246 return temp2; |
| 247 } |
| 248 |
| 249 inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr, |
| 250 Atomic64 increment) { |
| 251 MemoryBarrier(); |
| 252 Atomic64 res = NoBarrier_AtomicIncrement(ptr, increment); |
| 253 MemoryBarrier(); |
| 254 return res; |
| 255 } |
| 256 |
| 257 // "Acquire" operations |
| 258 // ensure that no later memory access can be reordered ahead of the operation. |
| 259 // "Release" operations ensure that no previous memory access can be reordered |
| 260 // after the operation. "Barrier" operations have both "Acquire" and "Release" |
| 261 // semantics. A MemoryBarrier() has "Barrier" semantics, but does no memory |
| 262 // access. |
| 263 inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr, |
| 264 Atomic64 old_value, |
| 265 Atomic64 new_value) { |
| 266 Atomic64 res = NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
| 267 MemoryBarrier(); |
| 268 return res; |
| 269 } |
| 270 |
| 271 inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr, |
| 272 Atomic64 old_value, |
| 273 Atomic64 new_value) { |
| 274 MemoryBarrier(); |
| 275 return NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
| 276 } |
| 277 |
| 278 inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) { |
| 279 *ptr = value; |
| 280 } |
| 281 |
| 282 inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) { |
| 283 *ptr = value; |
| 284 MemoryBarrier(); |
| 285 } |
| 286 |
| 287 inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) { |
| 288 MemoryBarrier(); |
| 289 *ptr = value; |
| 290 } |
| 291 |
| 292 inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) { |
| 293 return *ptr; |
| 294 } |
| 295 |
| 296 inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) { |
| 297 Atomic64 value = *ptr; |
| 298 MemoryBarrier(); |
| 299 return value; |
| 300 } |
| 301 |
| 302 inline Atomic64 Release_Load(volatile const Atomic64* ptr) { |
| 303 MemoryBarrier(); |
| 304 return *ptr; |
| 305 } |
| 306 |
| 307 } // namespace base |
| 308 } // namespace v8 |
| 309 |
| 310 #endif // V8_BASE_ATOMICOPS_INTERNALS_MIPS_GCC_H_ |
OLD | NEW |