OLD | NEW |
| (Empty) |
1 // Copyright 2010 the V8 project authors. All rights reserved. | |
2 // Redistribution and use in source and binary forms, with or without | |
3 // modification, are permitted provided that the following conditions are | |
4 // met: | |
5 // | |
6 // * Redistributions of source code must retain the above copyright | |
7 // notice, this list of conditions and the following disclaimer. | |
8 // * Redistributions in binary form must reproduce the above | |
9 // copyright notice, this list of conditions and the following | |
10 // disclaimer in the documentation and/or other materials provided | |
11 // with the distribution. | |
12 // * Neither the name of Google Inc. nor the names of its | |
13 // contributors may be used to endorse or promote products derived | |
14 // from this software without specific prior written permission. | |
15 // | |
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
27 | |
28 // This file is an internal atomic implementation, use atomicops.h instead. | |
29 | |
30 #ifndef V8_BASE_ATOMICOPS_INTERNALS_MIPS_GCC_H_ | |
31 #define V8_BASE_ATOMICOPS_INTERNALS_MIPS_GCC_H_ | |
32 | |
33 namespace v8 { | |
34 namespace base { | |
35 | |
36 // Atomically execute: | |
37 // result = *ptr; | |
38 // if (*ptr == old_value) | |
39 // *ptr = new_value; | |
40 // return result; | |
41 // | |
42 // I.e., replace "*ptr" with "new_value" if "*ptr" used to be "old_value". | |
43 // Always return the old value of "*ptr" | |
44 // | |
45 // This routine implies no memory barriers. | |
46 inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr, | |
47 Atomic32 old_value, | |
48 Atomic32 new_value) { | |
49 Atomic32 prev, tmp; | |
50 __asm__ __volatile__(".set push\n" | |
51 ".set noreorder\n" | |
52 "1:\n" | |
53 "ll %0, %5\n" // prev = *ptr | |
54 "bne %0, %3, 2f\n" // if (prev != old_value) goto 2 | |
55 "move %2, %4\n" // tmp = new_value | |
56 "sc %2, %1\n" // *ptr = tmp (with atomic check) | |
57 "beqz %2, 1b\n" // start again on atomic error | |
58 "nop\n" // delay slot nop | |
59 "2:\n" | |
60 ".set pop\n" | |
61 : "=&r" (prev), "=m" (*ptr), "=&r" (tmp) | |
62 : "r" (old_value), "r" (new_value), "m" (*ptr) | |
63 : "memory"); | |
64 return prev; | |
65 } | |
66 | |
67 // Atomically store new_value into *ptr, returning the previous value held in | |
68 // *ptr. This routine implies no memory barriers. | |
69 inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr, | |
70 Atomic32 new_value) { | |
71 Atomic32 temp, old; | |
72 __asm__ __volatile__(".set push\n" | |
73 ".set noreorder\n" | |
74 "1:\n" | |
75 "ll %1, %2\n" // old = *ptr | |
76 "move %0, %3\n" // temp = new_value | |
77 "sc %0, %2\n" // *ptr = temp (with atomic check) | |
78 "beqz %0, 1b\n" // start again on atomic error | |
79 "nop\n" // delay slot nop | |
80 ".set pop\n" | |
81 : "=&r" (temp), "=&r" (old), "=m" (*ptr) | |
82 : "r" (new_value), "m" (*ptr) | |
83 : "memory"); | |
84 | |
85 return old; | |
86 } | |
87 | |
88 // Atomically increment *ptr by "increment". Returns the new value of | |
89 // *ptr with the increment applied. This routine implies no memory barriers. | |
90 inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr, | |
91 Atomic32 increment) { | |
92 Atomic32 temp, temp2; | |
93 | |
94 __asm__ __volatile__( | |
95 ".set push\n" | |
96 ".set noreorder\n" | |
97 "1:\n" | |
98 "ll %0, %2\n" // temp = *ptr | |
99 "addu %1, %0, %3\n" // temp2 = temp + increment | |
100 "sc %1, %2\n" // *ptr = temp2 (with atomic check) | |
101 "beqz %1, 1b\n" // start again on atomic error | |
102 "addu %1, %0, %3\n" // temp2 = temp + increment | |
103 ".set pop\n" | |
104 : "=&r"(temp), "=&r"(temp2), "=ZC"(*ptr) | |
105 : "Ir"(increment), "m"(*ptr) | |
106 : "memory"); | |
107 // temp2 now holds the final value. | |
108 return temp2; | |
109 } | |
110 | |
111 inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr, | |
112 Atomic32 increment) { | |
113 MemoryBarrier(); | |
114 Atomic32 res = NoBarrier_AtomicIncrement(ptr, increment); | |
115 MemoryBarrier(); | |
116 return res; | |
117 } | |
118 | |
119 // "Acquire" operations | |
120 // ensure that no later memory access can be reordered ahead of the operation. | |
121 // "Release" operations ensure that no previous memory access can be reordered | |
122 // after the operation. "Barrier" operations have both "Acquire" and "Release" | |
123 // semantics. A MemoryBarrier() has "Barrier" semantics, but does no memory | |
124 // access. | |
125 inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr, | |
126 Atomic32 old_value, | |
127 Atomic32 new_value) { | |
128 Atomic32 res = NoBarrier_CompareAndSwap(ptr, old_value, new_value); | |
129 MemoryBarrier(); | |
130 return res; | |
131 } | |
132 | |
133 inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr, | |
134 Atomic32 old_value, | |
135 Atomic32 new_value) { | |
136 MemoryBarrier(); | |
137 return NoBarrier_CompareAndSwap(ptr, old_value, new_value); | |
138 } | |
139 | |
140 inline void NoBarrier_Store(volatile Atomic8* ptr, Atomic8 value) { | |
141 *ptr = value; | |
142 } | |
143 | |
144 inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) { | |
145 *ptr = value; | |
146 } | |
147 | |
148 inline void MemoryBarrier() { | |
149 __asm__ __volatile__("sync" : : : "memory"); | |
150 } | |
151 | |
152 inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) { | |
153 *ptr = value; | |
154 MemoryBarrier(); | |
155 } | |
156 | |
157 inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) { | |
158 MemoryBarrier(); | |
159 *ptr = value; | |
160 } | |
161 | |
162 inline Atomic8 NoBarrier_Load(volatile const Atomic8* ptr) { | |
163 return *ptr; | |
164 } | |
165 | |
166 inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) { | |
167 return *ptr; | |
168 } | |
169 | |
170 inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) { | |
171 Atomic32 value = *ptr; | |
172 MemoryBarrier(); | |
173 return value; | |
174 } | |
175 | |
176 inline Atomic32 Release_Load(volatile const Atomic32* ptr) { | |
177 MemoryBarrier(); | |
178 return *ptr; | |
179 } | |
180 | |
181 | |
182 // 64-bit versions of the atomic ops. | |
183 | |
184 inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr, | |
185 Atomic64 old_value, | |
186 Atomic64 new_value) { | |
187 Atomic64 prev, tmp; | |
188 __asm__ __volatile__(".set push\n" | |
189 ".set noreorder\n" | |
190 "1:\n" | |
191 "lld %0, %5\n" // prev = *ptr | |
192 "bne %0, %3, 2f\n" // if (prev != old_value) goto 2 | |
193 "move %2, %4\n" // tmp = new_value | |
194 "scd %2, %1\n" // *ptr = tmp (with atomic check) | |
195 "beqz %2, 1b\n" // start again on atomic error | |
196 "nop\n" // delay slot nop | |
197 "2:\n" | |
198 ".set pop\n" | |
199 : "=&r" (prev), "=m" (*ptr), "=&r" (tmp) | |
200 : "r" (old_value), "r" (new_value), "m" (*ptr) | |
201 : "memory"); | |
202 return prev; | |
203 } | |
204 | |
205 // Atomically store new_value into *ptr, returning the previous value held in | |
206 // *ptr. This routine implies no memory barriers. | |
207 inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr, | |
208 Atomic64 new_value) { | |
209 Atomic64 temp, old; | |
210 __asm__ __volatile__(".set push\n" | |
211 ".set noreorder\n" | |
212 "1:\n" | |
213 "lld %1, %2\n" // old = *ptr | |
214 "move %0, %3\n" // temp = new_value | |
215 "scd %0, %2\n" // *ptr = temp (with atomic check) | |
216 "beqz %0, 1b\n" // start again on atomic error | |
217 "nop\n" // delay slot nop | |
218 ".set pop\n" | |
219 : "=&r" (temp), "=&r" (old), "=m" (*ptr) | |
220 : "r" (new_value), "m" (*ptr) | |
221 : "memory"); | |
222 | |
223 return old; | |
224 } | |
225 | |
226 // Atomically increment *ptr by "increment". Returns the new value of | |
227 // *ptr with the increment applied. This routine implies no memory barriers. | |
228 inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr, | |
229 Atomic64 increment) { | |
230 Atomic64 temp, temp2; | |
231 | |
232 __asm__ __volatile__( | |
233 ".set push\n" | |
234 ".set noreorder\n" | |
235 "1:\n" | |
236 "lld %0, %2\n" // temp = *ptr | |
237 "daddu %1, %0, %3\n" // temp2 = temp + increment | |
238 "scd %1, %2\n" // *ptr = temp2 (with atomic check) | |
239 "beqz %1, 1b\n" // start again on atomic error | |
240 "daddu %1, %0, %3\n" // temp2 = temp + increment | |
241 ".set pop\n" | |
242 : "=&r"(temp), "=&r"(temp2), "=ZC"(*ptr) | |
243 : "Ir"(increment), "m"(*ptr) | |
244 : "memory"); | |
245 // temp2 now holds the final value. | |
246 return temp2; | |
247 } | |
248 | |
249 inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr, | |
250 Atomic64 increment) { | |
251 MemoryBarrier(); | |
252 Atomic64 res = NoBarrier_AtomicIncrement(ptr, increment); | |
253 MemoryBarrier(); | |
254 return res; | |
255 } | |
256 | |
257 // "Acquire" operations | |
258 // ensure that no later memory access can be reordered ahead of the operation. | |
259 // "Release" operations ensure that no previous memory access can be reordered | |
260 // after the operation. "Barrier" operations have both "Acquire" and "Release" | |
261 // semantics. A MemoryBarrier() has "Barrier" semantics, but does no memory | |
262 // access. | |
263 inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr, | |
264 Atomic64 old_value, | |
265 Atomic64 new_value) { | |
266 Atomic64 res = NoBarrier_CompareAndSwap(ptr, old_value, new_value); | |
267 MemoryBarrier(); | |
268 return res; | |
269 } | |
270 | |
271 inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr, | |
272 Atomic64 old_value, | |
273 Atomic64 new_value) { | |
274 MemoryBarrier(); | |
275 return NoBarrier_CompareAndSwap(ptr, old_value, new_value); | |
276 } | |
277 | |
278 inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) { | |
279 *ptr = value; | |
280 } | |
281 | |
282 inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) { | |
283 *ptr = value; | |
284 MemoryBarrier(); | |
285 } | |
286 | |
287 inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) { | |
288 MemoryBarrier(); | |
289 *ptr = value; | |
290 } | |
291 | |
292 inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) { | |
293 return *ptr; | |
294 } | |
295 | |
296 inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) { | |
297 Atomic64 value = *ptr; | |
298 MemoryBarrier(); | |
299 return value; | |
300 } | |
301 | |
302 inline Atomic64 Release_Load(volatile const Atomic64* ptr) { | |
303 MemoryBarrier(); | |
304 return *ptr; | |
305 } | |
306 | |
307 } // namespace base | |
308 } // namespace v8 | |
309 | |
310 #endif // V8_BASE_ATOMICOPS_INTERNALS_MIPS_GCC_H_ | |
OLD | NEW |