Index: base/strings/safe_sprintf.cc |
diff --git a/base/strings/safe_sprintf.cc b/base/strings/safe_sprintf.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..3bbb3eeb7358852744e4955f22846701ce8be9f3 |
--- /dev/null |
+++ b/base/strings/safe_sprintf.cc |
@@ -0,0 +1,681 @@ |
+// Copyright (c) 2013 The Chromium Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#include "base/strings/safe_sprintf.h" |
+ |
+#include <limits> |
+ |
+#if !defined(NDEBUG) |
+// In debug builds, we use RAW_CHECK() to print useful error messages, if |
+// SafeSPrintf() is called with broken arguments. |
+// As our contract promises that SafeSPrintf() can be called from any |
+// restricted run-time context, it is not actually safe to call logging |
+// functions from it; and we only ever do so for debug builds and hope for the |
+// best. We should _never_ call any logging function other than RAW_CHECK(), |
+// and we should _never_ include any logging code that is active in production |
+// builds. Most notably, we should not include these logging functions in |
+// unofficial release builds, even though those builds would otherwise have |
+// DCHECKS() enabled. |
+// In other words; please do not remove the #ifdef around this #include. |
+// Instead, in production builds we opt for returning a degraded result, |
+// whenever an error is encountered. |
+// E.g. The broken function call |
+// SafeSPrintf("errno = %d (%x)", errno, strerror(errno)) |
+// will print something like |
+// errno = 13, (%x) |
+// instead of |
+// errno = 13 (Access denied) |
+// In most of the anticipated use cases, that's probably the preferred |
+// behavior. |
+#include "base/logging.h" |
+#define DEBUG_CHECK RAW_CHECK |
+#else |
+#define DEBUG_CHECK(x) do { if (x) { } } while (0) |
+#endif |
+ |
+namespace base { |
+namespace strings { |
+ |
+// The code in this file is extremely careful to be async-signal-safe. |
+// |
+// Most obviously, we avoid calling any code that could dynamically allocate |
+// memory. Doing so would almost certainly result in bugs and dead-locks. |
+// We also avoid calling any other STL functions that could have unintended |
+// side-effects involving memory allocation or access to other shared |
+// resources. |
+// |
+// But on top of that, we also avoid calling other library functions, as many |
+// of them have the side-effect of calling getenv() (in order to deal with |
+// localization) or accessing errno. The latter sounds benign, but there are |
+// several execution contexts where it isn't even possible to safely read let |
+// alone write errno. |
+// |
+// The stated design goal of the SafeSPrintf() function is that it can be |
+// called from any context that can safely call C or C++ code (i.e. anything |
+// that doesn't require assembly code). |
+// |
+// For a brief overview of some but not all of the issues with async-signal- |
+// safety, refer to: |
+// http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html |
+ |
+namespace { |
+const size_t kSSizeMaxConst = ((size_t)(ssize_t)-1) >> 1; |
+ |
+const char kUpCaseHexDigits[] = "0123456789ABCDEF"; |
+const char kDownCaseHexDigits[] = "0123456789abcdef"; |
+} |
+ |
+#if defined(NDEBUG) |
+// We would like to define kSSizeMax as std::numeric_limits<ssize_t>::max(), |
+// but C++ doesn't allow us to do that for constants. Instead, we have to |
+// use careful casting and shifting. We later use a COMPILE_ASSERT to |
+// verify that this worked correctly. |
+namespace { |
+const size_t kSSizeMax = kSSizeMaxConst; |
+} |
+#else // defined(NDEBUG) |
+// For efficiency, we really need kSSizeMax to be a constant. But for unit |
+// tests, it should be adjustable. This allows us to verify edge cases without |
+// having to fill the entire available address space. As a compromise, we make |
+// kSSizeMax adjustable in debug builds, and then only compile that particular |
+// part of the unit test in debug builds. |
+namespace { |
+static size_t kSSizeMax = kSSizeMaxConst; |
+} |
+ |
+namespace internal { |
+void SetSafeSPrintfSSizeMaxForTest(size_t max) { |
+ kSSizeMax = max; |
+} |
+ |
+size_t GetSafeSPrintfSSizeMaxForTest() { |
+ return kSSizeMax; |
+} |
+} |
+#endif // defined(NDEBUG) |
+ |
+namespace { |
+class Buffer { |
+ public: |
+ // |buffer| is caller-allocated storage that SafeSPrintf() writes to. It |
+ // has |size| bytes of writable storage. It is the caller's responsibility |
+ // to ensure that the buffer is at least one byte in size, so that it fits |
+ // the trailing NUL that will be added by the destructor. The buffer also |
+ // must be smaller or equal to kSSizeMax in size. |
+ Buffer(char* buffer, size_t size) |
+ : buffer_(buffer), |
+ size_(size - 1), // Account for trailing NUL byte |
+ count_(0) { |
+// This test should work on all C++11 compilers, but apparently something is |
+// not working on all versions of clang just yet (e.g. on Mac, IOS, and |
+// Android). We are conservative and exclude all of clang for the time being. |
+// TODO(markus): Check if this restriction can be lifted. |
+#if __cplusplus >= 201103 && !defined(__clang__) |
+ COMPILE_ASSERT(kSSizeMaxConst == std::numeric_limits<ssize_t>::max(), |
+ kSSizeMax_is_the_max_value_of_an_ssize_t); |
+#endif |
+ DEBUG_CHECK(size > 0); |
+ DEBUG_CHECK(size <= kSSizeMax); |
+ } |
+ |
+ ~Buffer() { |
+ // The code calling the constructor guaranteed that there was enough space |
+ // to store a trailing NUL -- and in debug builds, we are actually |
+ // verifying this with DEBUG_CHECK()s in the constructor. So, we can |
+ // always unconditionally write the NUL byte in the destructor. We do not |
+ // need to adjust the count_, as SafeSPrintf() copies snprintf() in not |
+ // including the NUL byte in its return code. |
+ *GetInsertionPoint() = '\000'; |
+ } |
+ |
+ // Returns true, iff the buffer is filled all the way to |kSSizeMax-1|. The |
+ // caller can now stop adding more data, as GetCount() has reached its |
+ // maximum possible value. |
+ inline bool OutOfAddressableSpace() const { |
+ return count_ == static_cast<size_t>(kSSizeMax - 1); |
+ } |
+ |
+ // Returns the number of bytes that would have been emitted to |buffer_| |
+ // if it was sized sufficiently large. This number can be larger than |
+ // |size_|, if the caller provided an insufficiently large output buffer. |
+ // But it will never be bigger than |kSSizeMax-1|. |
+ inline ssize_t GetCount() const { |
+ DEBUG_CHECK(count_ < kSSizeMax); |
+ return static_cast<ssize_t>(count_); |
+ } |
+ |
+ // Emits one |ch| character into the |buffer_| and updates the |count_| of |
+ // characters that are currently supposed to be in the buffer. |
+ // Returns "false", iff the buffer was already full. |
+ // N.B. |count_| increases even if no characters have been written. This is |
+ // needed so that GetCount() can return the number of bytes that should |
+ // have been allocated for the |buffer_|. |
+ inline bool Out(char ch) { |
+ if (size_ >= 1 && count_ < size_) { |
+ buffer_[count_] = ch; |
+ return IncrementCountByOne(); |
+ } |
+ // |count_| still needs to be updated, even if the buffer has been |
+ // filled completely. This allows SafeSPrintf() to return the number of |
+ // bytes that should have been emitted. |
+ IncrementCountByOne(); |
+ return false; |
+ } |
+ |
+ // Inserts |padding|-|len| bytes worth of padding into the |buffer_|. |
+ // |count_| will also be incremented by the number of bytes that were meant |
+ // to be emitted. The |pad| character is typically either a ' ' space |
+ // or a '0' zero, but other non-NUL values are legal. |
+ // Returns "false", iff the the |buffer_| filled up (i.e. |count_| |
+ // overflowed |size_|) at any time during padding. |
+ inline bool Pad(char pad, size_t padding, size_t len) { |
+ DEBUG_CHECK(pad); |
+ DEBUG_CHECK(padding >= 0 && padding <= kSSizeMax); |
+ DEBUG_CHECK(len >= 0); |
+ for (; padding > len; --padding) { |
+ if (!Out(pad)) { |
+ if (--padding) { |
+ IncrementCount(padding-len); |
+ } |
+ return false; |
+ } |
+ } |
+ return true; |
+ } |
+ |
+ // POSIX doesn't define any async-signal-safe function for converting |
+ // an integer to ASCII. Define our own version. |
+ // |
+ // This also gives us the ability to make the function a little more |
+ // powerful and have it deal with |padding|, with truncation, and with |
+ // predicting the length of the untruncated output. |
+ // |
+ // IToASCII() converts an integer |i| to ASCII. |
+ // |
+ // Unlike similar functions in the standard C library, it never appends a |
+ // NUL character. This is left for the caller to do. |
+ // |
+ // While the function signature takes a signed int64_t, the code decides at |
+ // run-time whether to treat the argument as signed (int64_t) or as unsigned |
+ // (uint64_t) based on the value of |sign|. |
+ // |
+ // It supports |base|s 2 through 16. Only a |base| of 10 is allowed to have |
+ // a |sign|. Otherwise, |i| is treated as unsigned. |
+ // |
+ // For bases larger than 10, |upcase| decides whether lower-case or upper- |
+ // case letters should be used to designate digits greater than 10. |
+ // |
+ // Padding can be done with either '0' zeros or ' ' spaces. Padding has to |
+ // be positive and will always be applied to the left of the output. |
+ // |
+ // Prepends a |prefix| to the number (e.g. "0x"). This prefix goes to |
+ // the left of |padding|, if |pad| is '0'; and to the right of |padding| |
+ // if |pad| is ' '. |
+ // |
+ // Returns "false", if the |buffer_| overflowed at any time. |
+ bool IToASCII(bool sign, bool upcase, int64_t i, int base, |
+ char pad, size_t padding, const char* prefix); |
+ |
+ private: |
+ // Increments |count_| by |inc| unless this would cause |count_| to |
+ // overflow |kSSizeMax-1|. Returns "false", iff an overflow was detected; |
+ // it then clamps |count_| to |kSSizeMax-1|. |
+ inline bool IncrementCount(size_t inc) { |
+ // "inc" is either 1 or a "padding" value. Padding is clamped at |
+ // run-time to at most kSSizeMax-1. So, we know that "inc" is always in |
+ // the range 1..kSSizeMax-1. |
+ // This allows us to compute "kSSizeMax - 1 - inc" without incurring any |
+ // integer overflows. |
+ DEBUG_CHECK(inc <= kSSizeMax - 1); |
+ if (count_ > kSSizeMax - 1 - inc) { |
+ count_ = kSSizeMax - 1; |
+ return false; |
+ } else { |
+ count_ += inc; |
+ return true; |
+ } |
+ } |
+ |
+ // Convenience method for the common case of incrementing |count_| by one. |
+ inline bool IncrementCountByOne() { |
+ return IncrementCount(1); |
+ } |
+ |
+ // Return the current insertion point into the buffer. This is typically |
+ // at |buffer_| + |count_|, but could be before that if truncation |
+ // happened. It always points to one byte past the last byte that was |
+ // successfully placed into the |buffer_|. |
+ inline char* GetInsertionPoint() const { |
+ size_t idx = count_; |
+ if (idx > size_) { |
+ idx = size_; |
+ } |
+ return buffer_ + idx; |
+ } |
+ |
+ // User-provided buffer that will receive the fully formatted output string. |
+ char* buffer_; |
+ |
+ // Number of bytes that are available in the buffer excluding the trailing |
+ // NUL byte that will be added by the destructor. |
+ const size_t size_; |
+ |
+ // Number of bytes that would have been emitted to the buffer, if the buffer |
+ // was sufficiently big. This number always excludes the trailing NUL byte |
+ // and it is guaranteed to never grow bigger than kSSizeMax-1. |
+ size_t count_; |
+ |
+ DISALLOW_COPY_AND_ASSIGN(Buffer); |
+}; |
+ |
+ |
+bool Buffer::IToASCII(bool sign, bool upcase, int64_t i, int base, |
+ char pad, size_t padding, const char* prefix) { |
+ // Sanity check for parameters. None of these should ever fail, but see |
+ // above for the rationale why we can't call CHECK(). |
+ DEBUG_CHECK(base >= 2); |
+ DEBUG_CHECK(base <= 16); |
+ DEBUG_CHECK(!sign || base == 10); |
+ DEBUG_CHECK(pad == '0' || pad == ' '); |
+ DEBUG_CHECK(padding >= 0); |
+ DEBUG_CHECK(padding <= kSSizeMax); |
+ DEBUG_CHECK(!(sign && prefix && *prefix)); |
+ |
+ // Handle negative numbers, if the caller indicated that |i| should be |
+ // treated as a signed number; otherwise treat |i| as unsigned (even if the |
+ // MSB is set!) |
+ // Details are tricky, because of limited data-types, but equivalent pseudo- |
+ // code would look like: |
+ // if (sign && i < 0) |
+ // prefix = "-"; |
+ // num = abs(i); |
+ int minint = 0; |
+ uint64_t num; |
+ if (sign && i < 0) { |
+ prefix = "-"; |
+ |
+ // Turn our number positive. |
+ if (i == std::numeric_limits<int64_t>::min()) { |
+ // The most negative integer needs special treatment. |
+ minint = 1; |
+ num = static_cast<uint64_t>(-(i + 1)); |
+ } else { |
+ // "Normal" negative numbers are easy. |
+ num = static_cast<uint64_t>(-i); |
+ } |
+ } else { |
+ num = static_cast<uint64_t>(i); |
+ } |
+ |
+ // If padding with '0' zero, emit the prefix or '-' character now. Otherwise, |
+ // make the prefix accessible in reverse order, so that we can later output |
+ // it right between padding and the number. |
+ // We cannot choose the easier approach of just reversing the number, as that |
+ // fails in situations where we need to truncate numbers that have padding |
+ // and/or prefixes. |
+ const char* reverse_prefix = NULL; |
+ if (prefix && *prefix) { |
+ if (pad == '0') { |
+ while (*prefix) { |
+ if (padding) { |
+ --padding; |
+ } |
+ Out(*prefix++); |
+ } |
+ prefix = NULL; |
+ } else { |
+ for (reverse_prefix = prefix; *reverse_prefix; ++reverse_prefix) { |
+ } |
+ } |
+ } else |
+ prefix = NULL; |
+ const size_t prefix_length = reverse_prefix - prefix; |
+ |
+ // Loop until we have converted the entire number. Output at least one |
+ // character (i.e. '0'). |
+ size_t start = count_; |
+ size_t discarded = 0; |
+ bool started = false; |
+ do { |
+ // Make sure there is still enough space left in our output buffer. |
+ if (count_ >= size_) { |
+ if (start < size_) { |
+ // It is rare that we need to output a partial number. But if asked |
+ // to do so, we will still make sure we output the correct number of |
+ // leading digits. |
+ // Since we are generating the digits in reverse order, we actually |
+ // have to discard digits in the order that we have already emitted |
+ // them. This is essentially equivalent to: |
+ // memmove(buffer_ + start, buffer_ + start + 1, size_ - start - 1) |
+ for (char* move = buffer_ + start, *end = buffer_ + size_ - 1; |
+ move < end; |
+ ++move) { |
+ *move = move[1]; |
+ } |
+ ++discarded; |
+ --count_; |
+ } else if (count_ - size_ > 1) { |
+ // Need to increment either |count_| or |discarded| to make progress. |
+ // The latter is more efficient, as it eventually triggers fast |
+ // handling of padding. But we have to ensure we don't accidentally |
+ // change the overall state (i.e. switch the state-machine from |
+ // discarding to non-discarding). |count_| needs to always stay |
+ // bigger than |size_|. |
+ --count_; |
+ ++discarded; |
+ } |
+ } |
+ |
+ // Output the next digit and (if necessary) compensate for the most |
+ // negative integer needing special treatment. This works because, |
+ // no matter the bit width of the integer, the lowest-most decimal |
+ // integer always ends in 2, 4, 6, or 8. |
+ if (!num && started) { |
+ if (reverse_prefix > prefix) { |
+ Out(*--reverse_prefix); |
+ } else { |
+ Out(pad); |
+ } |
+ } else { |
+ started = true; |
+ Out((upcase ? kUpCaseHexDigits : kDownCaseHexDigits)[num%base + minint]); |
+ } |
+ |
+ minint = 0; |
+ num /= base; |
+ |
+ // Add padding, if requested. |
+ if (padding > 0) { |
+ --padding; |
+ |
+ // Performance optimization for when we are asked to output excessive |
+ // padding, but our output buffer is limited in size. Even if we output |
+ // a 64bit number in binary, we would never write more than 64 plus |
+ // prefix non-padding characters. So, once this limit has been passed, |
+ // any further state change can be computed arithmetically; we know that |
+ // by this time, our entire final output consists of padding characters |
+ // that have all already been output. |
+ if (discarded > 8*sizeof(num) + prefix_length) { |
+ IncrementCount(padding); |
+ padding = 0; |
+ } |
+ } |
+ } while (num || padding || (reverse_prefix > prefix)); |
+ |
+ // Conversion to ASCII actually resulted in the digits being in reverse |
+ // order. We can't easily generate them in forward order, as we can't tell |
+ // the number of characters needed until we are done converting. |
+ // So, now, we reverse the string (except for the possible '-' sign). |
+ char* front = buffer_ + start; |
+ char* back = GetInsertionPoint(); |
+ while (--back > front) { |
+ char ch = *back; |
+ *back = *front; |
+ *front++ = ch; |
+ } |
+ |
+ IncrementCount(discarded); |
+ return !discarded; |
+} |
+ |
+} // anonymous namespace |
+ |
+namespace internal { |
+ |
+ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt, const Arg* args, |
+ const size_t max_args) { |
+ // Make sure that at least one NUL byte can be written, and that the buffer |
+ // never overflows kSSizeMax. Not only does that use up most or all of the |
+ // address space, it also would result in a return code that cannot be |
+ // represented. |
+ if (static_cast<ssize_t>(sz) < 1) { |
+ return -1; |
+ } else if (sz > kSSizeMax) { |
+ sz = kSSizeMax; |
+ } |
+ |
+ // Iterate over format string and interpret '%' arguments as they are |
+ // encountered. |
+ Buffer buffer(buf, sz); |
+ size_t padding; |
+ char pad; |
+ for (unsigned int cur_arg = 0; *fmt && !buffer.OutOfAddressableSpace(); ) { |
+ if (*fmt++ == '%') { |
+ padding = 0; |
+ pad = ' '; |
+ char ch = *fmt++; |
+ format_character_found: |
+ switch (ch) { |
+ case '0': case '1': case '2': case '3': case '4': |
+ case '5': case '6': case '7': case '8': case '9': |
+ // Found a width parameter. Convert to an integer value and store in |
+ // "padding". If the leading digit is a zero, change the padding |
+ // character from a space ' ' to a zero '0'. |
+ pad = ch == '0' ? '0' : ' '; |
+ for (;;) { |
+ // The maximum allowed padding fills all the available address |
+ // space and leaves just enough space to insert the trailing NUL. |
+ const size_t max_padding = kSSizeMax - 1; |
+ if (padding > max_padding/10 || |
+ 10*padding > max_padding - (ch - '0')) { |
+ DEBUG_CHECK(padding <= max_padding/10 && |
+ 10*padding <= max_padding - (ch - '0')); |
+ // Integer overflow detected. Skip the rest of the width until |
+ // we find the format character, then do the normal error handling. |
+ padding_overflow: |
+ padding = max_padding; |
+ while ((ch = *fmt++) >= '0' && ch <= '9') { |
+ } |
+ if (cur_arg < max_args) { |
+ ++cur_arg; |
+ } |
+ goto fail_to_expand; |
+ } |
+ padding = 10*padding + ch - '0'; |
+ if (padding > max_padding) { |
+ // This doesn't happen for "sane" values of kSSizeMax. But once |
+ // kSSizeMax gets smaller than about 10, our earlier range checks |
+ // are incomplete. Unittests do trigger this artificial corner |
+ // case. |
+ DEBUG_CHECK(padding <= max_padding); |
+ goto padding_overflow; |
+ } |
+ ch = *fmt++; |
+ if (ch < '0' || ch > '9') { |
+ // Reached the end of the width parameter. This is where the format |
+ // character is found. |
+ goto format_character_found; |
+ } |
+ } |
+ break; |
+ case 'c': { // Output an ASCII character. |
+ // Check that there are arguments left to be inserted. |
+ if (cur_arg >= max_args) { |
+ DEBUG_CHECK(cur_arg < max_args); |
+ goto fail_to_expand; |
+ } |
+ |
+ // Check that the argument has the expected type. |
+ const Arg& arg = args[cur_arg++]; |
+ if (arg.type != Arg::INT && arg.type != Arg::UINT) { |
+ DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT); |
+ goto fail_to_expand; |
+ } |
+ |
+ // Apply padding, if needed. |
+ buffer.Pad(' ', padding, 1); |
+ |
+ // Convert the argument to an ASCII character and output it. |
+ char ch = static_cast<char>(arg.i); |
+ if (!ch) { |
+ goto end_of_output_buffer; |
+ } |
+ buffer.Out(ch); |
+ break; } |
+ case 'd': // Output a possibly signed decimal value. |
+ case 'o': // Output an unsigned octal value. |
+ case 'x': // Output an unsigned hexadecimal value. |
+ case 'X': |
+ case 'p': { // Output a pointer value. |
+ // Check that there are arguments left to be inserted. |
+ if (cur_arg >= max_args) { |
+ DEBUG_CHECK(cur_arg < max_args); |
+ goto fail_to_expand; |
+ } |
+ |
+ const Arg& arg = args[cur_arg++]; |
+ int64_t i; |
+ const char* prefix = NULL; |
+ if (ch != 'p') { |
+ // Check that the argument has the expected type. |
+ if (arg.type != Arg::INT && arg.type != Arg::UINT) { |
+ DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT); |
+ goto fail_to_expand; |
+ } |
+ i = arg.i; |
+ |
+ if (ch != 'd') { |
+ // The Arg() constructor automatically performed sign expansion on |
+ // signed parameters. This is great when outputting a %d decimal |
+ // number, but can result in unexpected leading 0xFF bytes when |
+ // outputting a %x hexadecimal number. Mask bits, if necessary. |
+ // We have to do this here, instead of in the Arg() constructor, as |
+ // the Arg() constructor cannot tell whether we will output a %d |
+ // or a %x. Only the latter should experience masking. |
+ if (arg.width < sizeof(int64_t)) { |
+ i &= (1LL << (8*arg.width)) - 1; |
+ } |
+ } |
+ } else { |
+ // Pointer values require an actual pointer or a string. |
+ if (arg.type == Arg::POINTER) { |
+ i = reinterpret_cast<uintptr_t>(arg.ptr); |
+ } else if (arg.type == Arg::STRING) { |
+ i = reinterpret_cast<uintptr_t>(arg.str); |
+ } else if (arg.type == Arg::INT && arg.width == sizeof(NULL) && |
+ arg.i == 0) { // Allow C++'s version of NULL |
+ i = 0; |
+ } else { |
+ DEBUG_CHECK(arg.type == Arg::POINTER || arg.type == Arg::STRING); |
+ goto fail_to_expand; |
+ } |
+ |
+ // Pointers always include the "0x" prefix. |
+ prefix = "0x"; |
+ } |
+ |
+ // Use IToASCII() to convert to ASCII representation. For decimal |
+ // numbers, optionally print a sign. For hexadecimal numbers, |
+ // distinguish between upper and lower case. %p addresses are always |
+ // printed as upcase. Supports base 8, 10, and 16. Prints padding |
+ // and/or prefixes, if so requested. |
+ buffer.IToASCII(ch == 'd' && arg.type == Arg::INT, |
+ ch != 'x', i, |
+ ch == 'o' ? 8 : ch == 'd' ? 10 : 16, |
+ pad, padding, prefix); |
+ break; } |
+ case 's': { |
+ // Check that there are arguments left to be inserted. |
+ if (cur_arg >= max_args) { |
+ DEBUG_CHECK(cur_arg < max_args); |
+ goto fail_to_expand; |
+ } |
+ |
+ // Check that the argument has the expected type. |
+ const Arg& arg = args[cur_arg++]; |
+ const char *s; |
+ if (arg.type == Arg::STRING) { |
+ s = arg.str ? arg.str : "<NULL>"; |
+ } else if (arg.type == Arg::INT && arg.width == sizeof(NULL) && |
+ arg.i == 0) { // Allow C++'s version of NULL |
+ s = "<NULL>"; |
+ } else { |
+ DEBUG_CHECK(arg.type == Arg::STRING); |
+ goto fail_to_expand; |
+ } |
+ |
+ // Apply padding, if needed. This requires us to first check the |
+ // length of the string that we are outputting. |
+ if (padding) { |
+ size_t len = 0; |
+ for (const char* src = s; *src++; ) { |
+ ++len; |
+ } |
+ buffer.Pad(' ', padding, len); |
+ } |
+ |
+ // Printing a string involves nothing more than copying it into the |
+ // output buffer and making sure we don't output more bytes than |
+ // available space; Out() takes care of doing that. |
+ for (const char* src = s; *src; ) { |
+ buffer.Out(*src++); |
+ } |
+ break; } |
+ case '%': |
+ // Quoted percent '%' character. |
+ goto copy_verbatim; |
+ fail_to_expand: |
+ // C++ gives us tools to do type checking -- something that snprintf() |
+ // could never really do. So, whenever we see arguments that don't |
+ // match up with the format string, we refuse to output them. But |
+ // since we have to be extremely conservative about being async- |
+ // signal-safe, we are limited in the type of error handling that we |
+ // can do in production builds (in debug builds we can use |
+ // DEBUG_CHECK() and hope for the best). So, all we do is pass the |
+ // format string unchanged. That should eventually get the user's |
+ // attention; and in the meantime, it hopefully doesn't lose too much |
+ // data. |
+ default: |
+ // Unknown or unsupported format character. Just copy verbatim to |
+ // output. |
+ buffer.Out('%'); |
+ DEBUG_CHECK(ch); |
+ if (!ch) { |
+ goto end_of_format_string; |
+ } |
+ buffer.Out(ch); |
+ break; |
+ } |
+ } else { |
+ copy_verbatim: |
+ buffer.Out(fmt[-1]); |
+ } |
+ } |
+ end_of_format_string: |
+ end_of_output_buffer: |
+ return buffer.GetCount(); |
+} |
+ |
+} // namespace internal |
+ |
+ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt) { |
+ // Make sure that at least one NUL byte can be written, and that the buffer |
+ // never overflows kSSizeMax. Not only does that use up most or all of the |
+ // address space, it also would result in a return code that cannot be |
+ // represented. |
+ if (static_cast<ssize_t>(sz) < 1) { |
+ return -1; |
+ } else if (sz > kSSizeMax) { |
+ sz = kSSizeMax; |
+ } |
+ |
+ Buffer buffer(buf, sz); |
+ |
+ // In the slow-path, we deal with errors by copying the contents of |
+ // "fmt" unexpanded. This means, if there are no arguments passed, the |
+ // SafeSPrintf() function always degenerates to a version of strncpy() that |
+ // de-duplicates '%' characters. |
+ const char* src = fmt; |
+ for (; *src; ++src) { |
+ buffer.Out(*src); |
+ DEBUG_CHECK(src[0] != '%' || src[1] == '%'); |
+ if (src[0] == '%' && src[1] == '%') { |
+ ++src; |
+ } |
+ } |
+ return buffer.GetCount(); |
+} |
+ |
+} // namespace strings |
+} // namespace base |