| Index: tests/MatrixTest.cpp
|
| diff --git a/tests/MatrixTest.cpp b/tests/MatrixTest.cpp
|
| index 8785730322f52dfdc47bc76130f4f23c72339efc..c225565cc4334ca3a112d9a005b66bbfd75e2d64 100644
|
| --- a/tests/MatrixTest.cpp
|
| +++ b/tests/MatrixTest.cpp
|
| @@ -350,11 +350,13 @@ static void test_matrix_is_similarity(skiatest::Reporter* reporter) {
|
| static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b,
|
| SkScalar tolerance = SK_ScalarNearlyZero) {
|
| // from Bruce Dawson
|
| + // absolute check
|
| SkScalar diff = SkScalarAbs(a - b);
|
| if (diff < tolerance) {
|
| return true;
|
| }
|
|
|
| + // relative check
|
| a = SkScalarAbs(a);
|
| b = SkScalarAbs(b);
|
| SkScalar largest = (b > a) ? b : a;
|
| @@ -366,9 +368,32 @@ static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b,
|
| return false;
|
| }
|
|
|
| +static bool check_matrix_recomposition(const SkMatrix& mat,
|
| + const SkPoint& rotation1,
|
| + const SkPoint& scale,
|
| + const SkPoint& rotation2) {
|
| + SkScalar c1 = rotation1.fX;
|
| + SkScalar s1 = rotation1.fY;
|
| + SkScalar scaleX = scale.fX;
|
| + SkScalar scaleY = scale.fY;
|
| + SkScalar c2 = rotation2.fX;
|
| + SkScalar s2 = rotation2.fY;
|
| +
|
| + // We do a relative check here because large scale factors cause problems with an absolute check
|
| + bool result = scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
| + scaleX*c1*c2 - scaleY*s1*s2) &&
|
| + scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
| + -scaleX*s1*c2 - scaleY*c1*s2) &&
|
| + scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
| + scaleX*c1*s2 + scaleY*s1*c2) &&
|
| + scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
| + -scaleX*s1*s2 + scaleY*c1*c2);
|
| + return result;
|
| +}
|
| +
|
| static void test_matrix_decomposition(skiatest::Reporter* reporter) {
|
| SkMatrix mat;
|
| - SkScalar rotation0, scaleX, scaleY, rotation1;
|
| + SkPoint rotation1, scale, rotation2;
|
|
|
| const float kRotation0 = 15.5f;
|
| const float kRotation1 = -50.f;
|
| @@ -377,150 +402,108 @@ static void test_matrix_decomposition(skiatest::Reporter* reporter) {
|
|
|
| // identity
|
| mat.reset();
|
| - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
| // make sure it doesn't crash if we pass in NULLs
|
| - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL, NULL));
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL));
|
|
|
| // rotation only
|
| mat.setRotate(kRotation0);
|
| - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0)));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
| // uniform scale only
|
| mat.setScale(kScale0, kScale0);
|
| - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
| // anisotropic scale only
|
| mat.setScale(kScale1, kScale0);
|
| - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
| // rotation then uniform scale
|
| mat.setRotate(kRotation1);
|
| mat.postScale(kScale0, kScale0);
|
| - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
| // uniform scale then rotation
|
| mat.setScale(kScale0, kScale0);
|
| mat.postRotate(kRotation1);
|
| - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
| // rotation then uniform scale+reflection
|
| mat.setRotate(kRotation0);
|
| mat.postScale(kScale1, -kScale1);
|
| - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0)));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
| // uniform scale+reflection, then rotate
|
| mat.setScale(kScale0, -kScale0);
|
| mat.postRotate(kRotation1);
|
| - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(-kRotation1)));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale0));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
| // rotation then anisotropic scale
|
| mat.setRotate(kRotation1);
|
| mat.postScale(kScale1, kScale0);
|
| - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
| + // rotation then anisotropic scale
|
| + mat.setRotate(90);
|
| + mat.postScale(kScale1, kScale0);
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
| +
|
| // anisotropic scale then rotation
|
| mat.setScale(kScale1, kScale0);
|
| mat.postRotate(kRotation0);
|
| - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation1, SkDegreesToRadians(kRotation0)));
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
| +
|
| + // anisotropic scale then rotation
|
| + mat.setScale(kScale1, kScale0);
|
| + mat.postRotate(90);
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
| // rotation, uniform scale, then different rotation
|
| mat.setRotate(kRotation1);
|
| mat.postScale(kScale0, kScale0);
|
| mat.postRotate(kRotation0);
|
| - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0,
|
| - SkDegreesToRadians(kRotation0 + kRotation1)));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
| - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
| // rotation, anisotropic scale, then different rotation
|
| mat.setRotate(kRotation0);
|
| mat.postScale(kScale1, kScale0);
|
| mat.postRotate(kRotation1);
|
| - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| - // Because of the shear/skew we won't get the same results, so we need to multiply it out.
|
| - // Generating the matrices requires doing a radian-to-degree calculation, then degree-to-radian
|
| - // calculation (in setRotate()), which adds error, so this just computes the matrix elements
|
| - // directly.
|
| - SkScalar c0;
|
| - SkScalar s0 = SkScalarSinCos(rotation0, &c0);
|
| - SkScalar c1;
|
| - SkScalar s1 = SkScalarSinCos(rotation1, &c1);
|
| - // We do a relative check here because large scale factors cause problems with an absolute check
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
| - scaleX*c0*c1 - scaleY*s0*s1));
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
| - -scaleX*s0*c1 - scaleY*c0*s1));
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
| - scaleX*c0*s1 + scaleY*s0*c1));
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
| - -scaleX*s0*s1 + scaleY*c0*c1));
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
| +
|
| + // rotation, anisotropic scale + reflection, then different rotation
|
| + mat.setRotate(kRotation0);
|
| + mat.postScale(-kScale1, kScale0);
|
| + mat.postRotate(kRotation1);
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
| // try some random matrices
|
| SkMWCRandom rand;
|
| for (int m = 0; m < 1000; ++m) {
|
| - SkScalar rot0 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI);
|
| + SkScalar rot0 = rand.nextRangeF(-180, 180);
|
| SkScalar sx = rand.nextRangeF(-3000.f, 3000.f);
|
| SkScalar sy = rand.nextRangeF(-3000.f, 3000.f);
|
| - SkScalar rot1 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI);
|
| + SkScalar rot1 = rand.nextRangeF(-180, 180);
|
| mat.setRotate(rot0);
|
| mat.postScale(sx, sy);
|
| mat.postRotate(rot1);
|
|
|
| - if (SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)) {
|
| - SkScalar c0;
|
| - SkScalar s0 = SkScalarSinCos(rotation0, &c0);
|
| - SkScalar c1;
|
| - SkScalar s1 = SkScalarSinCos(rotation1, &c1);
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
| - scaleX*c0*c1 - scaleY*s0*s1));
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
| - -scaleX*s0*c1 - scaleY*c0*s1));
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
| - scaleX*c0*s1 + scaleY*s0*c1));
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
| - -scaleX*s0*s1 + scaleY*c0*c1));
|
| + if (SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)) {
|
| + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
| } else {
|
| // if the matrix is degenerate, the basis vectors should be near-parallel or near-zero
|
| SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] -
|
| @@ -531,65 +514,31 @@ static void test_matrix_decomposition(skiatest::Reporter* reporter) {
|
|
|
| // translation shouldn't affect this
|
| mat.postTranslate(-1000.f, 1000.f);
|
| - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| - s0 = SkScalarSinCos(rotation0, &c0);
|
| - s1 = SkScalarSinCos(rotation1, &c1);
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
| - scaleX*c0*c1 - scaleY*s0*s1));
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
| - -scaleX*s0*c1 - scaleY*c0*s1));
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
| - scaleX*c0*s1 + scaleY*s0*c1));
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
| - -scaleX*s0*s1 + scaleY*c0*c1));
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
| // perspective shouldn't affect this
|
| mat[SkMatrix::kMPersp0] = 12.f;
|
| mat[SkMatrix::kMPersp1] = 4.f;
|
| mat[SkMatrix::kMPersp2] = 1872.f;
|
| - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| - s0 = SkScalarSinCos(rotation0, &c0);
|
| - s1 = SkScalarSinCos(rotation1, &c1);
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
| - scaleX*c0*c1 - scaleY*s0*s1));
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
| - -scaleX*s0*c1 - scaleY*c0*s1));
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
| - scaleX*c0*s1 + scaleY*s0*c1));
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
| - -scaleX*s0*s1 + scaleY*c0*c1));
|
| -
|
| - // rotation, anisotropic scale + reflection, then different rotation
|
| - mat.setRotate(kRotation0);
|
| - mat.postScale(-kScale1, kScale0);
|
| - mat.postRotate(kRotation1);
|
| - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| - s0 = SkScalarSinCos(rotation0, &c0);
|
| - s1 = SkScalarSinCos(rotation1, &c1);
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
| - scaleX*c0*c1 - scaleY*s0*s1));
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
| - -scaleX*s0*c1 - scaleY*c0*s1));
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
| - scaleX*c0*s1 + scaleY*s0*c1));
|
| - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
| - -scaleX*s0*s1 + scaleY*c0*c1));
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
| // degenerate matrices
|
| // mostly zero entries
|
| mat.reset();
|
| mat[SkMatrix::kMScaleX] = 0.f;
|
| - REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| mat.reset();
|
| mat[SkMatrix::kMScaleY] = 0.f;
|
| - REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| mat.reset();
|
| // linearly dependent entries
|
| mat[SkMatrix::kMScaleX] = 1.f;
|
| mat[SkMatrix::kMSkewX] = 2.f;
|
| mat[SkMatrix::kMSkewY] = 4.f;
|
| mat[SkMatrix::kMScaleY] = 8.f;
|
| - REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
| }
|
|
|
| // For test_matrix_homogeneous, below.
|
|
|