Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(192)

Unified Diff: src/core/SkMatrix.cpp

Issue 23596006: Revise SVD code to remove arctangents. (Closed) Base URL: https://skia.googlecode.com/svn/trunk
Patch Set: Fix matrix_decompose bench to actually check random matrices. Created 7 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « bench/MatrixBench.cpp ('k') | src/core/SkMatrixUtils.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/core/SkMatrix.cpp
diff --git a/src/core/SkMatrix.cpp b/src/core/SkMatrix.cpp
index e5d48f022f43c6a0c86f8e706a998939dd6b3490..e3e43ca6907a7b327aa3d2193b6eec64a3cd06c5 100644
--- a/src/core/SkMatrix.cpp
+++ b/src/core/SkMatrix.cpp
@@ -2007,13 +2007,18 @@ bool SkTreatAsSprite(const SkMatrix& mat, int width, int height,
return isrc == idst;
}
+// A square matrix M can be decomposed (via polar decomposition) into two matrices --
+// an orthogonal matrix Q and a symmetric matrix S. In turn we can decompose S into U*W*U^T,
+// where U is another orthogonal matrix and W is a scale matrix. These can be recombined
+// to give M = (Q*U)*W*U^T, i.e., the product of two orthogonal matrices and a scale matrix.
+//
+// The one wrinkle is that traditionally Q may contain a reflection -- the
+// calculation has been rejiggered to put that reflection into W.
bool SkDecomposeUpper2x2(const SkMatrix& matrix,
- SkScalar* rotation0,
- SkScalar* xScale, SkScalar* yScale,
- SkScalar* rotation1) {
+ SkPoint* rotation1,
+ SkPoint* scale,
+ SkPoint* rotation2) {
- // borrowed from Jim Blinn's article "Consider the Lowly 2x2 Matrix"
- // Note: he uses row vectors, so we have to do some swapping of terms
SkScalar A = matrix[SkMatrix::kMScaleX];
SkScalar B = matrix[SkMatrix::kMSkewX];
SkScalar C = matrix[SkMatrix::kMSkewY];
@@ -2023,70 +2028,82 @@ bool SkDecomposeUpper2x2(const SkMatrix& matrix,
return false;
}
- SkScalar E = SK_ScalarHalf*(A + D);
- SkScalar F = SK_ScalarHalf*(A - D);
- SkScalar G = SK_ScalarHalf*(C + B);
- SkScalar H = SK_ScalarHalf*(C - B);
+ double w1, w2;
+ SkScalar cos1, sin1;
+ SkScalar cos2, sin2;
- SkScalar sqrt0 = SkScalarSqrt(E*E + H*H);
- SkScalar sqrt1 = SkScalarSqrt(F*F + G*G);
+ // do polar decomposition (M = Q*S)
+ SkScalar cosQ, sinQ;
+ double Sa, Sb, Sd;
+ // if M is already symmetric (i.e., M = I*S)
+ if (SkScalarNearlyEqual(B, C)) {
+ cosQ = SK_Scalar1;
+ sinQ = 0;
- SkScalar xs, ys, r0, r1;
-
- xs = sqrt0 + sqrt1;
- ys = sqrt0 - sqrt1;
- // can't have zero yScale, must be degenerate
- SkASSERT(!SkScalarNearlyZero(ys));
-
- // uniformly scaled rotation
- if (SkScalarNearlyZero(F) && SkScalarNearlyZero(G)) {
- SkASSERT(!SkScalarNearlyZero(E) || !SkScalarNearlyZero(H));
- r0 = SkScalarATan2(H, E);
- r1 = 0;
- // uniformly scaled reflection
- } else if (SkScalarNearlyZero(E) && SkScalarNearlyZero(H)) {
- SkASSERT(!SkScalarNearlyZero(F) || !SkScalarNearlyZero(G));
- r0 = -SkScalarATan2(G, F);
- r1 = 0;
+ Sa = A;
+ Sb = B;
+ Sd = D;
} else {
- SkASSERT(!SkScalarNearlyZero(E) || !SkScalarNearlyZero(H));
- SkASSERT(!SkScalarNearlyZero(F) || !SkScalarNearlyZero(G));
-
- SkScalar arctan0 = SkScalarATan2(H, E);
- SkScalar arctan1 = SkScalarATan2(G, F);
- r0 = SK_ScalarHalf*(arctan0 - arctan1);
- r1 = SK_ScalarHalf*(arctan0 + arctan1);
-
- // simplify the results
- const SkScalar kHalfPI = SK_ScalarHalf*SK_ScalarPI;
- if (SkScalarNearlyEqual(SkScalarAbs(r0), kHalfPI)) {
- SkScalar tmp = xs;
- xs = ys;
- ys = tmp;
-
- r1 += r0;
- r0 = 0;
- } else if (SkScalarNearlyEqual(SkScalarAbs(r1), kHalfPI)) {
- SkScalar tmp = xs;
- xs = ys;
- ys = tmp;
-
- r0 += r1;
- r1 = 0;
+ cosQ = A + D;
+ sinQ = C - B;
+ SkScalar reciplen = SK_Scalar1/SkScalarSqrt(cosQ*cosQ + sinQ*sinQ);
+ cosQ *= reciplen;
+ sinQ *= reciplen;
+
+ // S = Q^-1*M
+ // we don't calc Sc since it's symmetric
+ Sa = A*cosQ + C*sinQ;
+ Sb = B*cosQ + D*sinQ;
+ Sd = -B*sinQ + D*cosQ;
+ }
+
+ // Now we need to compute eigenvalues of S (our scale factors)
+ // and eigenvectors (bases for our rotation)
+ // From this, should be able to reconstruct S as U*W*U^T
+ if (SkScalarNearlyZero(Sb)) {
+ // already diagonalized
+ cos1 = SK_Scalar1;
+ sin1 = 0;
+ w1 = Sa;
+ w2 = Sd;
+ cos2 = cosQ;
+ sin2 = sinQ;
+ } else {
+ double diff = Sa - Sd;
+ double discriminant = sqrt(diff*diff + 4.0*Sb*Sb);
+ double trace = Sa + Sd;
+ if (diff > 0) {
+ w1 = 0.5*(trace + discriminant);
+ w2 = 0.5*(trace - discriminant);
+ } else {
+ w1 = 0.5*(trace - discriminant);
+ w2 = 0.5*(trace + discriminant);
}
- }
-
- if (NULL != xScale) {
- *xScale = xs;
- }
- if (NULL != yScale) {
- *yScale = ys;
- }
- if (NULL != rotation0) {
- *rotation0 = r0;
+
+ cos1 = Sb; sin1 = w1 - Sa;
+ SkScalar reciplen = SK_Scalar1/SkScalarSqrt(cos1*cos1 + sin1*sin1);
+ cos1 *= reciplen;
+ sin1 *= reciplen;
+
+ // rotation 2 is composition of Q and U
+ cos2 = cos1*cosQ - sin1*sinQ;
+ sin2 = sin1*cosQ + cos1*sinQ;
+
+ // rotation 1 is U^T
+ sin1 = -sin1;
+ }
+
+ if (NULL != scale) {
+ scale->fX = w1;
+ scale->fY = w2;
}
if (NULL != rotation1) {
- *rotation1 = r1;
+ rotation1->fX = cos1;
+ rotation1->fY = sin1;
+ }
+ if (NULL != rotation2) {
+ rotation2->fX = cos2;
+ rotation2->fY = sin2;
}
return true;
« no previous file with comments | « bench/MatrixBench.cpp ('k') | src/core/SkMatrixUtils.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698