| Index: media/mp2t/es_parser_h264.cc
|
| diff --git a/media/mp2t/es_parser_h264.cc b/media/mp2t/es_parser_h264.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..2bfe2c3fe624dc9df29aaeab566155946a0379d1
|
| --- /dev/null
|
| +++ b/media/mp2t/es_parser_h264.cc
|
| @@ -0,0 +1,507 @@
|
| +// Copyright (c) 2013 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "media/mp2t/es_parser_h264.h"
|
| +
|
| +#include "base/basictypes.h"
|
| +#include "base/logging.h"
|
| +#include "media/base/bit_reader.h"
|
| +#include "media/base/buffers.h"
|
| +#include "media/base/stream_parser_buffer.h"
|
| +#include "media/base/video_frame.h"
|
| +#include "media/mp2t/mp2t_common.h"
|
| +#include "ui/gfx/rect.h"
|
| +#include "ui/gfx/size.h"
|
| +
|
| +static const int kExtendedSar = 255;
|
| +
|
| +// ISO 14496 part 10
|
| +// VUI parameters: Table E-1 "Meaning of sample aspect ratio indicator"
|
| +static const int kTableSarWidth[14] = {
|
| + 1, 1, 12, 10, 16, 40, 24, 20, 32, 80, 18, 15, 64, 160
|
| +};
|
| +
|
| +static const int kTableSarHeight[14] = {
|
| + 1, 1, 11, 11, 11, 33, 11, 11, 11, 33, 11, 11, 33, 99
|
| +};
|
| +
|
| +// Remove the start code emulation prevention ( 0x000003 )
|
| +// and return the size of the converted buffer.
|
| +// Note: Size of |buf_rbsp| should be at least |size| to accomodate
|
| +// the worst case.
|
| +static int ConvertToRbsp(const uint8* buf, int size, uint8* buf_rbsp) {
|
| + int rbsp_size = 0;
|
| + int zero_count = 0;
|
| + for (int k = 0; k < size; k++) {
|
| + if (buf[k] == 0x3 && zero_count >= 2) {
|
| + zero_count = 0;
|
| + continue;
|
| + }
|
| + if (buf[k] == 0)
|
| + zero_count++;
|
| + else
|
| + zero_count = 0;
|
| + buf_rbsp[rbsp_size++] = buf[k];
|
| + }
|
| + return rbsp_size;
|
| +}
|
| +
|
| +namespace media {
|
| +namespace mp2t {
|
| +
|
| +// ISO 14496 - Part 10: Table 7-1 "NAL unit type codes"
|
| +enum NalUnitType {
|
| + kNalUnitTypeNonIdrSlice = 1,
|
| + kNalUnitTypeIdrSlice = 5,
|
| + kNalUnitTypeSPS = 7,
|
| + kNalUnitTypePPS = 8,
|
| + kNalUnitTypeAUD = 9,
|
| +};
|
| +
|
| +class BitReaderH264 : public BitReader {
|
| + public:
|
| + BitReaderH264(const uint8* data, off_t size)
|
| + : BitReader(data, size) { }
|
| +
|
| + // Read an unsigned exp-golomb value.
|
| + // Return true if successful.
|
| + bool ReadBitsExpGolomb(uint32* exp_golomb_value);
|
| +};
|
| +
|
| +bool BitReaderH264::ReadBitsExpGolomb(uint32* exp_golomb_value) {
|
| + // Get the number of leading zeros.
|
| + int zero_count = 0;
|
| + while (true) {
|
| + int one_bit;
|
| + RCHECK(ReadBits(1, &one_bit));
|
| + if (one_bit != 0)
|
| + break;
|
| + zero_count++;
|
| + }
|
| +
|
| + // If zero_count is greater than 31, the calculated value will overflow.
|
| + if (zero_count > 31) {
|
| + SkipBits(zero_count);
|
| + return false;
|
| + }
|
| +
|
| + // Read the actual value.
|
| + uint32 base = (1 << zero_count) - 1;
|
| + uint32 offset;
|
| + RCHECK(ReadBits(zero_count, &offset));
|
| + *exp_golomb_value = base + offset;
|
| +
|
| + return true;
|
| +}
|
| +
|
| +EsParserH264::EsParserH264(
|
| + const NewVideoConfigCB& new_video_config_cb,
|
| + const EmitBufferCB& emit_buffer_cb)
|
| + : new_video_config_cb_(new_video_config_cb),
|
| + emit_buffer_cb_(emit_buffer_cb),
|
| + es_pos_(0),
|
| + current_nal_pos_(-1),
|
| + current_access_unit_pos_(-1),
|
| + is_key_frame_(false) {
|
| +}
|
| +
|
| +EsParserH264::~EsParserH264() {
|
| +}
|
| +
|
| +bool EsParserH264::Parse(const uint8* buf, int size,
|
| + base::TimeDelta pts,
|
| + base::TimeDelta dts) {
|
| + // Note: Parse is invoked each time a PES packet has been reassembled.
|
| + // Unfortunately, a PES packet does not necessarily map
|
| + // to an h264 access unit, although the HLS recommendation is to use one PES
|
| + // for each access unit (but this is just a recommendation and some streams
|
| + // do not comply with this recommendation).
|
| +
|
| + // Link position |raw_es_size| in the ES stream with a timing descriptor.
|
| + // HLS recommendation: "In AVC video, you should have both a DTS and a
|
| + // PTS in each PES header".
|
| + if (dts == kNoTimestamp() && pts == kNoTimestamp()) {
|
| + DVLOG(1) << "A timestamp must be provided for each reassembled PES";
|
| + return false;
|
| + }
|
| + TimingDesc timing_desc;
|
| + timing_desc.pts = pts;
|
| + timing_desc.dts = (dts != kNoTimestamp()) ? dts : pts;
|
| +
|
| + int raw_es_size;
|
| + const uint8* raw_es;
|
| + es_byte_queue_.Peek(&raw_es, &raw_es_size);
|
| + timing_desc_list_.push_back(
|
| + std::pair<int, TimingDesc>(raw_es_size, timing_desc));
|
| +
|
| + // Add the incoming bytes to the ES queue.
|
| + es_byte_queue_.Push(buf, size);
|
| +
|
| + // Add NALs from the incoming buffer.
|
| + if (!ParseInternal())
|
| + return false;
|
| +
|
| + // Discard emitted frames
|
| + // or every byte that was parsed so far if there is no current frame.
|
| + int skip_count =
|
| + (current_access_unit_pos_ >= 0) ? current_access_unit_pos_ : es_pos_;
|
| + DiscardEs(skip_count);
|
| +
|
| + return true;
|
| +}
|
| +
|
| +void EsParserH264::Flush() {
|
| + if (current_access_unit_pos_ < 0)
|
| + return;
|
| +
|
| + // Force emitting the last access unit.
|
| + int next_aud_pos;
|
| + const uint8* raw_es;
|
| + es_byte_queue_.Peek(&raw_es, &next_aud_pos);
|
| + EmitFrameIfNeeded(next_aud_pos);
|
| + current_nal_pos_ = -1;
|
| + StartFrame(-1);
|
| +
|
| + // Discard the emitted frame.
|
| + DiscardEs(next_aud_pos);
|
| +}
|
| +
|
| +void EsParserH264::Reset() {
|
| + DVLOG(1) << "EsParserH264::Reset";
|
| + es_byte_queue_.Reset();
|
| + timing_desc_list_.clear();
|
| + es_pos_ = 0;
|
| + current_nal_pos_ = -1;
|
| + StartFrame(-1);
|
| + last_video_decoder_config_ = VideoDecoderConfig();
|
| +}
|
| +
|
| +bool EsParserH264::ParseInternal() {
|
| + int raw_es_size;
|
| + const uint8* raw_es;
|
| + es_byte_queue_.Peek(&raw_es, &raw_es_size);
|
| +
|
| + DCHECK_GE(es_pos_, 0);
|
| + DCHECK_LT(es_pos_, raw_es_size);
|
| +
|
| + // Resume h264 es parsing where it was left.
|
| + for ( ; es_pos_ < raw_es_size - 4; es_pos_++) {
|
| + // Make sure the syncword is either 00 00 00 01 or 00 00 01
|
| + if (raw_es[es_pos_ + 0] != 0 || raw_es[es_pos_ + 1] != 0)
|
| + continue;
|
| + int syncword_length = 0;
|
| + if (raw_es[es_pos_ + 2] == 0 && raw_es[es_pos_ + 3] == 1)
|
| + syncword_length = 4;
|
| + else if (raw_es[es_pos_ + 2] == 1)
|
| + syncword_length = 3;
|
| + else
|
| + continue;
|
| +
|
| + // Parse the current NAL (and the new NAL then becomes the current one).
|
| + if (current_nal_pos_ >= 0) {
|
| + int nal_size = es_pos_ - current_nal_pos_;
|
| + DCHECK_GT(nal_size, 0);
|
| + RCHECK(NalParser(&raw_es[current_nal_pos_], nal_size));
|
| + }
|
| + current_nal_pos_ = es_pos_ + syncword_length;
|
| +
|
| + // Retrieve the NAL type.
|
| + int nal_header = raw_es[current_nal_pos_];
|
| + int forbidden_zero_bit = (nal_header >> 7) & 0x1;
|
| + RCHECK(forbidden_zero_bit == 0);
|
| + NalUnitType nal_unit_type = static_cast<NalUnitType>(nal_header & 0x1f);
|
| + DVLOG(LOG_LEVEL_ES) << "nal: offset=" << es_pos_
|
| + << " type=" << nal_unit_type;
|
| +
|
| + // Emit a frame if needed.
|
| + if (nal_unit_type == kNalUnitTypeAUD)
|
| + EmitFrameIfNeeded(es_pos_);
|
| +
|
| + // Skip the syncword.
|
| + es_pos_ += syncword_length;
|
| + }
|
| +
|
| + return true;
|
| +}
|
| +
|
| +void EsParserH264::EmitFrameIfNeeded(int next_aud_pos) {
|
| + // There is no current frame: start a new frame.
|
| + if (current_access_unit_pos_ < 0) {
|
| + StartFrame(next_aud_pos);
|
| + return;
|
| + }
|
| +
|
| + // Get the access unit timing info.
|
| + TimingDesc current_timing_desc;
|
| + while (!timing_desc_list_.empty() &&
|
| + timing_desc_list_.front().first <= current_access_unit_pos_) {
|
| + current_timing_desc = timing_desc_list_.front().second;
|
| + timing_desc_list_.pop_front();
|
| + }
|
| +
|
| + // Emit a frame.
|
| + int raw_es_size;
|
| + const uint8* raw_es;
|
| + es_byte_queue_.Peek(&raw_es, &raw_es_size);
|
| + int access_unit_size = next_aud_pos - current_access_unit_pos_;
|
| + scoped_refptr<StreamParserBuffer> stream_parser_buffer =
|
| + StreamParserBuffer::CopyFrom(
|
| + &raw_es[current_access_unit_pos_],
|
| + access_unit_size,
|
| + is_key_frame_);
|
| + stream_parser_buffer->SetDecodeTimestamp(current_timing_desc.dts);
|
| + stream_parser_buffer->set_timestamp(current_timing_desc.pts);
|
| + emit_buffer_cb_.Run(stream_parser_buffer);
|
| +
|
| + // Set the current frame position to the next AUD position.
|
| + StartFrame(next_aud_pos);
|
| +}
|
| +
|
| +void EsParserH264::StartFrame(int aud_pos) {
|
| + // Two cases:
|
| + // - if aud_pos < 0, clear the current frame and set |is_key_frame| to a
|
| + // default value (false).
|
| + // - if aud_pos >= 0, start a new frame and set |is_key_frame| to true
|
| + // |is_key_frame_| will be updated while parsing the NALs of that frame.
|
| + // If any NAL is a non IDR NAL, it will be set to false.
|
| + current_access_unit_pos_ = aud_pos;
|
| + is_key_frame_ = (aud_pos >= 0);
|
| +}
|
| +
|
| +void EsParserH264::DiscardEs(int nbytes) {
|
| + DCHECK_GE(nbytes, 0);
|
| + if (nbytes == 0)
|
| + return;
|
| +
|
| + // Update the position of
|
| + // - the parser,
|
| + // - the current NAL,
|
| + // - the current access unit.
|
| + es_pos_ -= nbytes;
|
| + if (es_pos_ < 0)
|
| + es_pos_ = 0;
|
| +
|
| + if (current_nal_pos_ >= 0) {
|
| + DCHECK_GE(current_nal_pos_, nbytes);
|
| + current_nal_pos_ -= nbytes;
|
| + }
|
| + if (current_access_unit_pos_ >= 0) {
|
| + DCHECK_GE(current_access_unit_pos_, nbytes);
|
| + current_access_unit_pos_ -= nbytes;
|
| + }
|
| +
|
| + // Update the timing information accordingly.
|
| + std::list<std::pair<int, TimingDesc> >::iterator timing_it
|
| + = timing_desc_list_.begin();
|
| + for (; timing_it != timing_desc_list_.end(); ++timing_it)
|
| + timing_it->first -= nbytes;
|
| +
|
| + // Discard |nbytes| of ES.
|
| + es_byte_queue_.Pop(nbytes);
|
| +}
|
| +
|
| +bool EsParserH264::NalParser(const uint8* buf, int size) {
|
| + // Get the NAL header.
|
| + if (size < 1) {
|
| + DVLOG(1) << "NalParser: incomplete NAL";
|
| + return false;
|
| + }
|
| + int nal_header = buf[0];
|
| + buf += 1;
|
| + size -= 1;
|
| +
|
| + int forbidden_zero_bit = (nal_header >> 7) & 0x1;
|
| + if (forbidden_zero_bit != 0)
|
| + return false;
|
| + int nal_ref_idc = (nal_header >> 5) & 0x3;
|
| + int nal_unit_type = nal_header & 0x1f;
|
| +
|
| + // Process the NAL content.
|
| + switch (nal_unit_type) {
|
| + case kNalUnitTypeSPS:
|
| + DVLOG(LOG_LEVEL_ES) << "NAL: SPS";
|
| + // |nal_ref_idc| should not be 0 for a SPS.
|
| + if (nal_ref_idc == 0)
|
| + return false;
|
| + return ProcessSPS(buf, size);
|
| + case kNalUnitTypeIdrSlice:
|
| + DVLOG(LOG_LEVEL_ES) << "NAL: IDR slice";
|
| + return true;
|
| + case kNalUnitTypeNonIdrSlice:
|
| + DVLOG(LOG_LEVEL_ES) << "NAL: Non IDR slice";
|
| + is_key_frame_ = false;
|
| + return true;
|
| + case kNalUnitTypePPS:
|
| + DVLOG(LOG_LEVEL_ES) << "NAL: PPS";
|
| + return true;
|
| + case kNalUnitTypeAUD:
|
| + DVLOG(LOG_LEVEL_ES) << "NAL: AUD";
|
| + return true;
|
| + default:
|
| + DVLOG(LOG_LEVEL_ES) << "NAL: " << nal_unit_type;
|
| + return true;
|
| + }
|
| +
|
| + NOTREACHED();
|
| + return false;
|
| +}
|
| +
|
| +bool EsParserH264::ProcessSPS(const uint8* buf, int size) {
|
| + if (size <= 0)
|
| + return false;
|
| +
|
| + // Removes start code emulation prevention.
|
| + // TODO(damienv): refactoring in media/base
|
| + // so as to have a unique H264 bit reader in Chrome.
|
| + scoped_ptr<uint8[]> buf_rbsp(new uint8[size]);
|
| + int rbsp_size = ConvertToRbsp(buf, size, buf_rbsp.get());
|
| +
|
| + BitReaderH264 bit_reader(buf_rbsp.get(), rbsp_size);
|
| +
|
| + int profile_idc;
|
| + int constraint_setX_flag;
|
| + int level_idc;
|
| + uint32 seq_parameter_set_id;
|
| + uint32 log2_max_frame_num_minus4;
|
| + uint32 pic_order_cnt_type;
|
| + RCHECK(bit_reader.ReadBits(8, &profile_idc));
|
| + RCHECK(bit_reader.ReadBits(8, &constraint_setX_flag));
|
| + RCHECK(bit_reader.ReadBits(8, &level_idc));
|
| + RCHECK(bit_reader.ReadBitsExpGolomb(&seq_parameter_set_id));
|
| + RCHECK(bit_reader.ReadBitsExpGolomb(&log2_max_frame_num_minus4));
|
| + RCHECK(bit_reader.ReadBitsExpGolomb(&pic_order_cnt_type));
|
| +
|
| + // |pic_order_cnt_type| shall be in the range of 0 to 2.
|
| + RCHECK(pic_order_cnt_type <= 2);
|
| + if (pic_order_cnt_type == 0) {
|
| + uint32 log2_max_pic_order_cnt_lsb_minus4;
|
| + RCHECK(bit_reader.ReadBitsExpGolomb(&log2_max_pic_order_cnt_lsb_minus4));
|
| + } else if (pic_order_cnt_type == 1) {
|
| + // Note: |offset_for_non_ref_pic| and |offset_for_top_to_bottom_field|
|
| + // corresponds to their codenum not to their actual value.
|
| + bool delta_pic_order_always_zero_flag;
|
| + uint32 offset_for_non_ref_pic;
|
| + uint32 offset_for_top_to_bottom_field;
|
| + uint32 num_ref_frames_in_pic_order_cnt_cycle;
|
| + RCHECK(bit_reader.ReadBits(1, &delta_pic_order_always_zero_flag));
|
| + RCHECK(bit_reader.ReadBitsExpGolomb(&offset_for_non_ref_pic));
|
| + RCHECK(bit_reader.ReadBitsExpGolomb(&offset_for_top_to_bottom_field));
|
| + RCHECK(
|
| + bit_reader.ReadBitsExpGolomb(&num_ref_frames_in_pic_order_cnt_cycle));
|
| + for (uint32 i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++) {
|
| + uint32 offset_for_ref_frame_codenum;
|
| + RCHECK(bit_reader.ReadBitsExpGolomb(&offset_for_ref_frame_codenum));
|
| + }
|
| + }
|
| +
|
| + uint32 num_ref_frames;
|
| + int gaps_in_frame_num_value_allowed_flag;
|
| + uint32 pic_width_in_mbs_minus1;
|
| + uint32 pic_height_in_map_units_minus1;
|
| + RCHECK(bit_reader.ReadBitsExpGolomb(&num_ref_frames));
|
| + RCHECK(bit_reader.ReadBits(1, &gaps_in_frame_num_value_allowed_flag));
|
| + RCHECK(bit_reader.ReadBitsExpGolomb(&pic_width_in_mbs_minus1));
|
| + RCHECK(bit_reader.ReadBitsExpGolomb(&pic_height_in_map_units_minus1));
|
| +
|
| + int frame_mbs_only_flag;
|
| + RCHECK(bit_reader.ReadBits(1, &frame_mbs_only_flag));
|
| + if (!frame_mbs_only_flag) {
|
| + int mb_adaptive_frame_field_flag;
|
| + RCHECK(bit_reader.ReadBits(1, &mb_adaptive_frame_field_flag));
|
| + }
|
| +
|
| + int direct_8x8_inference_flag;
|
| + RCHECK(bit_reader.ReadBits(1, &direct_8x8_inference_flag));
|
| +
|
| + bool frame_cropping_flag;
|
| + uint32 frame_crop_left_offset = 0;
|
| + uint32 frame_crop_right_offset = 0;
|
| + uint32 frame_crop_top_offset = 0;
|
| + uint32 frame_crop_bottom_offset = 0;
|
| + RCHECK(bit_reader.ReadBits(1, &frame_cropping_flag));
|
| + if (frame_cropping_flag) {
|
| + RCHECK(bit_reader.ReadBitsExpGolomb(&frame_crop_left_offset));
|
| + RCHECK(bit_reader.ReadBitsExpGolomb(&frame_crop_right_offset));
|
| + RCHECK(bit_reader.ReadBitsExpGolomb(&frame_crop_top_offset));
|
| + RCHECK(bit_reader.ReadBitsExpGolomb(&frame_crop_bottom_offset));
|
| + }
|
| +
|
| + bool vui_parameters_present_flag;
|
| + RCHECK(bit_reader.ReadBits(1, &vui_parameters_present_flag));
|
| + int sar_width = 1;
|
| + int sar_height = 1;
|
| + if (vui_parameters_present_flag) {
|
| + // Read only the aspect ratio information from the VUI section.
|
| + // TODO(damienv): check whether other VUI info are useful.
|
| + bool aspect_ratio_info_present_flag = false;
|
| + RCHECK(bit_reader.ReadBits(1, &aspect_ratio_info_present_flag));
|
| + if (aspect_ratio_info_present_flag) {
|
| + int aspect_ratio_idc;
|
| + RCHECK(bit_reader.ReadBits(8, &aspect_ratio_idc));
|
| + if (aspect_ratio_idc == kExtendedSar) {
|
| + RCHECK(bit_reader.ReadBits(16, &sar_width));
|
| + RCHECK(bit_reader.ReadBits(16, &sar_height));
|
| + } else if (aspect_ratio_idc < 14) {
|
| + sar_width = kTableSarWidth[aspect_ratio_idc];
|
| + sar_height = kTableSarHeight[aspect_ratio_idc];
|
| + }
|
| + }
|
| + }
|
| +
|
| + if (sar_width != sar_height) {
|
| + // TODO(damienv): Support non square pixels.
|
| + DVLOG(1)
|
| + << "Non square pixel not supported yet:"
|
| + << " sar_width=" << sar_width
|
| + << " sar_height=" << sar_height;
|
| + return false;
|
| + }
|
| +
|
| + // TODO(damienv): a MAP unit can be either 16 or 32 pixels.
|
| + // although it's 16 pixels for progressive non MBAFF frames.
|
| + gfx::Size coded_size((pic_width_in_mbs_minus1 + 1) * 16,
|
| + (pic_height_in_map_units_minus1 + 1) * 16);
|
| + gfx::Rect visible_rect(
|
| + frame_crop_left_offset,
|
| + frame_crop_top_offset,
|
| + (coded_size.width() - frame_crop_right_offset) - frame_crop_left_offset,
|
| + (coded_size.height() - frame_crop_bottom_offset) - frame_crop_top_offset);
|
| +
|
| + // TODO(damienv): calculate the natural size based
|
| + // on the possible aspect ratio coded in the VUI parameters.
|
| + gfx::Size natural_size(visible_rect.width(),
|
| + visible_rect.height());
|
| +
|
| + // TODO(damienv):
|
| + // Assuming the SPS is used right away by the PPS
|
| + // and the slice headers is a strong assumption.
|
| + // In theory, we should process the SPS and PPS
|
| + // and only when one of the slice header is switching
|
| + // the PPS id, the video decoder config should be changed.
|
| + VideoDecoderConfig video_decoder_config(
|
| + kCodecH264,
|
| + VIDEO_CODEC_PROFILE_UNKNOWN, // TODO(damienv)
|
| + VideoFrame::YV12,
|
| + coded_size,
|
| + visible_rect,
|
| + natural_size,
|
| + NULL, 0,
|
| + false);
|
| +
|
| + if (!video_decoder_config.Matches(last_video_decoder_config_)) {
|
| + DVLOG(1) << "Profile IDC: " << profile_idc;
|
| + DVLOG(1) << "Level IDC: " << level_idc;
|
| + DVLOG(1) << "Pic width: " << (pic_width_in_mbs_minus1 + 1) * 16;
|
| + DVLOG(1) << "Pic height: " << (pic_height_in_map_units_minus1 + 1) * 16;
|
| + DVLOG(1) << "log2_max_frame_num_minus4: " << log2_max_frame_num_minus4;
|
| + last_video_decoder_config_ = video_decoder_config;
|
| + new_video_config_cb_.Run(video_decoder_config);
|
| + }
|
| +
|
| + return true;
|
| +}
|
| +
|
| +} // namespace mp2t
|
| +} // namespace media
|
| +
|
|
|