OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright 2013 Google Inc. |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. |
| 6 */ |
| 7 |
| 8 #include "SkBitmap.h" |
| 9 #include "SkErrorInternals.h" |
| 10 #include "SkValidatingReadBuffer.h" |
| 11 #include "SkStream.h" |
| 12 #include "SkTypeface.h" |
| 13 |
| 14 SkValidatingReadBuffer::SkValidatingReadBuffer(const void* data, size_t size) { |
| 15 this->setMemory(data, size); |
| 16 fError = false; |
| 17 |
| 18 this->setFlags(SkFlattenableReadBuffer::kValidation_Flag); |
| 19 } |
| 20 |
| 21 SkValidatingReadBuffer::~SkValidatingReadBuffer() { |
| 22 } |
| 23 |
| 24 void SkValidatingReadBuffer::setMemory(const void* data, size_t size) { |
| 25 fError = fError || !IsPtrAlign4(data) || (SkAlign4(size) != size); |
| 26 if (!fError) { |
| 27 fReader.setMemory(data, size); |
| 28 } |
| 29 } |
| 30 |
| 31 const void* SkValidatingReadBuffer::skip(size_t size) { |
| 32 size_t inc = SkAlign4(size); |
| 33 const void* addr = fReader.peek(); |
| 34 fError = fError || !IsPtrAlign4(addr) || !fReader.isAvailable(inc); |
| 35 if (!fError) { |
| 36 fReader.skip(size); |
| 37 } |
| 38 return addr; |
| 39 } |
| 40 |
| 41 // All the methods in this file funnel down into either readInt(), readScalar()
or skip(), |
| 42 // followed by a memcpy. So we've got all our validation in readInt(), readScala
r() and skip(); |
| 43 // if they fail they'll return a zero value or skip nothing, respectively, and s
et fError to |
| 44 // true, which the caller should check to see if an error occurred during the re
ad operation. |
| 45 |
| 46 bool SkValidatingReadBuffer::readBool() { |
| 47 return this->readInt() != 0; |
| 48 } |
| 49 |
| 50 SkColor SkValidatingReadBuffer::readColor() { |
| 51 return this->readInt(); |
| 52 } |
| 53 |
| 54 SkFixed SkValidatingReadBuffer::readFixed() { |
| 55 return this->readInt(); |
| 56 } |
| 57 |
| 58 int32_t SkValidatingReadBuffer::readInt() { |
| 59 const size_t inc = sizeof(int32_t); |
| 60 fError = fError || !IsPtrAlign4(fReader.peek()) || !fReader.isAvailable(inc)
; |
| 61 return fError ? 0 : fReader.readInt(); |
| 62 } |
| 63 |
| 64 SkScalar SkValidatingReadBuffer::readScalar() { |
| 65 const size_t inc = sizeof(SkScalar); |
| 66 fError = fError || !IsPtrAlign4(fReader.peek()) || !fReader.isAvailable(inc)
; |
| 67 return fError ? 0 : fReader.readScalar(); |
| 68 } |
| 69 |
| 70 uint32_t SkValidatingReadBuffer::readUInt() { |
| 71 return this->readInt(); |
| 72 } |
| 73 |
| 74 int32_t SkValidatingReadBuffer::read32() { |
| 75 return this->readInt(); |
| 76 } |
| 77 |
| 78 void SkValidatingReadBuffer::readString(SkString* string) { |
| 79 const size_t len = this->readInt(); |
| 80 const void* ptr = fReader.peek(); |
| 81 const char* cptr = (const char*)ptr; |
| 82 |
| 83 // skip over the string + '\0' and then pad to a multiple of 4 |
| 84 const size_t alignedSize = SkAlign4(len + 1); |
| 85 this->skip(alignedSize); |
| 86 fError = fError || (cptr[len] != '\0'); |
| 87 if (!fError) { |
| 88 string->set(cptr, len); |
| 89 } |
| 90 } |
| 91 |
| 92 void* SkValidatingReadBuffer::readEncodedString(size_t* length, SkPaint::TextEnc
oding encoding) { |
| 93 const int32_t encodingType = fReader.readInt(); |
| 94 fError = fError || (encodingType != encoding); |
| 95 *length = this->readInt(); |
| 96 const void* ptr = this->skip(SkAlign4(*length)); |
| 97 void* data = NULL; |
| 98 if (!fError) { |
| 99 data = sk_malloc_throw(*length); |
| 100 memcpy(data, ptr, *length); |
| 101 } |
| 102 return data; |
| 103 } |
| 104 |
| 105 void SkValidatingReadBuffer::readPoint(SkPoint* point) { |
| 106 point->fX = fReader.readScalar(); |
| 107 point->fY = fReader.readScalar(); |
| 108 } |
| 109 |
| 110 void SkValidatingReadBuffer::readMatrix(SkMatrix* matrix) { |
| 111 const size_t size = matrix->readFromMemory(fReader.peek()); |
| 112 fError = fError || (SkAlign4(size) != size); |
| 113 if (!fError) { |
| 114 (void)this->skip(size); |
| 115 } |
| 116 } |
| 117 |
| 118 void SkValidatingReadBuffer::readIRect(SkIRect* rect) { |
| 119 const void* ptr = this->skip(sizeof(SkIRect)); |
| 120 if (!fError) { |
| 121 memcpy(rect, ptr, sizeof(SkIRect)); |
| 122 } |
| 123 } |
| 124 |
| 125 void SkValidatingReadBuffer::readRect(SkRect* rect) { |
| 126 const void* ptr = this->skip(sizeof(SkRect)); |
| 127 if (!fError) { |
| 128 memcpy(rect, ptr, sizeof(SkRect)); |
| 129 } |
| 130 } |
| 131 |
| 132 void SkValidatingReadBuffer::readRegion(SkRegion* region) { |
| 133 const size_t size = region->readFromMemory(fReader.peek()); |
| 134 fError = fError || (SkAlign4(size) != size); |
| 135 if (!fError) { |
| 136 (void)this->skip(size); |
| 137 } |
| 138 } |
| 139 |
| 140 void SkValidatingReadBuffer::readPath(SkPath* path) { |
| 141 const size_t size = path->readFromMemory(fReader.peek()); |
| 142 fError = fError || (SkAlign4(size) != size); |
| 143 if (!fError) { |
| 144 (void)this->skip(size); |
| 145 } |
| 146 } |
| 147 |
| 148 uint32_t SkValidatingReadBuffer::readByteArray(void* value) { |
| 149 const uint32_t length = this->readUInt(); |
| 150 const void* ptr = this->skip(SkAlign4(length)); |
| 151 if (!fError) { |
| 152 memcpy(value, ptr, length); |
| 153 return length; |
| 154 } |
| 155 return 0; |
| 156 } |
| 157 |
| 158 uint32_t SkValidatingReadBuffer::readColorArray(SkColor* colors) { |
| 159 const uint32_t count = this->readUInt(); |
| 160 const uint32_t byteLength = count * sizeof(SkColor); |
| 161 const void* ptr = this->skip(SkAlign4(byteLength)); |
| 162 if (!fError) { |
| 163 memcpy(colors, ptr, byteLength); |
| 164 return count; |
| 165 } |
| 166 return 0; |
| 167 } |
| 168 |
| 169 uint32_t SkValidatingReadBuffer::readIntArray(int32_t* values) { |
| 170 const uint32_t count = this->readUInt(); |
| 171 const uint32_t byteLength = count * sizeof(int32_t); |
| 172 const void* ptr = this->skip(SkAlign4(byteLength)); |
| 173 if (!fError) { |
| 174 memcpy(values, ptr, byteLength); |
| 175 return count; |
| 176 } |
| 177 return 0; |
| 178 } |
| 179 |
| 180 uint32_t SkValidatingReadBuffer::readPointArray(SkPoint* points) { |
| 181 const uint32_t count = this->readUInt(); |
| 182 const uint32_t byteLength = count * sizeof(SkPoint); |
| 183 const void* ptr = this->skip(SkAlign4(byteLength)); |
| 184 if (!fError) { |
| 185 memcpy(points, ptr, byteLength); |
| 186 return count; |
| 187 } |
| 188 return 0; |
| 189 } |
| 190 |
| 191 uint32_t SkValidatingReadBuffer::readScalarArray(SkScalar* values) { |
| 192 const uint32_t count = this->readUInt(); |
| 193 const uint32_t byteLength = count * sizeof(SkScalar); |
| 194 const void* ptr = this->skip(SkAlign4(byteLength)); |
| 195 if (!fError) { |
| 196 memcpy(values, ptr, byteLength); |
| 197 return count; |
| 198 } |
| 199 return 0; |
| 200 } |
| 201 |
| 202 uint32_t SkValidatingReadBuffer::getArrayCount() { |
| 203 return *(uint32_t*)fReader.peek(); |
| 204 } |
| 205 |
| 206 void SkValidatingReadBuffer::readBitmap(SkBitmap* bitmap) { |
| 207 const int width = this->readInt(); |
| 208 const int height = this->readInt(); |
| 209 const size_t length = this->readUInt(); |
| 210 // A size of zero means the SkBitmap was simply flattened. |
| 211 fError = fError || (length != 0); |
| 212 if (fError) { |
| 213 return; |
| 214 } |
| 215 bitmap->unflatten(*this); |
| 216 fError = fError || (bitmap->width() != width) || (bitmap->height() != height
); |
| 217 } |
| 218 |
| 219 SkFlattenable* SkValidatingReadBuffer::readFlattenable(SkFlattenable::Type type)
{ |
| 220 SkString name; |
| 221 this->readString(&name); |
| 222 if (fError) { |
| 223 return NULL; |
| 224 } |
| 225 |
| 226 // Is this the type we wanted ? |
| 227 const char* cname = name.c_str(); |
| 228 SkFlattenable::Type baseType; |
| 229 if (!SkFlattenable::NameToType(cname, &baseType) || (baseType != type)) { |
| 230 return NULL; |
| 231 } |
| 232 |
| 233 SkFlattenable::Factory factory = SkFlattenable::NameToFactory(cname); |
| 234 if (NULL == factory) { |
| 235 return NULL; // writer failed to give us the flattenable |
| 236 } |
| 237 |
| 238 // if we get here, factory may still be null, but if that is the case, the |
| 239 // failure was ours, not the writer. |
| 240 SkFlattenable* obj = NULL; |
| 241 uint32_t sizeRecorded = this->readUInt(); |
| 242 if (factory) { |
| 243 uint32_t offset = fReader.offset(); |
| 244 obj = (*factory)(*this); |
| 245 // check that we read the amount we expected |
| 246 uint32_t sizeRead = fReader.offset() - offset; |
| 247 fError = fError || (sizeRecorded != sizeRead); |
| 248 if (fError) { |
| 249 // we could try to fix up the offset... |
| 250 delete obj; |
| 251 obj = NULL; |
| 252 } |
| 253 } else { |
| 254 // we must skip the remaining data |
| 255 this->skip(sizeRecorded); |
| 256 SkASSERT(false); |
| 257 } |
| 258 return obj; |
| 259 } |
OLD | NEW |