OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright 2013 Google Inc. |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. |
| 6 */ |
| 7 |
| 8 #ifndef GrBezierEffect_DEFINED |
| 9 #define GrBezierEffect_DEFINED |
| 10 |
| 11 #include "GrEffect.h" |
| 12 #include "GrDrawTargetCaps.h" |
| 13 |
| 14 enum GrBezierEdgeType { |
| 15 kFillAA_GrBezierEdgeType, |
| 16 kHairAA_GrBezierEdgeType, |
| 17 kFillNoAA_GrBezierEdgeType, |
| 18 }; |
| 19 |
| 20 static inline bool GrBezierEdgeTypeIsFill(const GrBezierEdgeType edgeType) { |
| 21 return (kHairAA_GrBezierEdgeType != edgeType); |
| 22 } |
| 23 |
| 24 static inline bool GrBezierEdgeTypeIsAA(const GrBezierEdgeType edgeType) { |
| 25 return (kFillNoAA_GrBezierEdgeType != edgeType); |
| 26 } |
| 27 |
| 28 /** |
| 29 * Shader is based off of Loop-Blinn Quadratic GPU Rendering |
| 30 * The output of this effect is a hairline edge for conics. |
| 31 * Conics specified by implicit equation K^2 - LM. |
| 32 * K, L, and M, are the first three values of the vertex attribute, |
| 33 * the fourth value is not used. Distance is calculated using a |
| 34 * first order approximation from the taylor series. |
| 35 * Coverage for AA is max(0, 1-distance). |
| 36 * |
| 37 * Test were also run using a second order distance approximation. |
| 38 * There were two versions of the second order approx. The first version |
| 39 * is of roughly the form: |
| 40 * f(q) = |f(p)| - ||f'(p)||*||q-p|| - ||f''(p)||*||q-p||^2. |
| 41 * The second is similar: |
| 42 * f(q) = |f(p)| + ||f'(p)||*||q-p|| + ||f''(p)||*||q-p||^2. |
| 43 * The exact version of the equations can be found in the paper |
| 44 * "Distance Approximations for Rasterizing Implicit Curves" by Gabriel Taubin |
| 45 * |
| 46 * In both versions we solve the quadratic for ||q-p||. |
| 47 * Version 1: |
| 48 * gFM is magnitude of first partials and gFM2 is magnitude of 2nd partials (as
derived from paper) |
| 49 * builder->fsCodeAppend("\t\tedgeAlpha = (sqrt(gFM*gFM+4.0*func*gF2M) - gFM)/(2
.0*gF2M);\n"); |
| 50 * Version 2: |
| 51 * builder->fsCodeAppend("\t\tedgeAlpha = (gFM - sqrt(gFM*gFM-4.0*func*gF2M))/(2
.0*gF2M);\n"); |
| 52 * |
| 53 * Also note that 2nd partials of k,l,m are zero |
| 54 * |
| 55 * When comparing the two second order approximations to the first order approxi
mations, |
| 56 * the following results were found. Version 1 tends to underestimate the distan
ces, thus it |
| 57 * basically increases all the error that we were already seeing in the first or
der |
| 58 * approx. So this version is not the one to use. Version 2 has the opposite eff
ect |
| 59 * and tends to overestimate the distances. This is much closer to what we are |
| 60 * looking for. It is able to render ellipses (even thin ones) without the need
to chop. |
| 61 * However, it can not handle thin hyperbolas well and thus would still rely on |
| 62 * chopping to tighten the clipping. Another side effect of the overestimating i
s |
| 63 * that the curves become much thinner and "ropey". If all that was ever rendere
d |
| 64 * were "not too thin" curves and ellipses then 2nd order may have an advantage
since |
| 65 * only one geometry would need to be rendered. However no benches were run comp
aring |
| 66 * chopped first order and non chopped 2nd order. |
| 67 */ |
| 68 class GrGLConicEffect; |
| 69 |
| 70 class GrConicEffect : public GrEffect { |
| 71 public: |
| 72 static GrEffectRef* Create(const GrBezierEdgeType edgeType, const GrDrawTarg
etCaps& caps) { |
| 73 GR_CREATE_STATIC_EFFECT(gConicFillAA, GrConicEffect, (edgeType)); |
| 74 GR_CREATE_STATIC_EFFECT(gConicHairAA, GrConicEffect, (edgeType)); |
| 75 GR_CREATE_STATIC_EFFECT(gConicFillNoAA, GrConicEffect, (edgeType)); |
| 76 if (kFillAA_GrBezierEdgeType == edgeType) { |
| 77 if (!caps.shaderDerivativeSupport()) { |
| 78 return NULL; |
| 79 } |
| 80 gConicFillAA->ref(); |
| 81 return gConicFillAA; |
| 82 } else if (kHairAA_GrBezierEdgeType == edgeType) { |
| 83 if (!caps.shaderDerivativeSupport()) { |
| 84 return NULL; |
| 85 } |
| 86 gConicHairAA->ref(); |
| 87 return gConicHairAA; |
| 88 } else { |
| 89 gConicFillNoAA->ref(); |
| 90 return gConicFillNoAA; |
| 91 } |
| 92 } |
| 93 |
| 94 virtual ~GrConicEffect(); |
| 95 |
| 96 static const char* Name() { return "Conic"; } |
| 97 |
| 98 inline bool isAntiAliased() const { return GrBezierEdgeTypeIsAA(fEdgeType);
} |
| 99 inline bool isFilled() const { return GrBezierEdgeTypeIsFill(fEdgeType); } |
| 100 inline GrBezierEdgeType getEdgeType() const { return fEdgeType; } |
| 101 |
| 102 typedef GrGLConicEffect GLEffect; |
| 103 |
| 104 virtual void getConstantColorComponents(GrColor* color, |
| 105 uint32_t* validFlags) const SK_OVERR
IDE { |
| 106 *validFlags = 0; |
| 107 } |
| 108 |
| 109 virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE; |
| 110 |
| 111 private: |
| 112 GrConicEffect(GrBezierEdgeType); |
| 113 |
| 114 virtual bool onIsEqual(const GrEffect& other) const SK_OVERRIDE; |
| 115 |
| 116 GrBezierEdgeType fEdgeType; |
| 117 |
| 118 GR_DECLARE_EFFECT_TEST; |
| 119 |
| 120 typedef GrEffect INHERITED; |
| 121 }; |
| 122 |
| 123 /////////////////////////////////////////////////////////////////////////////// |
| 124 /** |
| 125 * The output of this effect is a hairline edge for quadratics. |
| 126 * Quadratic specified by 0=u^2-v canonical coords. u and v are the first |
| 127 * two components of the vertex attribute. At the three control points that defi
ne |
| 128 * the Quadratic, u, v have the values {0,0}, {1/2, 0}, and {1, 1} respectively. |
| 129 * Coverage for AA is min(0, 1-distance). 3rd & 4th cimponent unused. |
| 130 * Requires shader derivative instruction support. |
| 131 */ |
| 132 class GrGLQuadEffect; |
| 133 |
| 134 class GrQuadEffect : public GrEffect { |
| 135 public: |
| 136 static GrEffectRef* Create(const GrBezierEdgeType edgeType, const GrDrawTarg
etCaps& caps) { |
| 137 GR_CREATE_STATIC_EFFECT(gQuadFillAA, GrQuadEffect, (kFillAA_GrBezierEdge
Type)); |
| 138 GR_CREATE_STATIC_EFFECT(gQuadHairAA, GrQuadEffect, (kHairAA_GrBezierEdge
Type)); |
| 139 GR_CREATE_STATIC_EFFECT(gQuadFillNoAA, GrQuadEffect, (kFillNoAA_GrBezier
EdgeType)); |
| 140 if (kFillAA_GrBezierEdgeType == edgeType) { |
| 141 if (!caps.shaderDerivativeSupport()) { |
| 142 return NULL; |
| 143 } |
| 144 gQuadFillAA->ref(); |
| 145 return gQuadFillAA; |
| 146 } else if (kHairAA_GrBezierEdgeType == edgeType) { |
| 147 if (!caps.shaderDerivativeSupport()) { |
| 148 return NULL; |
| 149 } |
| 150 gQuadHairAA->ref(); |
| 151 return gQuadHairAA; |
| 152 } else { |
| 153 gQuadFillNoAA->ref(); |
| 154 return gQuadFillNoAA; |
| 155 } |
| 156 } |
| 157 |
| 158 virtual ~GrQuadEffect(); |
| 159 |
| 160 static const char* Name() { return "Quad"; } |
| 161 |
| 162 inline bool isAntiAliased() const { return GrBezierEdgeTypeIsAA(fEdgeType);
} |
| 163 inline bool isFilled() const { return GrBezierEdgeTypeIsFill(fEdgeType); } |
| 164 inline GrBezierEdgeType getEdgeType() const { return fEdgeType; } |
| 165 |
| 166 typedef GrGLQuadEffect GLEffect; |
| 167 |
| 168 virtual void getConstantColorComponents(GrColor* color, |
| 169 uint32_t* validFlags) const SK_OVERR
IDE { |
| 170 *validFlags = 0; |
| 171 } |
| 172 |
| 173 virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE; |
| 174 |
| 175 private: |
| 176 GrQuadEffect(GrBezierEdgeType); |
| 177 |
| 178 virtual bool onIsEqual(const GrEffect& other) const SK_OVERRIDE; |
| 179 |
| 180 GrBezierEdgeType fEdgeType; |
| 181 |
| 182 GR_DECLARE_EFFECT_TEST; |
| 183 |
| 184 typedef GrEffect INHERITED; |
| 185 }; |
| 186 |
| 187 ////////////////////////////////////////////////////////////////////////////// |
| 188 /** |
| 189 * Shader is based off of "Resolution Independent Curve Rendering using |
| 190 * Programmable Graphics Hardware" by Loop and Blinn. |
| 191 * The output of this effect is a hairline edge for non rational cubics. |
| 192 * Cubics are specified by implicit equation K^3 - LM. |
| 193 * K, L, and M, are the first three values of the vertex attribute, |
| 194 * the fourth value is not used. Distance is calculated using a |
| 195 * first order approximation from the taylor series. |
| 196 * Coverage for AA is max(0, 1-distance). |
| 197 */ |
| 198 class GrGLCubicEffect; |
| 199 |
| 200 class GrCubicEffect : public GrEffect { |
| 201 public: |
| 202 static GrEffectRef* Create(const GrBezierEdgeType edgeType, const GrDrawTarg
etCaps& caps) { |
| 203 GR_CREATE_STATIC_EFFECT(gCubicFillAA, GrCubicEffect, (kFillAA_GrBezierEd
geType)); |
| 204 GR_CREATE_STATIC_EFFECT(gCubicHairAA, GrCubicEffect, (kHairAA_GrBezierEd
geType)); |
| 205 GR_CREATE_STATIC_EFFECT(gCubicFillNoAA, GrCubicEffect, (kFillNoAA_GrBezi
erEdgeType)); |
| 206 if (kFillAA_GrBezierEdgeType == edgeType) { |
| 207 if (!caps.shaderDerivativeSupport()) { |
| 208 return NULL; |
| 209 } |
| 210 gCubicFillAA->ref(); |
| 211 return gCubicFillAA; |
| 212 } else if (kHairAA_GrBezierEdgeType == edgeType) { |
| 213 if (!caps.shaderDerivativeSupport()) { |
| 214 return NULL; |
| 215 } |
| 216 gCubicHairAA->ref(); |
| 217 return gCubicHairAA; |
| 218 } else { |
| 219 gCubicFillNoAA->ref(); |
| 220 return gCubicFillNoAA; |
| 221 } |
| 222 } |
| 223 |
| 224 virtual ~GrCubicEffect(); |
| 225 |
| 226 static const char* Name() { return "Cubic"; } |
| 227 |
| 228 inline bool isAntiAliased() const { return GrBezierEdgeTypeIsAA(fEdgeType);
} |
| 229 inline bool isFilled() const { return GrBezierEdgeTypeIsFill(fEdgeType); } |
| 230 inline GrBezierEdgeType getEdgeType() const { return fEdgeType; } |
| 231 |
| 232 typedef GrGLCubicEffect GLEffect; |
| 233 |
| 234 virtual void getConstantColorComponents(GrColor* color, |
| 235 uint32_t* validFlags) const SK_OVERR
IDE { |
| 236 *validFlags = 0; |
| 237 } |
| 238 |
| 239 virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE; |
| 240 |
| 241 private: |
| 242 GrCubicEffect(GrBezierEdgeType); |
| 243 |
| 244 virtual bool onIsEqual(const GrEffect& other) const SK_OVERRIDE; |
| 245 |
| 246 GrBezierEdgeType fEdgeType; |
| 247 |
| 248 GR_DECLARE_EFFECT_TEST; |
| 249 |
| 250 typedef GrEffect INHERITED; |
| 251 }; |
| 252 |
| 253 #endif |
OLD | NEW |