| Index: icu51/source/common/rbbi.cpp
|
| ===================================================================
|
| --- icu51/source/common/rbbi.cpp (revision 0)
|
| +++ icu51/source/common/rbbi.cpp (revision 0)
|
| @@ -0,0 +1,1941 @@
|
| +/*
|
| +***************************************************************************
|
| +* Copyright (C) 1999-2012 International Business Machines Corporation
|
| +* and others. All rights reserved.
|
| +***************************************************************************
|
| +*/
|
| +//
|
| +// file: rbbi.c Contains the implementation of the rule based break iterator
|
| +// runtime engine and the API implementation for
|
| +// class RuleBasedBreakIterator
|
| +//
|
| +
|
| +#include "utypeinfo.h" // for 'typeid' to work
|
| +
|
| +#include "unicode/utypes.h"
|
| +
|
| +#if !UCONFIG_NO_BREAK_ITERATION
|
| +
|
| +#include "unicode/rbbi.h"
|
| +#include "unicode/schriter.h"
|
| +#include "unicode/uchriter.h"
|
| +#include "unicode/udata.h"
|
| +#include "unicode/uclean.h"
|
| +#include "rbbidata.h"
|
| +#include "rbbirb.h"
|
| +#include "cmemory.h"
|
| +#include "cstring.h"
|
| +#include "umutex.h"
|
| +#include "ucln_cmn.h"
|
| +#include "brkeng.h"
|
| +
|
| +#include "uassert.h"
|
| +#include "uvector.h"
|
| +
|
| +// if U_LOCAL_SERVICE_HOOK is defined, then localsvc.cpp is expected to be included.
|
| +#if U_LOCAL_SERVICE_HOOK
|
| +#include "localsvc.h"
|
| +#endif
|
| +
|
| +#ifdef RBBI_DEBUG
|
| +static UBool fTrace = FALSE;
|
| +#endif
|
| +
|
| +U_NAMESPACE_BEGIN
|
| +
|
| +// The state number of the starting state
|
| +#define START_STATE 1
|
| +
|
| +// The state-transition value indicating "stop"
|
| +#define STOP_STATE 0
|
| +
|
| +
|
| +UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator)
|
| +
|
| +
|
| +//=======================================================================
|
| +// constructors
|
| +//=======================================================================
|
| +
|
| +/**
|
| + * Constructs a RuleBasedBreakIterator that uses the already-created
|
| + * tables object that is passed in as a parameter.
|
| + */
|
| +RuleBasedBreakIterator::RuleBasedBreakIterator(RBBIDataHeader* data, UErrorCode &status)
|
| +{
|
| + init();
|
| + fData = new RBBIDataWrapper(data, status); // status checked in constructor
|
| + if (U_FAILURE(status)) {return;}
|
| + if(fData == 0) {
|
| + status = U_MEMORY_ALLOCATION_ERROR;
|
| + return;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Same as above but does not adopt memory
|
| + */
|
| +RuleBasedBreakIterator::RuleBasedBreakIterator(const RBBIDataHeader* data, enum EDontAdopt, UErrorCode &status)
|
| +{
|
| + init();
|
| + fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status); // status checked in constructor
|
| + if (U_FAILURE(status)) {return;}
|
| + if(fData == 0) {
|
| + status = U_MEMORY_ALLOCATION_ERROR;
|
| + return;
|
| + }
|
| +}
|
| +
|
| +
|
| +//
|
| +// Construct from precompiled binary rules (tables). This constructor is public API,
|
| +// taking the rules as a (const uint8_t *) to match the type produced by getBinaryRules().
|
| +//
|
| +RuleBasedBreakIterator::RuleBasedBreakIterator(const uint8_t *compiledRules,
|
| + uint32_t ruleLength,
|
| + UErrorCode &status) {
|
| + init();
|
| + if (U_FAILURE(status)) {
|
| + return;
|
| + }
|
| + if (compiledRules == NULL || ruleLength < sizeof(RBBIDataHeader)) {
|
| + status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + return;
|
| + }
|
| + const RBBIDataHeader *data = (const RBBIDataHeader *)compiledRules;
|
| + if (data->fLength > ruleLength) {
|
| + status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + return;
|
| + }
|
| + fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status);
|
| + if (U_FAILURE(status)) {return;}
|
| + if(fData == 0) {
|
| + status = U_MEMORY_ALLOCATION_ERROR;
|
| + return;
|
| + }
|
| +}
|
| +
|
| +
|
| +//-------------------------------------------------------------------------------
|
| +//
|
| +// Constructor from a UDataMemory handle to precompiled break rules
|
| +// stored in an ICU data file.
|
| +//
|
| +//-------------------------------------------------------------------------------
|
| +RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* udm, UErrorCode &status)
|
| +{
|
| + init();
|
| + fData = new RBBIDataWrapper(udm, status); // status checked in constructor
|
| + if (U_FAILURE(status)) {return;}
|
| + if(fData == 0) {
|
| + status = U_MEMORY_ALLOCATION_ERROR;
|
| + return;
|
| + }
|
| +}
|
| +
|
| +
|
| +
|
| +//-------------------------------------------------------------------------------
|
| +//
|
| +// Constructor from a set of rules supplied as a string.
|
| +//
|
| +//-------------------------------------------------------------------------------
|
| +RuleBasedBreakIterator::RuleBasedBreakIterator( const UnicodeString &rules,
|
| + UParseError &parseError,
|
| + UErrorCode &status)
|
| +{
|
| + init();
|
| + if (U_FAILURE(status)) {return;}
|
| + RuleBasedBreakIterator *bi = (RuleBasedBreakIterator *)
|
| + RBBIRuleBuilder::createRuleBasedBreakIterator(rules, &parseError, status);
|
| + // Note: This is a bit awkward. The RBBI ruleBuilder has a factory method that
|
| + // creates and returns a complete RBBI. From here, in a constructor, we
|
| + // can't just return the object created by the builder factory, hence
|
| + // the assignment of the factory created object to "this".
|
| + if (U_SUCCESS(status)) {
|
| + *this = *bi;
|
| + delete bi;
|
| + }
|
| +}
|
| +
|
| +
|
| +//-------------------------------------------------------------------------------
|
| +//
|
| +// Default Constructor. Create an empty shell that can be set up later.
|
| +// Used when creating a RuleBasedBreakIterator from a set
|
| +// of rules.
|
| +//-------------------------------------------------------------------------------
|
| +RuleBasedBreakIterator::RuleBasedBreakIterator() {
|
| + init();
|
| +}
|
| +
|
| +
|
| +//-------------------------------------------------------------------------------
|
| +//
|
| +// Copy constructor. Will produce a break iterator with the same behavior,
|
| +// and which iterates over the same text, as the one passed in.
|
| +//
|
| +//-------------------------------------------------------------------------------
|
| +RuleBasedBreakIterator::RuleBasedBreakIterator(const RuleBasedBreakIterator& other)
|
| +: BreakIterator(other)
|
| +{
|
| + this->init();
|
| + *this = other;
|
| +}
|
| +
|
| +
|
| +/**
|
| + * Destructor
|
| + */
|
| +RuleBasedBreakIterator::~RuleBasedBreakIterator() {
|
| + if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
|
| + // fCharIter was adopted from the outside.
|
| + delete fCharIter;
|
| + }
|
| + fCharIter = NULL;
|
| + delete fSCharIter;
|
| + fCharIter = NULL;
|
| + delete fDCharIter;
|
| + fDCharIter = NULL;
|
| +
|
| + utext_close(fText);
|
| +
|
| + if (fData != NULL) {
|
| + fData->removeReference();
|
| + fData = NULL;
|
| + }
|
| + if (fCachedBreakPositions) {
|
| + uprv_free(fCachedBreakPositions);
|
| + fCachedBreakPositions = NULL;
|
| + }
|
| + if (fLanguageBreakEngines) {
|
| + delete fLanguageBreakEngines;
|
| + fLanguageBreakEngines = NULL;
|
| + }
|
| + if (fUnhandledBreakEngine) {
|
| + delete fUnhandledBreakEngine;
|
| + fUnhandledBreakEngine = NULL;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Assignment operator. Sets this iterator to have the same behavior,
|
| + * and iterate over the same text, as the one passed in.
|
| + */
|
| +RuleBasedBreakIterator&
|
| +RuleBasedBreakIterator::operator=(const RuleBasedBreakIterator& that) {
|
| + if (this == &that) {
|
| + return *this;
|
| + }
|
| + reset(); // Delete break cache information
|
| + fBreakType = that.fBreakType;
|
| + if (fLanguageBreakEngines != NULL) {
|
| + delete fLanguageBreakEngines;
|
| + fLanguageBreakEngines = NULL; // Just rebuild for now
|
| + }
|
| + // TODO: clone fLanguageBreakEngines from "that"
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + fText = utext_clone(fText, that.fText, FALSE, TRUE, &status);
|
| +
|
| + if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
|
| + delete fCharIter;
|
| + }
|
| + fCharIter = NULL;
|
| +
|
| + if (that.fCharIter != NULL ) {
|
| + // This is a little bit tricky - it will intially appear that
|
| + // this->fCharIter is adopted, even if that->fCharIter was
|
| + // not adopted. That's ok.
|
| + fCharIter = that.fCharIter->clone();
|
| + }
|
| +
|
| + if (fData != NULL) {
|
| + fData->removeReference();
|
| + fData = NULL;
|
| + }
|
| + if (that.fData != NULL) {
|
| + fData = that.fData->addReference();
|
| + }
|
| +
|
| + return *this;
|
| +}
|
| +
|
| +
|
| +
|
| +//-----------------------------------------------------------------------------
|
| +//
|
| +// init() Shared initialization routine. Used by all the constructors.
|
| +// Initializes all fields, leaving the object in a consistent state.
|
| +//
|
| +//-----------------------------------------------------------------------------
|
| +void RuleBasedBreakIterator::init() {
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + fBufferClone = FALSE;
|
| + fText = utext_openUChars(NULL, NULL, 0, &status);
|
| + fCharIter = NULL;
|
| + fSCharIter = NULL;
|
| + fDCharIter = NULL;
|
| + fData = NULL;
|
| + fLastRuleStatusIndex = 0;
|
| + fLastStatusIndexValid = TRUE;
|
| + fDictionaryCharCount = 0;
|
| + fBreakType = UBRK_WORD; // Defaulting BreakType to word gives reasonable
|
| + // dictionary behavior for Break Iterators that are
|
| + // built from rules. Even better would be the ability to
|
| + // declare the type in the rules.
|
| +
|
| + fCachedBreakPositions = NULL;
|
| + fLanguageBreakEngines = NULL;
|
| + fUnhandledBreakEngine = NULL;
|
| + fNumCachedBreakPositions = 0;
|
| + fPositionInCache = 0;
|
| +
|
| +#ifdef RBBI_DEBUG
|
| + static UBool debugInitDone = FALSE;
|
| + if (debugInitDone == FALSE) {
|
| + char *debugEnv = getenv("U_RBBIDEBUG");
|
| + if (debugEnv && uprv_strstr(debugEnv, "trace")) {
|
| + fTrace = TRUE;
|
| + }
|
| + debugInitDone = TRUE;
|
| + }
|
| +#endif
|
| +}
|
| +
|
| +
|
| +
|
| +//-----------------------------------------------------------------------------
|
| +//
|
| +// clone - Returns a newly-constructed RuleBasedBreakIterator with the same
|
| +// behavior, and iterating over the same text, as this one.
|
| +// Virtual function: does the right thing with subclasses.
|
| +//
|
| +//-----------------------------------------------------------------------------
|
| +BreakIterator*
|
| +RuleBasedBreakIterator::clone(void) const {
|
| + return new RuleBasedBreakIterator(*this);
|
| +}
|
| +
|
| +/**
|
| + * Equality operator. Returns TRUE if both BreakIterators are of the
|
| + * same class, have the same behavior, and iterate over the same text.
|
| + */
|
| +UBool
|
| +RuleBasedBreakIterator::operator==(const BreakIterator& that) const {
|
| + if (typeid(*this) != typeid(that)) {
|
| + return FALSE;
|
| + }
|
| +
|
| + const RuleBasedBreakIterator& that2 = (const RuleBasedBreakIterator&) that;
|
| +
|
| + if (!utext_equals(fText, that2.fText)) {
|
| + // The two break iterators are operating on different text,
|
| + // or have a different interation position.
|
| + return FALSE;
|
| + };
|
| +
|
| + // TODO: need a check for when in a dictionary region at different offsets.
|
| +
|
| + if (that2.fData == fData ||
|
| + (fData != NULL && that2.fData != NULL && *that2.fData == *fData)) {
|
| + // The two break iterators are using the same rules.
|
| + return TRUE;
|
| + }
|
| + return FALSE;
|
| +}
|
| +
|
| +/**
|
| + * Compute a hash code for this BreakIterator
|
| + * @return A hash code
|
| + */
|
| +int32_t
|
| +RuleBasedBreakIterator::hashCode(void) const {
|
| + int32_t hash = 0;
|
| + if (fData != NULL) {
|
| + hash = fData->hashCode();
|
| + }
|
| + return hash;
|
| +}
|
| +
|
| +
|
| +void RuleBasedBreakIterator::setText(UText *ut, UErrorCode &status) {
|
| + if (U_FAILURE(status)) {
|
| + return;
|
| + }
|
| + reset();
|
| + fText = utext_clone(fText, ut, FALSE, TRUE, &status);
|
| +
|
| + // Set up a dummy CharacterIterator to be returned if anyone
|
| + // calls getText(). With input from UText, there is no reasonable
|
| + // way to return a characterIterator over the actual input text.
|
| + // Return one over an empty string instead - this is the closest
|
| + // we can come to signaling a failure.
|
| + // (GetText() is obsolete, this failure is sort of OK)
|
| + if (fDCharIter == NULL) {
|
| + static const UChar c = 0;
|
| + fDCharIter = new UCharCharacterIterator(&c, 0);
|
| + if (fDCharIter == NULL) {
|
| + status = U_MEMORY_ALLOCATION_ERROR;
|
| + return;
|
| + }
|
| + }
|
| +
|
| + if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
|
| + // existing fCharIter was adopted from the outside. Delete it now.
|
| + delete fCharIter;
|
| + }
|
| + fCharIter = fDCharIter;
|
| +
|
| + this->first();
|
| +}
|
| +
|
| +
|
| +UText *RuleBasedBreakIterator::getUText(UText *fillIn, UErrorCode &status) const {
|
| + UText *result = utext_clone(fillIn, fText, FALSE, TRUE, &status);
|
| + return result;
|
| +}
|
| +
|
| +
|
| +
|
| +/**
|
| + * Returns the description used to create this iterator
|
| + */
|
| +const UnicodeString&
|
| +RuleBasedBreakIterator::getRules() const {
|
| + if (fData != NULL) {
|
| + return fData->getRuleSourceString();
|
| + } else {
|
| + static const UnicodeString *s;
|
| + if (s == NULL) {
|
| + // TODO: something more elegant here.
|
| + // perhaps API should return the string by value.
|
| + // Note: thread unsafe init & leak are semi-ok, better than
|
| + // what was before. Sould be cleaned up, though.
|
| + s = new UnicodeString;
|
| + }
|
| + return *s;
|
| + }
|
| +}
|
| +
|
| +//=======================================================================
|
| +// BreakIterator overrides
|
| +//=======================================================================
|
| +
|
| +/**
|
| + * Return a CharacterIterator over the text being analyzed.
|
| + */
|
| +CharacterIterator&
|
| +RuleBasedBreakIterator::getText() const {
|
| + return *fCharIter;
|
| +}
|
| +
|
| +/**
|
| + * Set the iterator to analyze a new piece of text. This function resets
|
| + * the current iteration position to the beginning of the text.
|
| + * @param newText An iterator over the text to analyze.
|
| + */
|
| +void
|
| +RuleBasedBreakIterator::adoptText(CharacterIterator* newText) {
|
| + // If we are holding a CharacterIterator adopted from a
|
| + // previous call to this function, delete it now.
|
| + if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
|
| + delete fCharIter;
|
| + }
|
| +
|
| + fCharIter = newText;
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + reset();
|
| + if (newText==NULL || newText->startIndex() != 0) {
|
| + // startIndex !=0 wants to be an error, but there's no way to report it.
|
| + // Make the iterator text be an empty string.
|
| + fText = utext_openUChars(fText, NULL, 0, &status);
|
| + } else {
|
| + fText = utext_openCharacterIterator(fText, newText, &status);
|
| + }
|
| + this->first();
|
| +}
|
| +
|
| +/**
|
| + * Set the iterator to analyze a new piece of text. This function resets
|
| + * the current iteration position to the beginning of the text.
|
| + * @param newText An iterator over the text to analyze.
|
| + */
|
| +void
|
| +RuleBasedBreakIterator::setText(const UnicodeString& newText) {
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + reset();
|
| + fText = utext_openConstUnicodeString(fText, &newText, &status);
|
| +
|
| + // Set up a character iterator on the string.
|
| + // Needed in case someone calls getText().
|
| + // Can not, unfortunately, do this lazily on the (probably never)
|
| + // call to getText(), because getText is const.
|
| + if (fSCharIter == NULL) {
|
| + fSCharIter = new StringCharacterIterator(newText);
|
| + } else {
|
| + fSCharIter->setText(newText);
|
| + }
|
| +
|
| + if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
|
| + // old fCharIter was adopted from the outside. Delete it.
|
| + delete fCharIter;
|
| + }
|
| + fCharIter = fSCharIter;
|
| +
|
| + this->first();
|
| +}
|
| +
|
| +
|
| +/**
|
| + * Provide a new UText for the input text. Must reference text with contents identical
|
| + * to the original.
|
| + * Intended for use with text data originating in Java (garbage collected) environments
|
| + * where the data may be moved in memory at arbitrary times.
|
| + */
|
| +RuleBasedBreakIterator &RuleBasedBreakIterator::refreshInputText(UText *input, UErrorCode &status) {
|
| + if (U_FAILURE(status)) {
|
| + return *this;
|
| + }
|
| + if (input == NULL) {
|
| + status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + return *this;
|
| + }
|
| + int64_t pos = utext_getNativeIndex(fText);
|
| + // Shallow read-only clone of the new UText into the existing input UText
|
| + fText = utext_clone(fText, input, FALSE, TRUE, &status);
|
| + if (U_FAILURE(status)) {
|
| + return *this;
|
| + }
|
| + utext_setNativeIndex(fText, pos);
|
| + if (utext_getNativeIndex(fText) != pos) {
|
| + // Sanity check. The new input utext is supposed to have the exact same
|
| + // contents as the old. If we can't set to the same position, it doesn't.
|
| + // The contents underlying the old utext might be invalid at this point,
|
| + // so it's not safe to check directly.
|
| + status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + }
|
| + return *this;
|
| +}
|
| +
|
| +
|
| +/**
|
| + * Sets the current iteration position to the beginning of the text.
|
| + * @return The offset of the beginning of the text.
|
| + */
|
| +int32_t RuleBasedBreakIterator::first(void) {
|
| + reset();
|
| + fLastRuleStatusIndex = 0;
|
| + fLastStatusIndexValid = TRUE;
|
| + //if (fText == NULL)
|
| + // return BreakIterator::DONE;
|
| +
|
| + utext_setNativeIndex(fText, 0);
|
| + return 0;
|
| +}
|
| +
|
| +/**
|
| + * Sets the current iteration position to the end of the text.
|
| + * @return The text's past-the-end offset.
|
| + */
|
| +int32_t RuleBasedBreakIterator::last(void) {
|
| + reset();
|
| + if (fText == NULL) {
|
| + fLastRuleStatusIndex = 0;
|
| + fLastStatusIndexValid = TRUE;
|
| + return BreakIterator::DONE;
|
| + }
|
| +
|
| + fLastStatusIndexValid = FALSE;
|
| + int32_t pos = (int32_t)utext_nativeLength(fText);
|
| + utext_setNativeIndex(fText, pos);
|
| + return pos;
|
| +}
|
| +
|
| +/**
|
| + * Advances the iterator either forward or backward the specified number of steps.
|
| + * Negative values move backward, and positive values move forward. This is
|
| + * equivalent to repeatedly calling next() or previous().
|
| + * @param n The number of steps to move. The sign indicates the direction
|
| + * (negative is backwards, and positive is forwards).
|
| + * @return The character offset of the boundary position n boundaries away from
|
| + * the current one.
|
| + */
|
| +int32_t RuleBasedBreakIterator::next(int32_t n) {
|
| + int32_t result = current();
|
| + while (n > 0) {
|
| + result = next();
|
| + --n;
|
| + }
|
| + while (n < 0) {
|
| + result = previous();
|
| + ++n;
|
| + }
|
| + return result;
|
| +}
|
| +
|
| +/**
|
| + * Advances the iterator to the next boundary position.
|
| + * @return The position of the first boundary after this one.
|
| + */
|
| +int32_t RuleBasedBreakIterator::next(void) {
|
| + // if we have cached break positions and we're still in the range
|
| + // covered by them, just move one step forward in the cache
|
| + if (fCachedBreakPositions != NULL) {
|
| + if (fPositionInCache < fNumCachedBreakPositions - 1) {
|
| + ++fPositionInCache;
|
| + int32_t pos = fCachedBreakPositions[fPositionInCache];
|
| + utext_setNativeIndex(fText, pos);
|
| + return pos;
|
| + }
|
| + else {
|
| + reset();
|
| + }
|
| + }
|
| +
|
| + int32_t startPos = current();
|
| + int32_t result = handleNext(fData->fForwardTable);
|
| + if (fDictionaryCharCount > 0) {
|
| + result = checkDictionary(startPos, result, FALSE);
|
| + }
|
| + return result;
|
| +}
|
| +
|
| +/**
|
| + * Advances the iterator backwards, to the last boundary preceding this one.
|
| + * @return The position of the last boundary position preceding this one.
|
| + */
|
| +int32_t RuleBasedBreakIterator::previous(void) {
|
| + int32_t result;
|
| + int32_t startPos;
|
| +
|
| + // if we have cached break positions and we're still in the range
|
| + // covered by them, just move one step backward in the cache
|
| + if (fCachedBreakPositions != NULL) {
|
| + if (fPositionInCache > 0) {
|
| + --fPositionInCache;
|
| + // If we're at the beginning of the cache, need to reevaluate the
|
| + // rule status
|
| + if (fPositionInCache <= 0) {
|
| + fLastStatusIndexValid = FALSE;
|
| + }
|
| + int32_t pos = fCachedBreakPositions[fPositionInCache];
|
| + utext_setNativeIndex(fText, pos);
|
| + return pos;
|
| + }
|
| + else {
|
| + reset();
|
| + }
|
| + }
|
| +
|
| + // if we're already sitting at the beginning of the text, return DONE
|
| + if (fText == NULL || (startPos = current()) == 0) {
|
| + fLastRuleStatusIndex = 0;
|
| + fLastStatusIndexValid = TRUE;
|
| + return BreakIterator::DONE;
|
| + }
|
| +
|
| + if (fData->fSafeRevTable != NULL || fData->fSafeFwdTable != NULL) {
|
| + result = handlePrevious(fData->fReverseTable);
|
| + if (fDictionaryCharCount > 0) {
|
| + result = checkDictionary(result, startPos, TRUE);
|
| + }
|
| + return result;
|
| + }
|
| +
|
| + // old rule syntax
|
| + // set things up. handlePrevious() will back us up to some valid
|
| + // break position before the current position (we back our internal
|
| + // iterator up one step to prevent handlePrevious() from returning
|
| + // the current position), but not necessarily the last one before
|
| +
|
| + // where we started
|
| +
|
| + int32_t start = current();
|
| +
|
| + (void)UTEXT_PREVIOUS32(fText);
|
| + int32_t lastResult = handlePrevious(fData->fReverseTable);
|
| + if (lastResult == UBRK_DONE) {
|
| + lastResult = 0;
|
| + utext_setNativeIndex(fText, 0);
|
| + }
|
| + result = lastResult;
|
| + int32_t lastTag = 0;
|
| + UBool breakTagValid = FALSE;
|
| +
|
| + // iterate forward from the known break position until we pass our
|
| + // starting point. The last break position before the starting
|
| + // point is our return value
|
| +
|
| + for (;;) {
|
| + result = next();
|
| + if (result == BreakIterator::DONE || result >= start) {
|
| + break;
|
| + }
|
| + lastResult = result;
|
| + lastTag = fLastRuleStatusIndex;
|
| + breakTagValid = TRUE;
|
| + }
|
| +
|
| + // fLastBreakTag wants to have the value for section of text preceding
|
| + // the result position that we are to return (in lastResult.) If
|
| + // the backwards rules overshot and the above loop had to do two or more
|
| + // next()s to move up to the desired return position, we will have a valid
|
| + // tag value. But, if handlePrevious() took us to exactly the correct result positon,
|
| + // we wont have a tag value for that position, which is only set by handleNext().
|
| +
|
| + // set the current iteration position to be the last break position
|
| + // before where we started, and then return that value
|
| + utext_setNativeIndex(fText, lastResult);
|
| + fLastRuleStatusIndex = lastTag; // for use by getRuleStatus()
|
| + fLastStatusIndexValid = breakTagValid;
|
| +
|
| + // No need to check the dictionary; it will have been handled by
|
| + // next()
|
| +
|
| + return lastResult;
|
| +}
|
| +
|
| +/**
|
| + * Sets the iterator to refer to the first boundary position following
|
| + * the specified position.
|
| + * @offset The position from which to begin searching for a break position.
|
| + * @return The position of the first break after the current position.
|
| + */
|
| +int32_t RuleBasedBreakIterator::following(int32_t offset) {
|
| + // if we have cached break positions and offset is in the range
|
| + // covered by them, use them
|
| + // TODO: could use binary search
|
| + // TODO: what if offset is outside range, but break is not?
|
| + if (fCachedBreakPositions != NULL) {
|
| + if (offset >= fCachedBreakPositions[0]
|
| + && offset < fCachedBreakPositions[fNumCachedBreakPositions - 1]) {
|
| + fPositionInCache = 0;
|
| + // We are guaranteed not to leave the array due to range test above
|
| + while (offset >= fCachedBreakPositions[fPositionInCache]) {
|
| + ++fPositionInCache;
|
| + }
|
| + int32_t pos = fCachedBreakPositions[fPositionInCache];
|
| + utext_setNativeIndex(fText, pos);
|
| + return pos;
|
| + }
|
| + else {
|
| + reset();
|
| + }
|
| + }
|
| +
|
| + // if the offset passed in is already past the end of the text,
|
| + // just return DONE; if it's before the beginning, return the
|
| + // text's starting offset
|
| + fLastRuleStatusIndex = 0;
|
| + fLastStatusIndexValid = TRUE;
|
| + if (fText == NULL || offset >= utext_nativeLength(fText)) {
|
| + last();
|
| + return next();
|
| + }
|
| + else if (offset < 0) {
|
| + return first();
|
| + }
|
| +
|
| + // otherwise, set our internal iteration position (temporarily)
|
| + // to the position passed in. If this is the _beginning_ position,
|
| + // then we can just use next() to get our return value
|
| +
|
| + int32_t result = 0;
|
| +
|
| + if (fData->fSafeRevTable != NULL) {
|
| + // new rule syntax
|
| + utext_setNativeIndex(fText, offset);
|
| + // move forward one codepoint to prepare for moving back to a
|
| + // safe point.
|
| + // this handles offset being between a supplementary character
|
| + (void)UTEXT_NEXT32(fText);
|
| + // handlePrevious will move most of the time to < 1 boundary away
|
| + handlePrevious(fData->fSafeRevTable);
|
| + int32_t result = next();
|
| + while (result <= offset) {
|
| + result = next();
|
| + }
|
| + return result;
|
| + }
|
| + if (fData->fSafeFwdTable != NULL) {
|
| + // backup plan if forward safe table is not available
|
| + utext_setNativeIndex(fText, offset);
|
| + (void)UTEXT_PREVIOUS32(fText);
|
| + // handle next will give result >= offset
|
| + handleNext(fData->fSafeFwdTable);
|
| + // previous will give result 0 or 1 boundary away from offset,
|
| + // most of the time
|
| + // we have to
|
| + int32_t oldresult = previous();
|
| + while (oldresult > offset) {
|
| + int32_t result = previous();
|
| + if (result <= offset) {
|
| + return oldresult;
|
| + }
|
| + oldresult = result;
|
| + }
|
| + int32_t result = next();
|
| + if (result <= offset) {
|
| + return next();
|
| + }
|
| + return result;
|
| + }
|
| + // otherwise, we have to sync up first. Use handlePrevious() to back
|
| + // up to a known break position before the specified position (if
|
| + // we can determine that the specified position is a break position,
|
| + // we don't back up at all). This may or may not be the last break
|
| + // position at or before our starting position. Advance forward
|
| + // from here until we've passed the starting position. The position
|
| + // we stop on will be the first break position after the specified one.
|
| + // old rule syntax
|
| +
|
| + utext_setNativeIndex(fText, offset);
|
| + if (offset==0 ||
|
| + (offset==1 && utext_getNativeIndex(fText)==0)) {
|
| + return next();
|
| + }
|
| + result = previous();
|
| +
|
| + while (result != BreakIterator::DONE && result <= offset) {
|
| + result = next();
|
| + }
|
| +
|
| + return result;
|
| +}
|
| +
|
| +/**
|
| + * Sets the iterator to refer to the last boundary position before the
|
| + * specified position.
|
| + * @offset The position to begin searching for a break from.
|
| + * @return The position of the last boundary before the starting position.
|
| + */
|
| +int32_t RuleBasedBreakIterator::preceding(int32_t offset) {
|
| + // if we have cached break positions and offset is in the range
|
| + // covered by them, use them
|
| + if (fCachedBreakPositions != NULL) {
|
| + // TODO: binary search?
|
| + // TODO: What if offset is outside range, but break is not?
|
| + if (offset > fCachedBreakPositions[0]
|
| + && offset <= fCachedBreakPositions[fNumCachedBreakPositions - 1]) {
|
| + fPositionInCache = 0;
|
| + while (fPositionInCache < fNumCachedBreakPositions
|
| + && offset > fCachedBreakPositions[fPositionInCache])
|
| + ++fPositionInCache;
|
| + --fPositionInCache;
|
| + // If we're at the beginning of the cache, need to reevaluate the
|
| + // rule status
|
| + if (fPositionInCache <= 0) {
|
| + fLastStatusIndexValid = FALSE;
|
| + }
|
| + utext_setNativeIndex(fText, fCachedBreakPositions[fPositionInCache]);
|
| + return fCachedBreakPositions[fPositionInCache];
|
| + }
|
| + else {
|
| + reset();
|
| + }
|
| + }
|
| +
|
| + // if the offset passed in is already past the end of the text,
|
| + // just return DONE; if it's before the beginning, return the
|
| + // text's starting offset
|
| + if (fText == NULL || offset > utext_nativeLength(fText)) {
|
| + // return BreakIterator::DONE;
|
| + return last();
|
| + }
|
| + else if (offset < 0) {
|
| + return first();
|
| + }
|
| +
|
| + // if we start by updating the current iteration position to the
|
| + // position specified by the caller, we can just use previous()
|
| + // to carry out this operation
|
| +
|
| + if (fData->fSafeFwdTable != NULL) {
|
| + // new rule syntax
|
| + utext_setNativeIndex(fText, offset);
|
| + int32_t newOffset = (int32_t)UTEXT_GETNATIVEINDEX(fText);
|
| + if (newOffset != offset) {
|
| + // Will come here if specified offset was not a code point boundary AND
|
| + // the underlying implmentation is using UText, which snaps any non-code-point-boundary
|
| + // indices to the containing code point.
|
| + // For breakitereator::preceding only, these non-code-point indices need to be moved
|
| + // up to refer to the following codepoint.
|
| + (void)UTEXT_NEXT32(fText);
|
| + offset = (int32_t)UTEXT_GETNATIVEINDEX(fText);
|
| + }
|
| +
|
| + // TODO: (synwee) would it be better to just check for being in the middle of a surrogate pair,
|
| + // rather than adjusting the position unconditionally?
|
| + // (Change would interact with safe rules.)
|
| + // TODO: change RBBI behavior for off-boundary indices to match that of UText?
|
| + // affects only preceding(), seems cleaner, but is slightly different.
|
| + (void)UTEXT_PREVIOUS32(fText);
|
| + handleNext(fData->fSafeFwdTable);
|
| + int32_t result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
|
| + while (result >= offset) {
|
| + result = previous();
|
| + }
|
| + return result;
|
| + }
|
| + if (fData->fSafeRevTable != NULL) {
|
| + // backup plan if forward safe table is not available
|
| + // TODO: check whether this path can be discarded
|
| + // It's probably OK to say that rules must supply both safe tables
|
| + // if they use safe tables at all. We have certainly never described
|
| + // to anyone how to work with just one safe table.
|
| + utext_setNativeIndex(fText, offset);
|
| + (void)UTEXT_NEXT32(fText);
|
| +
|
| + // handle previous will give result <= offset
|
| + handlePrevious(fData->fSafeRevTable);
|
| +
|
| + // next will give result 0 or 1 boundary away from offset,
|
| + // most of the time
|
| + // we have to
|
| + int32_t oldresult = next();
|
| + while (oldresult < offset) {
|
| + int32_t result = next();
|
| + if (result >= offset) {
|
| + return oldresult;
|
| + }
|
| + oldresult = result;
|
| + }
|
| + int32_t result = previous();
|
| + if (result >= offset) {
|
| + return previous();
|
| + }
|
| + return result;
|
| + }
|
| +
|
| + // old rule syntax
|
| + utext_setNativeIndex(fText, offset);
|
| + return previous();
|
| +}
|
| +
|
| +/**
|
| + * Returns true if the specfied position is a boundary position. As a side
|
| + * effect, leaves the iterator pointing to the first boundary position at
|
| + * or after "offset".
|
| + * @param offset the offset to check.
|
| + * @return True if "offset" is a boundary position.
|
| + */
|
| +UBool RuleBasedBreakIterator::isBoundary(int32_t offset) {
|
| + // the beginning index of the iterator is always a boundary position by definition
|
| + if (offset == 0) {
|
| + first(); // For side effects on current position, tag values.
|
| + return TRUE;
|
| + }
|
| +
|
| + if (offset == (int32_t)utext_nativeLength(fText)) {
|
| + last(); // For side effects on current position, tag values.
|
| + return TRUE;
|
| + }
|
| +
|
| + // out-of-range indexes are never boundary positions
|
| + if (offset < 0) {
|
| + first(); // For side effects on current position, tag values.
|
| + return FALSE;
|
| + }
|
| +
|
| + if (offset > utext_nativeLength(fText)) {
|
| + last(); // For side effects on current position, tag values.
|
| + return FALSE;
|
| + }
|
| +
|
| + // otherwise, we can use following() on the position before the specified
|
| + // one and return true if the position we get back is the one the user
|
| + // specified
|
| + utext_previous32From(fText, offset);
|
| + int32_t backOne = (int32_t)UTEXT_GETNATIVEINDEX(fText);
|
| + UBool result = following(backOne) == offset;
|
| + return result;
|
| +}
|
| +
|
| +/**
|
| + * Returns the current iteration position.
|
| + * @return The current iteration position.
|
| + */
|
| +int32_t RuleBasedBreakIterator::current(void) const {
|
| + int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(fText);
|
| + return pos;
|
| +}
|
| +
|
| +//=======================================================================
|
| +// implementation
|
| +//=======================================================================
|
| +
|
| +//
|
| +// RBBIRunMode - the state machine runs an extra iteration at the beginning and end
|
| +// of user text. A variable with this enum type keeps track of where we
|
| +// are. The state machine only fetches user input while in the RUN mode.
|
| +//
|
| +enum RBBIRunMode {
|
| + RBBI_START, // state machine processing is before first char of input
|
| + RBBI_RUN, // state machine processing is in the user text
|
| + RBBI_END // state machine processing is after end of user text.
|
| +};
|
| +
|
| +
|
| +//-----------------------------------------------------------------------------------
|
| +//
|
| +// handleNext(stateTable)
|
| +// This method is the actual implementation of the rbbi next() method.
|
| +// This method initializes the state machine to state 1
|
| +// and advances through the text character by character until we reach the end
|
| +// of the text or the state machine transitions to state 0. We update our return
|
| +// value every time the state machine passes through an accepting state.
|
| +//
|
| +//-----------------------------------------------------------------------------------
|
| +int32_t RuleBasedBreakIterator::handleNext(const RBBIStateTable *statetable) {
|
| + int32_t state;
|
| + uint16_t category = 0;
|
| + RBBIRunMode mode;
|
| +
|
| + RBBIStateTableRow *row;
|
| + UChar32 c;
|
| + int32_t lookaheadStatus = 0;
|
| + int32_t lookaheadTagIdx = 0;
|
| + int32_t result = 0;
|
| + int32_t initialPosition = 0;
|
| + int32_t lookaheadResult = 0;
|
| + UBool lookAheadHardBreak = (statetable->fFlags & RBBI_LOOKAHEAD_HARD_BREAK) != 0;
|
| + const char *tableData = statetable->fTableData;
|
| + uint32_t tableRowLen = statetable->fRowLen;
|
| +
|
| + #ifdef RBBI_DEBUG
|
| + if (fTrace) {
|
| + RBBIDebugPuts("Handle Next pos char state category");
|
| + }
|
| + #endif
|
| +
|
| + // No matter what, handleNext alway correctly sets the break tag value.
|
| + fLastStatusIndexValid = TRUE;
|
| + fLastRuleStatusIndex = 0;
|
| +
|
| + // if we're already at the end of the text, return DONE.
|
| + initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText);
|
| + result = initialPosition;
|
| + c = UTEXT_NEXT32(fText);
|
| + if (fData == NULL || c==U_SENTINEL) {
|
| + return BreakIterator::DONE;
|
| + }
|
| +
|
| + // Set the initial state for the state machine
|
| + state = START_STATE;
|
| + row = (RBBIStateTableRow *)
|
| + //(statetable->fTableData + (statetable->fRowLen * state));
|
| + (tableData + tableRowLen * state);
|
| +
|
| +
|
| + mode = RBBI_RUN;
|
| + if (statetable->fFlags & RBBI_BOF_REQUIRED) {
|
| + category = 2;
|
| + mode = RBBI_START;
|
| + }
|
| +
|
| +
|
| + // loop until we reach the end of the text or transition to state 0
|
| + //
|
| + for (;;) {
|
| + if (c == U_SENTINEL) {
|
| + // Reached end of input string.
|
| + if (mode == RBBI_END) {
|
| + // We have already run the loop one last time with the
|
| + // character set to the psueudo {eof} value. Now it is time
|
| + // to unconditionally bail out.
|
| + if (lookaheadResult > result) {
|
| + // We ran off the end of the string with a pending look-ahead match.
|
| + // Treat this as if the look-ahead condition had been met, and return
|
| + // the match at the / position from the look-ahead rule.
|
| + result = lookaheadResult;
|
| + fLastRuleStatusIndex = lookaheadTagIdx;
|
| + lookaheadStatus = 0;
|
| + }
|
| + break;
|
| + }
|
| + // Run the loop one last time with the fake end-of-input character category.
|
| + mode = RBBI_END;
|
| + category = 1;
|
| + }
|
| +
|
| + //
|
| + // Get the char category. An incoming category of 1 or 2 means that
|
| + // we are preset for doing the beginning or end of input, and
|
| + // that we shouldn't get a category from an actual text input character.
|
| + //
|
| + if (mode == RBBI_RUN) {
|
| + // look up the current character's character category, which tells us
|
| + // which column in the state table to look at.
|
| + // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned,
|
| + // not the size of the character going in, which is a UChar32.
|
| + //
|
| + UTRIE_GET16(&fData->fTrie, c, category);
|
| +
|
| + // Check the dictionary bit in the character's category.
|
| + // Counter is only used by dictionary based iterators (subclasses).
|
| + // Chars that need to be handled by a dictionary have a flag bit set
|
| + // in their category values.
|
| + //
|
| + if ((category & 0x4000) != 0) {
|
| + fDictionaryCharCount++;
|
| + // And off the dictionary flag bit.
|
| + category &= ~0x4000;
|
| + }
|
| + }
|
| +
|
| + #ifdef RBBI_DEBUG
|
| + if (fTrace) {
|
| + RBBIDebugPrintf(" %4ld ", utext_getNativeIndex(fText));
|
| + if (0x20<=c && c<0x7f) {
|
| + RBBIDebugPrintf("\"%c\" ", c);
|
| + } else {
|
| + RBBIDebugPrintf("%5x ", c);
|
| + }
|
| + RBBIDebugPrintf("%3d %3d\n", state, category);
|
| + }
|
| + #endif
|
| +
|
| + // State Transition - move machine to its next state
|
| + //
|
| +
|
| + // Note: fNextState is defined as uint16_t[2], but we are casting
|
| + // a generated RBBI table to RBBIStateTableRow and some tables
|
| + // actually have more than 2 categories.
|
| + U_ASSERT(category<fData->fHeader->fCatCount);
|
| + state = row->fNextState[category]; /*Not accessing beyond memory*/
|
| + row = (RBBIStateTableRow *)
|
| + // (statetable->fTableData + (statetable->fRowLen * state));
|
| + (tableData + tableRowLen * state);
|
| +
|
| +
|
| + if (row->fAccepting == -1) {
|
| + // Match found, common case.
|
| + if (mode != RBBI_START) {
|
| + result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
|
| + }
|
| + fLastRuleStatusIndex = row->fTagIdx; // Remember the break status (tag) values.
|
| + }
|
| +
|
| + if (row->fLookAhead != 0) {
|
| + if (lookaheadStatus != 0
|
| + && row->fAccepting == lookaheadStatus) {
|
| + // Lookahead match is completed.
|
| + result = lookaheadResult;
|
| + fLastRuleStatusIndex = lookaheadTagIdx;
|
| + lookaheadStatus = 0;
|
| + // TODO: make a standalone hard break in a rule work.
|
| + if (lookAheadHardBreak) {
|
| + UTEXT_SETNATIVEINDEX(fText, result);
|
| + return result;
|
| + }
|
| + // Look-ahead completed, but other rules may match further. Continue on
|
| + // TODO: junk this feature? I don't think it's used anywhwere.
|
| + goto continueOn;
|
| + }
|
| +
|
| + int32_t r = (int32_t)UTEXT_GETNATIVEINDEX(fText);
|
| + lookaheadResult = r;
|
| + lookaheadStatus = row->fLookAhead;
|
| + lookaheadTagIdx = row->fTagIdx;
|
| + goto continueOn;
|
| + }
|
| +
|
| +
|
| + if (row->fAccepting != 0) {
|
| + // Because this is an accepting state, any in-progress look-ahead match
|
| + // is no longer relavant. Clear out the pending lookahead status.
|
| + lookaheadStatus = 0; // clear out any pending look-ahead match.
|
| + }
|
| +
|
| +continueOn:
|
| + if (state == STOP_STATE) {
|
| + // This is the normal exit from the lookup state machine.
|
| + // We have advanced through the string until it is certain that no
|
| + // longer match is possible, no matter what characters follow.
|
| + break;
|
| + }
|
| +
|
| + // Advance to the next character.
|
| + // If this is a beginning-of-input loop iteration, don't advance
|
| + // the input position. The next iteration will be processing the
|
| + // first real input character.
|
| + if (mode == RBBI_RUN) {
|
| + c = UTEXT_NEXT32(fText);
|
| + } else {
|
| + if (mode == RBBI_START) {
|
| + mode = RBBI_RUN;
|
| + }
|
| + }
|
| +
|
| +
|
| + }
|
| +
|
| + // The state machine is done. Check whether it found a match...
|
| +
|
| + // If the iterator failed to advance in the match engine, force it ahead by one.
|
| + // (This really indicates a defect in the break rules. They should always match
|
| + // at least one character.)
|
| + if (result == initialPosition) {
|
| + UTEXT_SETNATIVEINDEX(fText, initialPosition);
|
| + UTEXT_NEXT32(fText);
|
| + result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
|
| + }
|
| +
|
| + // Leave the iterator at our result position.
|
| + UTEXT_SETNATIVEINDEX(fText, result);
|
| + #ifdef RBBI_DEBUG
|
| + if (fTrace) {
|
| + RBBIDebugPrintf("result = %d\n\n", result);
|
| + }
|
| + #endif
|
| + return result;
|
| +}
|
| +
|
| +
|
| +
|
| +//-----------------------------------------------------------------------------------
|
| +//
|
| +// handlePrevious()
|
| +//
|
| +// Iterate backwards, according to the logic of the reverse rules.
|
| +// This version handles the exact style backwards rules.
|
| +//
|
| +// The logic of this function is very similar to handleNext(), above.
|
| +//
|
| +//-----------------------------------------------------------------------------------
|
| +int32_t RuleBasedBreakIterator::handlePrevious(const RBBIStateTable *statetable) {
|
| + int32_t state;
|
| + uint16_t category = 0;
|
| + RBBIRunMode mode;
|
| + RBBIStateTableRow *row;
|
| + UChar32 c;
|
| + int32_t lookaheadStatus = 0;
|
| + int32_t result = 0;
|
| + int32_t initialPosition = 0;
|
| + int32_t lookaheadResult = 0;
|
| + UBool lookAheadHardBreak = (statetable->fFlags & RBBI_LOOKAHEAD_HARD_BREAK) != 0;
|
| +
|
| + #ifdef RBBI_DEBUG
|
| + if (fTrace) {
|
| + RBBIDebugPuts("Handle Previous pos char state category");
|
| + }
|
| + #endif
|
| +
|
| + // handlePrevious() never gets the rule status.
|
| + // Flag the status as invalid; if the user ever asks for status, we will need
|
| + // to back up, then re-find the break position using handleNext(), which does
|
| + // get the status value.
|
| + fLastStatusIndexValid = FALSE;
|
| + fLastRuleStatusIndex = 0;
|
| +
|
| + // if we're already at the start of the text, return DONE.
|
| + if (fText == NULL || fData == NULL || UTEXT_GETNATIVEINDEX(fText)==0) {
|
| + return BreakIterator::DONE;
|
| + }
|
| +
|
| + // Set up the starting char.
|
| + initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText);
|
| + result = initialPosition;
|
| + c = UTEXT_PREVIOUS32(fText);
|
| +
|
| + // Set the initial state for the state machine
|
| + state = START_STATE;
|
| + row = (RBBIStateTableRow *)
|
| + (statetable->fTableData + (statetable->fRowLen * state));
|
| + category = 3;
|
| + mode = RBBI_RUN;
|
| + if (statetable->fFlags & RBBI_BOF_REQUIRED) {
|
| + category = 2;
|
| + mode = RBBI_START;
|
| + }
|
| +
|
| +
|
| + // loop until we reach the start of the text or transition to state 0
|
| + //
|
| + for (;;) {
|
| + if (c == U_SENTINEL) {
|
| + // Reached end of input string.
|
| + if (mode == RBBI_END) {
|
| + // We have already run the loop one last time with the
|
| + // character set to the psueudo {eof} value. Now it is time
|
| + // to unconditionally bail out.
|
| + if (lookaheadResult < result) {
|
| + // We ran off the end of the string with a pending look-ahead match.
|
| + // Treat this as if the look-ahead condition had been met, and return
|
| + // the match at the / position from the look-ahead rule.
|
| + result = lookaheadResult;
|
| + lookaheadStatus = 0;
|
| + } else if (result == initialPosition) {
|
| + // Ran off start, no match found.
|
| + // move one index one (towards the start, since we are doing a previous())
|
| + UTEXT_SETNATIVEINDEX(fText, initialPosition);
|
| + (void)UTEXT_PREVIOUS32(fText); // TODO: shouldn't be necessary. We're already at beginning. Check.
|
| + }
|
| + break;
|
| + }
|
| + // Run the loop one last time with the fake end-of-input character category.
|
| + mode = RBBI_END;
|
| + category = 1;
|
| + }
|
| +
|
| + //
|
| + // Get the char category. An incoming category of 1 or 2 means that
|
| + // we are preset for doing the beginning or end of input, and
|
| + // that we shouldn't get a category from an actual text input character.
|
| + //
|
| + if (mode == RBBI_RUN) {
|
| + // look up the current character's character category, which tells us
|
| + // which column in the state table to look at.
|
| + // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned,
|
| + // not the size of the character going in, which is a UChar32.
|
| + //
|
| + UTRIE_GET16(&fData->fTrie, c, category);
|
| +
|
| + // Check the dictionary bit in the character's category.
|
| + // Counter is only used by dictionary based iterators (subclasses).
|
| + // Chars that need to be handled by a dictionary have a flag bit set
|
| + // in their category values.
|
| + //
|
| + if ((category & 0x4000) != 0) {
|
| + fDictionaryCharCount++;
|
| + // And off the dictionary flag bit.
|
| + category &= ~0x4000;
|
| + }
|
| + }
|
| +
|
| + #ifdef RBBI_DEBUG
|
| + if (fTrace) {
|
| + RBBIDebugPrintf(" %4d ", (int32_t)utext_getNativeIndex(fText));
|
| + if (0x20<=c && c<0x7f) {
|
| + RBBIDebugPrintf("\"%c\" ", c);
|
| + } else {
|
| + RBBIDebugPrintf("%5x ", c);
|
| + }
|
| + RBBIDebugPrintf("%3d %3d\n", state, category);
|
| + }
|
| + #endif
|
| +
|
| + // State Transition - move machine to its next state
|
| + //
|
| +
|
| + // Note: fNextState is defined as uint16_t[2], but we are casting
|
| + // a generated RBBI table to RBBIStateTableRow and some tables
|
| + // actually have more than 2 categories.
|
| + U_ASSERT(category<fData->fHeader->fCatCount);
|
| + state = row->fNextState[category]; /*Not accessing beyond memory*/
|
| + row = (RBBIStateTableRow *)
|
| + (statetable->fTableData + (statetable->fRowLen * state));
|
| +
|
| + if (row->fAccepting == -1) {
|
| + // Match found, common case.
|
| + result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
|
| + }
|
| +
|
| + if (row->fLookAhead != 0) {
|
| + if (lookaheadStatus != 0
|
| + && row->fAccepting == lookaheadStatus) {
|
| + // Lookahead match is completed.
|
| + result = lookaheadResult;
|
| + lookaheadStatus = 0;
|
| + // TODO: make a standalone hard break in a rule work.
|
| + if (lookAheadHardBreak) {
|
| + UTEXT_SETNATIVEINDEX(fText, result);
|
| + return result;
|
| + }
|
| + // Look-ahead completed, but other rules may match further. Continue on
|
| + // TODO: junk this feature? I don't think it's used anywhwere.
|
| + goto continueOn;
|
| + }
|
| +
|
| + int32_t r = (int32_t)UTEXT_GETNATIVEINDEX(fText);
|
| + lookaheadResult = r;
|
| + lookaheadStatus = row->fLookAhead;
|
| + goto continueOn;
|
| + }
|
| +
|
| +
|
| + if (row->fAccepting != 0) {
|
| + // Because this is an accepting state, any in-progress look-ahead match
|
| + // is no longer relavant. Clear out the pending lookahead status.
|
| + lookaheadStatus = 0;
|
| + }
|
| +
|
| +continueOn:
|
| + if (state == STOP_STATE) {
|
| + // This is the normal exit from the lookup state machine.
|
| + // We have advanced through the string until it is certain that no
|
| + // longer match is possible, no matter what characters follow.
|
| + break;
|
| + }
|
| +
|
| + // Move (backwards) to the next character to process.
|
| + // If this is a beginning-of-input loop iteration, don't advance
|
| + // the input position. The next iteration will be processing the
|
| + // first real input character.
|
| + if (mode == RBBI_RUN) {
|
| + c = UTEXT_PREVIOUS32(fText);
|
| + } else {
|
| + if (mode == RBBI_START) {
|
| + mode = RBBI_RUN;
|
| + }
|
| + }
|
| + }
|
| +
|
| + // The state machine is done. Check whether it found a match...
|
| +
|
| + // If the iterator failed to advance in the match engine, force it ahead by one.
|
| + // (This really indicates a defect in the break rules. They should always match
|
| + // at least one character.)
|
| + if (result == initialPosition) {
|
| + UTEXT_SETNATIVEINDEX(fText, initialPosition);
|
| + UTEXT_PREVIOUS32(fText);
|
| + result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
|
| + }
|
| +
|
| + // Leave the iterator at our result position.
|
| + UTEXT_SETNATIVEINDEX(fText, result);
|
| + #ifdef RBBI_DEBUG
|
| + if (fTrace) {
|
| + RBBIDebugPrintf("result = %d\n\n", result);
|
| + }
|
| + #endif
|
| + return result;
|
| +}
|
| +
|
| +
|
| +void
|
| +RuleBasedBreakIterator::reset()
|
| +{
|
| + if (fCachedBreakPositions) {
|
| + uprv_free(fCachedBreakPositions);
|
| + }
|
| + fCachedBreakPositions = NULL;
|
| + fNumCachedBreakPositions = 0;
|
| + fDictionaryCharCount = 0;
|
| + fPositionInCache = 0;
|
| +}
|
| +
|
| +
|
| +
|
| +//-------------------------------------------------------------------------------
|
| +//
|
| +// getRuleStatus() Return the break rule tag associated with the current
|
| +// iterator position. If the iterator arrived at its current
|
| +// position by iterating forwards, the value will have been
|
| +// cached by the handleNext() function.
|
| +//
|
| +// If no cached status value is available, the status is
|
| +// found by doing a previous() followed by a next(), which
|
| +// leaves the iterator where it started, and computes the
|
| +// status while doing the next().
|
| +//
|
| +//-------------------------------------------------------------------------------
|
| +void RuleBasedBreakIterator::makeRuleStatusValid() {
|
| + if (fLastStatusIndexValid == FALSE) {
|
| + // No cached status is available.
|
| + if (fText == NULL || current() == 0) {
|
| + // At start of text, or there is no text. Status is always zero.
|
| + fLastRuleStatusIndex = 0;
|
| + fLastStatusIndexValid = TRUE;
|
| + } else {
|
| + // Not at start of text. Find status the tedious way.
|
| + int32_t pa = current();
|
| + previous();
|
| + if (fNumCachedBreakPositions > 0) {
|
| + reset(); // Blow off the dictionary cache
|
| + }
|
| + int32_t pb = next();
|
| + if (pa != pb) {
|
| + // note: the if (pa != pb) test is here only to eliminate warnings for
|
| + // unused local variables on gcc. Logically, it isn't needed.
|
| + U_ASSERT(pa == pb);
|
| + }
|
| + }
|
| + }
|
| + U_ASSERT(fLastRuleStatusIndex >= 0 && fLastRuleStatusIndex < fData->fStatusMaxIdx);
|
| +}
|
| +
|
| +
|
| +int32_t RuleBasedBreakIterator::getRuleStatus() const {
|
| + RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this;
|
| + nonConstThis->makeRuleStatusValid();
|
| +
|
| + // fLastRuleStatusIndex indexes to the start of the appropriate status record
|
| + // (the number of status values.)
|
| + // This function returns the last (largest) of the array of status values.
|
| + int32_t idx = fLastRuleStatusIndex + fData->fRuleStatusTable[fLastRuleStatusIndex];
|
| + int32_t tagVal = fData->fRuleStatusTable[idx];
|
| +
|
| + return tagVal;
|
| +}
|
| +
|
| +
|
| +
|
| +
|
| +int32_t RuleBasedBreakIterator::getRuleStatusVec(
|
| + int32_t *fillInVec, int32_t capacity, UErrorCode &status)
|
| +{
|
| + if (U_FAILURE(status)) {
|
| + return 0;
|
| + }
|
| +
|
| + RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this;
|
| + nonConstThis->makeRuleStatusValid();
|
| + int32_t numVals = fData->fRuleStatusTable[fLastRuleStatusIndex];
|
| + int32_t numValsToCopy = numVals;
|
| + if (numVals > capacity) {
|
| + status = U_BUFFER_OVERFLOW_ERROR;
|
| + numValsToCopy = capacity;
|
| + }
|
| + int i;
|
| + for (i=0; i<numValsToCopy; i++) {
|
| + fillInVec[i] = fData->fRuleStatusTable[fLastRuleStatusIndex + i + 1];
|
| + }
|
| + return numVals;
|
| +}
|
| +
|
| +
|
| +
|
| +//-------------------------------------------------------------------------------
|
| +//
|
| +// getBinaryRules Access to the compiled form of the rules,
|
| +// for use by build system tools that save the data
|
| +// for standard iterator types.
|
| +//
|
| +//-------------------------------------------------------------------------------
|
| +const uint8_t *RuleBasedBreakIterator::getBinaryRules(uint32_t &length) {
|
| + const uint8_t *retPtr = NULL;
|
| + length = 0;
|
| +
|
| + if (fData != NULL) {
|
| + retPtr = (const uint8_t *)fData->fHeader;
|
| + length = fData->fHeader->fLength;
|
| + }
|
| + return retPtr;
|
| +}
|
| +
|
| +
|
| +
|
| +
|
| +//-------------------------------------------------------------------------------
|
| +//
|
| +// BufferClone TODO: In my (Andy) opinion, this function should be deprecated.
|
| +// Saving one heap allocation isn't worth the trouble.
|
| +// Cloning shouldn't be done in tight loops, and
|
| +// making the clone copy involves other heap operations anyway.
|
| +// And the application code for correctly dealing with buffer
|
| +// size problems and the eventual object destruction is ugly.
|
| +//
|
| +//-------------------------------------------------------------------------------
|
| +BreakIterator * RuleBasedBreakIterator::createBufferClone(void *stackBuffer,
|
| + int32_t &bufferSize,
|
| + UErrorCode &status)
|
| +{
|
| + if (U_FAILURE(status)){
|
| + return NULL;
|
| + }
|
| +
|
| + //
|
| + // If user buffer size is zero this is a preflight operation to
|
| + // obtain the needed buffer size, allowing for worst case misalignment.
|
| + //
|
| + if (bufferSize == 0) {
|
| + bufferSize = sizeof(RuleBasedBreakIterator) + U_ALIGNMENT_OFFSET_UP(0);
|
| + return NULL;
|
| + }
|
| +
|
| +
|
| + //
|
| + // Check the alignment and size of the user supplied buffer.
|
| + // Allocate heap memory if the user supplied memory is insufficient.
|
| + //
|
| + char *buf = (char *)stackBuffer;
|
| + uint32_t s = bufferSize;
|
| +
|
| + if (stackBuffer == NULL) {
|
| + s = 0; // Ignore size, force allocation if user didn't give us a buffer.
|
| + }
|
| + if (U_ALIGNMENT_OFFSET(stackBuffer) != 0) {
|
| + uint32_t offsetUp = (uint32_t)U_ALIGNMENT_OFFSET_UP(buf);
|
| + s -= offsetUp;
|
| + buf += offsetUp;
|
| + }
|
| + if (s < sizeof(RuleBasedBreakIterator)) {
|
| + // Not enough room in the caller-supplied buffer.
|
| + // Do a plain-vanilla heap based clone and return that, along with
|
| + // a warning that the clone was allocated.
|
| + RuleBasedBreakIterator *clonedBI = new RuleBasedBreakIterator(*this);
|
| + if (clonedBI == 0) {
|
| + status = U_MEMORY_ALLOCATION_ERROR;
|
| + } else {
|
| + status = U_SAFECLONE_ALLOCATED_WARNING;
|
| + }
|
| + return clonedBI;
|
| + }
|
| +
|
| + //
|
| + // Clone the source BI into the caller-supplied buffer.
|
| + //
|
| + RuleBasedBreakIterator *clone = new(buf) RuleBasedBreakIterator(*this);
|
| + clone->fBufferClone = TRUE; // Flag to prevent deleting storage on close (From C code)
|
| +
|
| + return clone;
|
| +}
|
| +
|
| +
|
| +//-------------------------------------------------------------------------------
|
| +//
|
| +// isDictionaryChar Return true if the category lookup for this char
|
| +// indicates that it is in the set of dictionary lookup
|
| +// chars.
|
| +//
|
| +// This function is intended for use by dictionary based
|
| +// break iterators.
|
| +//
|
| +//-------------------------------------------------------------------------------
|
| +/*UBool RuleBasedBreakIterator::isDictionaryChar(UChar32 c) {
|
| + if (fData == NULL) {
|
| + return FALSE;
|
| + }
|
| + uint16_t category;
|
| + UTRIE_GET16(&fData->fTrie, c, category);
|
| + return (category & 0x4000) != 0;
|
| +}*/
|
| +
|
| +
|
| +//-------------------------------------------------------------------------------
|
| +//
|
| +// checkDictionary This function handles all processing of characters in
|
| +// the "dictionary" set. It will determine the appropriate
|
| +// course of action, and possibly set up a cache in the
|
| +// process.
|
| +//
|
| +//-------------------------------------------------------------------------------
|
| +int32_t RuleBasedBreakIterator::checkDictionary(int32_t startPos,
|
| + int32_t endPos,
|
| + UBool reverse) {
|
| + // Reset the old break cache first.
|
| + reset();
|
| +
|
| + // note: code segment below assumes that dictionary chars are in the
|
| + // startPos-endPos range
|
| + // value returned should be next character in sequence
|
| + if ((endPos - startPos) <= 1) {
|
| + return (reverse ? startPos : endPos);
|
| + }
|
| +
|
| + // Bug 5532. The dictionary code will crash if the input text is UTF-8
|
| + // because native indexes are different from UTF-16 indexes.
|
| + // Temporary hack: skip dictionary lookup for UTF-8 encoded text.
|
| + // It wont give the right breaks, but it's better than a crash.
|
| + //
|
| + // Check the type of the UText by checking its pFuncs field, which
|
| + // is UText's function dispatch table. It will be the same for all
|
| + // UTF-8 UTexts and different for any other UText type.
|
| + //
|
| + // We have no other type of UText available with non-UTF-16 native indexing.
|
| + // This whole check will go away once the dictionary code is fixed.
|
| + static const void *utext_utf8Funcs;
|
| + if (utext_utf8Funcs == NULL) {
|
| + // Cache the UTF-8 UText function pointer value.
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + UText tempUText = UTEXT_INITIALIZER;
|
| + utext_openUTF8(&tempUText, NULL, 0, &status);
|
| + utext_utf8Funcs = tempUText.pFuncs;
|
| + utext_close(&tempUText);
|
| + }
|
| + if (fText->pFuncs == utext_utf8Funcs) {
|
| + return (reverse ? startPos : endPos);
|
| + }
|
| +
|
| + // Starting from the starting point, scan towards the proposed result,
|
| + // looking for the first dictionary character (which may be the one
|
| + // we're on, if we're starting in the middle of a range).
|
| + utext_setNativeIndex(fText, reverse ? endPos : startPos);
|
| + if (reverse) {
|
| + UTEXT_PREVIOUS32(fText);
|
| + }
|
| +
|
| + int32_t rangeStart = startPos;
|
| + int32_t rangeEnd = endPos;
|
| +
|
| + uint16_t category;
|
| + int32_t current;
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + UStack breaks(status);
|
| + int32_t foundBreakCount = 0;
|
| + UChar32 c = utext_current32(fText);
|
| +
|
| + UTRIE_GET16(&fData->fTrie, c, category);
|
| +
|
| + // Is the character we're starting on a dictionary character? If so, we
|
| + // need to back up to include the entire run; otherwise the results of
|
| + // the break algorithm will differ depending on where we start. Since
|
| + // the result is cached and there is typically a non-dictionary break
|
| + // within a small number of words, there should be little performance impact.
|
| + if (category & 0x4000) {
|
| + if (reverse) {
|
| + do {
|
| + utext_next32(fText); // TODO: recast to work directly with postincrement.
|
| + c = utext_current32(fText);
|
| + UTRIE_GET16(&fData->fTrie, c, category);
|
| + } while (c != U_SENTINEL && (category & 0x4000));
|
| + // Back up to the last dictionary character
|
| + rangeEnd = (int32_t)UTEXT_GETNATIVEINDEX(fText);
|
| + if (c == U_SENTINEL) {
|
| + // c = fText->last32();
|
| + // TODO: why was this if needed?
|
| + c = UTEXT_PREVIOUS32(fText);
|
| + }
|
| + else {
|
| + c = UTEXT_PREVIOUS32(fText);
|
| + }
|
| + }
|
| + else {
|
| + do {
|
| + c = UTEXT_PREVIOUS32(fText);
|
| + UTRIE_GET16(&fData->fTrie, c, category);
|
| + }
|
| + while (c != U_SENTINEL && (category & 0x4000));
|
| + // Back up to the last dictionary character
|
| + if (c == U_SENTINEL) {
|
| + // c = fText->first32();
|
| + c = utext_current32(fText);
|
| + }
|
| + else {
|
| + utext_next32(fText);
|
| + c = utext_current32(fText);
|
| + }
|
| + rangeStart = (int32_t)UTEXT_GETNATIVEINDEX(fText);;
|
| + }
|
| + UTRIE_GET16(&fData->fTrie, c, category);
|
| + }
|
| +
|
| + // Loop through the text, looking for ranges of dictionary characters.
|
| + // For each span, find the appropriate break engine, and ask it to find
|
| + // any breaks within the span.
|
| + // Note: we always do this in the forward direction, so that the break
|
| + // cache is built in the right order.
|
| + if (reverse) {
|
| + utext_setNativeIndex(fText, rangeStart);
|
| + c = utext_current32(fText);
|
| + UTRIE_GET16(&fData->fTrie, c, category);
|
| + }
|
| + while(U_SUCCESS(status)) {
|
| + while((current = (int32_t)UTEXT_GETNATIVEINDEX(fText)) < rangeEnd && (category & 0x4000) == 0) {
|
| + utext_next32(fText); // TODO: tweak for post-increment operation
|
| + c = utext_current32(fText);
|
| + UTRIE_GET16(&fData->fTrie, c, category);
|
| + }
|
| + if (current >= rangeEnd) {
|
| + break;
|
| + }
|
| +
|
| + // We now have a dictionary character. Get the appropriate language object
|
| + // to deal with it.
|
| + const LanguageBreakEngine *lbe = getLanguageBreakEngine(c);
|
| +
|
| + // Ask the language object if there are any breaks. It will leave the text
|
| + // pointer on the other side of its range, ready to search for the next one.
|
| + if (lbe != NULL) {
|
| + foundBreakCount += lbe->findBreaks(fText, rangeStart, rangeEnd, FALSE, fBreakType, breaks);
|
| + }
|
| +
|
| + // Reload the loop variables for the next go-round
|
| + c = utext_current32(fText);
|
| + UTRIE_GET16(&fData->fTrie, c, category);
|
| + }
|
| +
|
| + // If we found breaks, build a new break cache. The first and last entries must
|
| + // be the original starting and ending position.
|
| + if (foundBreakCount > 0) {
|
| + int32_t totalBreaks = foundBreakCount;
|
| + if (startPos < breaks.elementAti(0)) {
|
| + totalBreaks += 1;
|
| + }
|
| + if (endPos > breaks.peeki()) {
|
| + totalBreaks += 1;
|
| + }
|
| + fCachedBreakPositions = (int32_t *)uprv_malloc(totalBreaks * sizeof(int32_t));
|
| + if (fCachedBreakPositions != NULL) {
|
| + int32_t out = 0;
|
| + fNumCachedBreakPositions = totalBreaks;
|
| + if (startPos < breaks.elementAti(0)) {
|
| + fCachedBreakPositions[out++] = startPos;
|
| + }
|
| + for (int32_t i = 0; i < foundBreakCount; ++i) {
|
| + fCachedBreakPositions[out++] = breaks.elementAti(i);
|
| + }
|
| + if (endPos > fCachedBreakPositions[out-1]) {
|
| + fCachedBreakPositions[out] = endPos;
|
| + }
|
| + // If there are breaks, then by definition, we are replacing the original
|
| + // proposed break by one of the breaks we found. Use following() and
|
| + // preceding() to do the work. They should never recurse in this case.
|
| + if (reverse) {
|
| + return preceding(endPos);
|
| + }
|
| + else {
|
| + return following(startPos);
|
| + }
|
| + }
|
| + // If the allocation failed, just fall through to the "no breaks found" case.
|
| + }
|
| +
|
| + // If we get here, there were no language-based breaks. Set the text pointer
|
| + // to the original proposed break.
|
| + utext_setNativeIndex(fText, reverse ? startPos : endPos);
|
| + return (reverse ? startPos : endPos);
|
| +}
|
| +
|
| +U_NAMESPACE_END
|
| +
|
| +// defined in ucln_cmn.h
|
| +
|
| +static icu::UStack *gLanguageBreakFactories = NULL;
|
| +
|
| +/**
|
| + * Release all static memory held by breakiterator.
|
| + */
|
| +U_CDECL_BEGIN
|
| +static UBool U_CALLCONV breakiterator_cleanup_dict(void) {
|
| + if (gLanguageBreakFactories) {
|
| + delete gLanguageBreakFactories;
|
| + gLanguageBreakFactories = NULL;
|
| + }
|
| + return TRUE;
|
| +}
|
| +U_CDECL_END
|
| +
|
| +U_CDECL_BEGIN
|
| +static void U_CALLCONV _deleteFactory(void *obj) {
|
| + delete (icu::LanguageBreakFactory *) obj;
|
| +}
|
| +U_CDECL_END
|
| +U_NAMESPACE_BEGIN
|
| +
|
| +static const LanguageBreakEngine*
|
| +getLanguageBreakEngineFromFactory(UChar32 c, int32_t breakType)
|
| +{
|
| + UBool needsInit;
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + UMTX_CHECK(NULL, (UBool)(gLanguageBreakFactories == NULL), needsInit);
|
| +
|
| + if (needsInit) {
|
| + UStack *factories = new UStack(_deleteFactory, NULL, status);
|
| + if (factories != NULL && U_SUCCESS(status)) {
|
| + ICULanguageBreakFactory *builtIn = new ICULanguageBreakFactory(status);
|
| + factories->push(builtIn, status);
|
| +#ifdef U_LOCAL_SERVICE_HOOK
|
| + LanguageBreakFactory *extra = (LanguageBreakFactory *)uprv_svc_hook("languageBreakFactory", &status);
|
| + if (extra != NULL) {
|
| + factories->push(extra, status);
|
| + }
|
| +#endif
|
| + }
|
| + umtx_lock(NULL);
|
| + if (gLanguageBreakFactories == NULL) {
|
| + gLanguageBreakFactories = factories;
|
| + factories = NULL;
|
| + ucln_common_registerCleanup(UCLN_COMMON_BREAKITERATOR_DICT, breakiterator_cleanup_dict);
|
| + }
|
| + umtx_unlock(NULL);
|
| + delete factories;
|
| + }
|
| +
|
| + if (gLanguageBreakFactories == NULL) {
|
| + return NULL;
|
| + }
|
| +
|
| + int32_t i = gLanguageBreakFactories->size();
|
| + const LanguageBreakEngine *lbe = NULL;
|
| + while (--i >= 0) {
|
| + LanguageBreakFactory *factory = (LanguageBreakFactory *)(gLanguageBreakFactories->elementAt(i));
|
| + lbe = factory->getEngineFor(c, breakType);
|
| + if (lbe != NULL) {
|
| + break;
|
| + }
|
| + }
|
| + return lbe;
|
| +}
|
| +
|
| +
|
| +//-------------------------------------------------------------------------------
|
| +//
|
| +// getLanguageBreakEngine Find an appropriate LanguageBreakEngine for the
|
| +// the character c.
|
| +//
|
| +//-------------------------------------------------------------------------------
|
| +const LanguageBreakEngine *
|
| +RuleBasedBreakIterator::getLanguageBreakEngine(UChar32 c) {
|
| + const LanguageBreakEngine *lbe = NULL;
|
| + UErrorCode status = U_ZERO_ERROR;
|
| +
|
| + if (fLanguageBreakEngines == NULL) {
|
| + fLanguageBreakEngines = new UStack(status);
|
| + if (fLanguageBreakEngines == NULL || U_FAILURE(status)) {
|
| + delete fLanguageBreakEngines;
|
| + fLanguageBreakEngines = 0;
|
| + return NULL;
|
| + }
|
| + }
|
| +
|
| + int32_t i = fLanguageBreakEngines->size();
|
| + while (--i >= 0) {
|
| + lbe = (const LanguageBreakEngine *)(fLanguageBreakEngines->elementAt(i));
|
| + if (lbe->handles(c, fBreakType)) {
|
| + return lbe;
|
| + }
|
| + }
|
| +
|
| + // No existing dictionary took the character. See if a factory wants to
|
| + // give us a new LanguageBreakEngine for this character.
|
| + lbe = getLanguageBreakEngineFromFactory(c, fBreakType);
|
| +
|
| + // If we got one, use it and push it on our stack.
|
| + if (lbe != NULL) {
|
| + fLanguageBreakEngines->push((void *)lbe, status);
|
| + // Even if we can't remember it, we can keep looking it up, so
|
| + // return it even if the push fails.
|
| + return lbe;
|
| + }
|
| +
|
| + // No engine is forthcoming for this character. Add it to the
|
| + // reject set. Create the reject break engine if needed.
|
| + if (fUnhandledBreakEngine == NULL) {
|
| + fUnhandledBreakEngine = new UnhandledEngine(status);
|
| + if (U_SUCCESS(status) && fUnhandledBreakEngine == NULL) {
|
| + status = U_MEMORY_ALLOCATION_ERROR;
|
| + }
|
| + // Put it last so that scripts for which we have an engine get tried
|
| + // first.
|
| + fLanguageBreakEngines->insertElementAt(fUnhandledBreakEngine, 0, status);
|
| + // If we can't insert it, or creation failed, get rid of it
|
| + if (U_FAILURE(status)) {
|
| + delete fUnhandledBreakEngine;
|
| + fUnhandledBreakEngine = 0;
|
| + return NULL;
|
| + }
|
| + }
|
| +
|
| + // Tell the reject engine about the character; at its discretion, it may
|
| + // add more than just the one character.
|
| + fUnhandledBreakEngine->handleCharacter(c, fBreakType);
|
| +
|
| + return fUnhandledBreakEngine;
|
| +}
|
| +
|
| +
|
| +
|
| +/*int32_t RuleBasedBreakIterator::getBreakType() const {
|
| + return fBreakType;
|
| +}*/
|
| +
|
| +void RuleBasedBreakIterator::setBreakType(int32_t type) {
|
| + fBreakType = type;
|
| + reset();
|
| +}
|
| +
|
| +U_NAMESPACE_END
|
| +
|
| +#endif /* #if !UCONFIG_NO_BREAK_ITERATION */
|
|
|
| Property changes on: icu51/source/common/rbbi.cpp
|
| ___________________________________________________________________
|
| Added: svn:eol-style
|
| + LF
|
|
|
|
|