| Index: icu51/source/common/uhash.c
|
| ===================================================================
|
| --- icu51/source/common/uhash.c (revision 0)
|
| +++ icu51/source/common/uhash.c (revision 0)
|
| @@ -0,0 +1,973 @@
|
| +/*
|
| +******************************************************************************
|
| +* Copyright (C) 1997-2011, International Business Machines
|
| +* Corporation and others. All Rights Reserved.
|
| +******************************************************************************
|
| +* Date Name Description
|
| +* 03/22/00 aliu Adapted from original C++ ICU Hashtable.
|
| +* 07/06/01 aliu Modified to support int32_t keys on
|
| +* platforms with sizeof(void*) < 32.
|
| +******************************************************************************
|
| +*/
|
| +
|
| +#include "uhash.h"
|
| +#include "unicode/ustring.h"
|
| +#include "cstring.h"
|
| +#include "cmemory.h"
|
| +#include "uassert.h"
|
| +#include "ustr_imp.h"
|
| +
|
| +/* This hashtable is implemented as a double hash. All elements are
|
| + * stored in a single array with no secondary storage for collision
|
| + * resolution (no linked list, etc.). When there is a hash collision
|
| + * (when two unequal keys have the same hashcode) we resolve this by
|
| + * using a secondary hash. The secondary hash is an increment
|
| + * computed as a hash function (a different one) of the primary
|
| + * hashcode. This increment is added to the initial hash value to
|
| + * obtain further slots assigned to the same hash code. For this to
|
| + * work, the length of the array and the increment must be relatively
|
| + * prime. The easiest way to achieve this is to have the length of
|
| + * the array be prime, and the increment be any value from
|
| + * 1..length-1.
|
| + *
|
| + * Hashcodes are 32-bit integers. We make sure all hashcodes are
|
| + * non-negative by masking off the top bit. This has two effects: (1)
|
| + * modulo arithmetic is simplified. If we allowed negative hashcodes,
|
| + * then when we computed hashcode % length, we could get a negative
|
| + * result, which we would then have to adjust back into range. It's
|
| + * simpler to just make hashcodes non-negative. (2) It makes it easy
|
| + * to check for empty vs. occupied slots in the table. We just mark
|
| + * empty or deleted slots with a negative hashcode.
|
| + *
|
| + * The central function is _uhash_find(). This function looks for a
|
| + * slot matching the given key and hashcode. If one is found, it
|
| + * returns a pointer to that slot. If the table is full, and no match
|
| + * is found, it returns NULL -- in theory. This would make the code
|
| + * more complicated, since all callers of _uhash_find() would then
|
| + * have to check for a NULL result. To keep this from happening, we
|
| + * don't allow the table to fill. When there is only one
|
| + * empty/deleted slot left, uhash_put() will refuse to increase the
|
| + * count, and fail. This simplifies the code. In practice, one will
|
| + * seldom encounter this using default UHashtables. However, if a
|
| + * hashtable is set to a U_FIXED resize policy, or if memory is
|
| + * exhausted, then the table may fill.
|
| + *
|
| + * High and low water ratios control rehashing. They establish levels
|
| + * of fullness (from 0 to 1) outside of which the data array is
|
| + * reallocated and repopulated. Setting the low water ratio to zero
|
| + * means the table will never shrink. Setting the high water ratio to
|
| + * one means the table will never grow. The ratios should be
|
| + * coordinated with the ratio between successive elements of the
|
| + * PRIMES table, so that when the primeIndex is incremented or
|
| + * decremented during rehashing, it brings the ratio of count / length
|
| + * back into the desired range (between low and high water ratios).
|
| + */
|
| +
|
| +/********************************************************************
|
| + * PRIVATE Constants, Macros
|
| + ********************************************************************/
|
| +
|
| +/* This is a list of non-consecutive primes chosen such that
|
| + * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81
|
| + * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this
|
| + * ratio is changed, the low and high water ratios should also be
|
| + * adjusted to suit.
|
| + *
|
| + * These prime numbers were also chosen so that they are the largest
|
| + * prime number while being less than a power of two.
|
| + */
|
| +static const int32_t PRIMES[] = {
|
| + 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749,
|
| + 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593,
|
| + 16777213, 33554393, 67108859, 134217689, 268435399, 536870909,
|
| + 1073741789, 2147483647 /*, 4294967291 */
|
| +};
|
| +
|
| +#define PRIMES_LENGTH (sizeof(PRIMES) / sizeof(PRIMES[0]))
|
| +#define DEFAULT_PRIME_INDEX 3
|
| +
|
| +/* These ratios are tuned to the PRIMES array such that a resize
|
| + * places the table back into the zone of non-resizing. That is,
|
| + * after a call to _uhash_rehash(), a subsequent call to
|
| + * _uhash_rehash() should do nothing (should not churn). This is only
|
| + * a potential problem with U_GROW_AND_SHRINK.
|
| + */
|
| +static const float RESIZE_POLICY_RATIO_TABLE[6] = {
|
| + /* low, high water ratio */
|
| + 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */
|
| + 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */
|
| + 0.0F, 1.0F /* U_FIXED: Never change size */
|
| +};
|
| +
|
| +/*
|
| + Invariants for hashcode values:
|
| +
|
| + * DELETED < 0
|
| + * EMPTY < 0
|
| + * Real hashes >= 0
|
| +
|
| + Hashcodes may not start out this way, but internally they are
|
| + adjusted so that they are always positive. We assume 32-bit
|
| + hashcodes; adjust these constants for other hashcode sizes.
|
| +*/
|
| +#define HASH_DELETED ((int32_t) 0x80000000)
|
| +#define HASH_EMPTY ((int32_t) HASH_DELETED + 1)
|
| +
|
| +#define IS_EMPTY_OR_DELETED(x) ((x) < 0)
|
| +
|
| +/* This macro expects a UHashTok.pointer as its keypointer and
|
| + valuepointer parameters */
|
| +#define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \
|
| + if (hash->keyDeleter != NULL && keypointer != NULL) { \
|
| + (*hash->keyDeleter)(keypointer); \
|
| + } \
|
| + if (hash->valueDeleter != NULL && valuepointer != NULL) { \
|
| + (*hash->valueDeleter)(valuepointer); \
|
| + }
|
| +
|
| +/*
|
| + * Constants for hinting whether a key or value is an integer
|
| + * or a pointer. If a hint bit is zero, then the associated
|
| + * token is assumed to be an integer.
|
| + */
|
| +#define HINT_KEY_POINTER (1)
|
| +#define HINT_VALUE_POINTER (2)
|
| +
|
| +/********************************************************************
|
| + * PRIVATE Implementation
|
| + ********************************************************************/
|
| +
|
| +static UHashTok
|
| +_uhash_setElement(UHashtable *hash, UHashElement* e,
|
| + int32_t hashcode,
|
| + UHashTok key, UHashTok value, int8_t hint) {
|
| +
|
| + UHashTok oldValue = e->value;
|
| + if (hash->keyDeleter != NULL && e->key.pointer != NULL &&
|
| + e->key.pointer != key.pointer) { /* Avoid double deletion */
|
| + (*hash->keyDeleter)(e->key.pointer);
|
| + }
|
| + if (hash->valueDeleter != NULL) {
|
| + if (oldValue.pointer != NULL &&
|
| + oldValue.pointer != value.pointer) { /* Avoid double deletion */
|
| + (*hash->valueDeleter)(oldValue.pointer);
|
| + }
|
| + oldValue.pointer = NULL;
|
| + }
|
| + /* Compilers should copy the UHashTok union correctly, but even if
|
| + * they do, memory heap tools (e.g. BoundsChecker) can get
|
| + * confused when a pointer is cloaked in a union and then copied.
|
| + * TO ALLEVIATE THIS, we use hints (based on what API the user is
|
| + * calling) to copy pointers when we know the user thinks
|
| + * something is a pointer. */
|
| + if (hint & HINT_KEY_POINTER) {
|
| + e->key.pointer = key.pointer;
|
| + } else {
|
| + e->key = key;
|
| + }
|
| + if (hint & HINT_VALUE_POINTER) {
|
| + e->value.pointer = value.pointer;
|
| + } else {
|
| + e->value = value;
|
| + }
|
| + e->hashcode = hashcode;
|
| + return oldValue;
|
| +}
|
| +
|
| +/**
|
| + * Assumes that the given element is not empty or deleted.
|
| + */
|
| +static UHashTok
|
| +_uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) {
|
| + UHashTok empty;
|
| + U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode));
|
| + --hash->count;
|
| + empty.pointer = NULL; empty.integer = 0;
|
| + return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0);
|
| +}
|
| +
|
| +static void
|
| +_uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
|
| + U_ASSERT(hash != NULL);
|
| + U_ASSERT(((int32_t)policy) >= 0);
|
| + U_ASSERT(((int32_t)policy) < 3);
|
| + hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2];
|
| + hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1];
|
| +}
|
| +
|
| +/**
|
| + * Allocate internal data array of a size determined by the given
|
| + * prime index. If the index is out of range it is pinned into range.
|
| + * If the allocation fails the status is set to
|
| + * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In
|
| + * either case the previous array pointer is overwritten.
|
| + *
|
| + * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1.
|
| + */
|
| +static void
|
| +_uhash_allocate(UHashtable *hash,
|
| + int32_t primeIndex,
|
| + UErrorCode *status) {
|
| +
|
| + UHashElement *p, *limit;
|
| + UHashTok emptytok;
|
| +
|
| + if (U_FAILURE(*status)) return;
|
| +
|
| + U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH);
|
| +
|
| + hash->primeIndex = primeIndex;
|
| + hash->length = PRIMES[primeIndex];
|
| +
|
| + p = hash->elements = (UHashElement*)
|
| + uprv_malloc(sizeof(UHashElement) * hash->length);
|
| +
|
| + if (hash->elements == NULL) {
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + return;
|
| + }
|
| +
|
| + emptytok.pointer = NULL; /* Only one of these two is needed */
|
| + emptytok.integer = 0; /* but we don't know which one. */
|
| +
|
| + limit = p + hash->length;
|
| + while (p < limit) {
|
| + p->key = emptytok;
|
| + p->value = emptytok;
|
| + p->hashcode = HASH_EMPTY;
|
| + ++p;
|
| + }
|
| +
|
| + hash->count = 0;
|
| + hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
|
| + hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
|
| +}
|
| +
|
| +static UHashtable*
|
| +_uhash_init(UHashtable *result,
|
| + UHashFunction *keyHash,
|
| + UKeyComparator *keyComp,
|
| + UValueComparator *valueComp,
|
| + int32_t primeIndex,
|
| + UErrorCode *status)
|
| +{
|
| + if (U_FAILURE(*status)) return NULL;
|
| + U_ASSERT(keyHash != NULL);
|
| + U_ASSERT(keyComp != NULL);
|
| +
|
| + result->keyHasher = keyHash;
|
| + result->keyComparator = keyComp;
|
| + result->valueComparator = valueComp;
|
| + result->keyDeleter = NULL;
|
| + result->valueDeleter = NULL;
|
| + result->allocated = FALSE;
|
| + _uhash_internalSetResizePolicy(result, U_GROW);
|
| +
|
| + _uhash_allocate(result, primeIndex, status);
|
| +
|
| + if (U_FAILURE(*status)) {
|
| + return NULL;
|
| + }
|
| +
|
| + return result;
|
| +}
|
| +
|
| +static UHashtable*
|
| +_uhash_create(UHashFunction *keyHash,
|
| + UKeyComparator *keyComp,
|
| + UValueComparator *valueComp,
|
| + int32_t primeIndex,
|
| + UErrorCode *status) {
|
| + UHashtable *result;
|
| +
|
| + if (U_FAILURE(*status)) return NULL;
|
| +
|
| + result = (UHashtable*) uprv_malloc(sizeof(UHashtable));
|
| + if (result == NULL) {
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + return NULL;
|
| + }
|
| +
|
| + _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status);
|
| + result->allocated = TRUE;
|
| +
|
| + if (U_FAILURE(*status)) {
|
| + uprv_free(result);
|
| + return NULL;
|
| + }
|
| +
|
| + return result;
|
| +}
|
| +
|
| +/**
|
| + * Look for a key in the table, or if no such key exists, the first
|
| + * empty slot matching the given hashcode. Keys are compared using
|
| + * the keyComparator function.
|
| + *
|
| + * First find the start position, which is the hashcode modulo
|
| + * the length. Test it to see if it is:
|
| + *
|
| + * a. identical: First check the hash values for a quick check,
|
| + * then compare keys for equality using keyComparator.
|
| + * b. deleted
|
| + * c. empty
|
| + *
|
| + * Stop if it is identical or empty, otherwise continue by adding a
|
| + * "jump" value (moduloing by the length again to keep it within
|
| + * range) and retesting. For efficiency, there need enough empty
|
| + * values so that the searchs stop within a reasonable amount of time.
|
| + * This can be changed by changing the high/low water marks.
|
| + *
|
| + * In theory, this function can return NULL, if it is full (no empty
|
| + * or deleted slots) and if no matching key is found. In practice, we
|
| + * prevent this elsewhere (in uhash_put) by making sure the last slot
|
| + * in the table is never filled.
|
| + *
|
| + * The size of the table should be prime for this algorithm to work;
|
| + * otherwise we are not guaranteed that the jump value (the secondary
|
| + * hash) is relatively prime to the table length.
|
| + */
|
| +static UHashElement*
|
| +_uhash_find(const UHashtable *hash, UHashTok key,
|
| + int32_t hashcode) {
|
| +
|
| + int32_t firstDeleted = -1; /* assume invalid index */
|
| + int32_t theIndex, startIndex;
|
| + int32_t jump = 0; /* lazy evaluate */
|
| + int32_t tableHash;
|
| + UHashElement *elements = hash->elements;
|
| +
|
| + hashcode &= 0x7FFFFFFF; /* must be positive */
|
| + startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length;
|
| +
|
| + do {
|
| + tableHash = elements[theIndex].hashcode;
|
| + if (tableHash == hashcode) { /* quick check */
|
| + if ((*hash->keyComparator)(key, elements[theIndex].key)) {
|
| + return &(elements[theIndex]);
|
| + }
|
| + } else if (!IS_EMPTY_OR_DELETED(tableHash)) {
|
| + /* We have hit a slot which contains a key-value pair,
|
| + * but for which the hash code does not match. Keep
|
| + * looking.
|
| + */
|
| + } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */
|
| + break;
|
| + } else if (firstDeleted < 0) { /* remember first deleted */
|
| + firstDeleted = theIndex;
|
| + }
|
| + if (jump == 0) { /* lazy compute jump */
|
| + /* The jump value must be relatively prime to the table
|
| + * length. As long as the length is prime, then any value
|
| + * 1..length-1 will be relatively prime to it.
|
| + */
|
| + jump = (hashcode % (hash->length - 1)) + 1;
|
| + }
|
| + theIndex = (theIndex + jump) % hash->length;
|
| + } while (theIndex != startIndex);
|
| +
|
| + if (firstDeleted >= 0) {
|
| + theIndex = firstDeleted; /* reset if had deleted slot */
|
| + } else if (tableHash != HASH_EMPTY) {
|
| + /* We get to this point if the hashtable is full (no empty or
|
| + * deleted slots), and we've failed to find a match. THIS
|
| + * WILL NEVER HAPPEN as long as uhash_put() makes sure that
|
| + * count is always < length.
|
| + */
|
| + U_ASSERT(FALSE);
|
| + return NULL; /* Never happens if uhash_put() behaves */
|
| + }
|
| + return &(elements[theIndex]);
|
| +}
|
| +
|
| +/**
|
| + * Attempt to grow or shrink the data arrays in order to make the
|
| + * count fit between the high and low water marks. hash_put() and
|
| + * hash_remove() call this method when the count exceeds the high or
|
| + * low water marks. This method may do nothing, if memory allocation
|
| + * fails, or if the count is already in range, or if the length is
|
| + * already at the low or high limit. In any case, upon return the
|
| + * arrays will be valid.
|
| + */
|
| +static void
|
| +_uhash_rehash(UHashtable *hash, UErrorCode *status) {
|
| +
|
| + UHashElement *old = hash->elements;
|
| + int32_t oldLength = hash->length;
|
| + int32_t newPrimeIndex = hash->primeIndex;
|
| + int32_t i;
|
| +
|
| + if (hash->count > hash->highWaterMark) {
|
| + if (++newPrimeIndex >= PRIMES_LENGTH) {
|
| + return;
|
| + }
|
| + } else if (hash->count < hash->lowWaterMark) {
|
| + if (--newPrimeIndex < 0) {
|
| + return;
|
| + }
|
| + } else {
|
| + return;
|
| + }
|
| +
|
| + _uhash_allocate(hash, newPrimeIndex, status);
|
| +
|
| + if (U_FAILURE(*status)) {
|
| + hash->elements = old;
|
| + hash->length = oldLength;
|
| + return;
|
| + }
|
| +
|
| + for (i = oldLength - 1; i >= 0; --i) {
|
| + if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) {
|
| + UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode);
|
| + U_ASSERT(e != NULL);
|
| + U_ASSERT(e->hashcode == HASH_EMPTY);
|
| + e->key = old[i].key;
|
| + e->value = old[i].value;
|
| + e->hashcode = old[i].hashcode;
|
| + ++hash->count;
|
| + }
|
| + }
|
| +
|
| + uprv_free(old);
|
| +}
|
| +
|
| +static UHashTok
|
| +_uhash_remove(UHashtable *hash,
|
| + UHashTok key) {
|
| + /* First find the position of the key in the table. If the object
|
| + * has not been removed already, remove it. If the user wanted
|
| + * keys deleted, then delete it also. We have to put a special
|
| + * hashcode in that position that means that something has been
|
| + * deleted, since when we do a find, we have to continue PAST any
|
| + * deleted values.
|
| + */
|
| + UHashTok result;
|
| + UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key));
|
| + U_ASSERT(e != NULL);
|
| + result.pointer = NULL;
|
| + result.integer = 0;
|
| + if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
|
| + result = _uhash_internalRemoveElement(hash, e);
|
| + if (hash->count < hash->lowWaterMark) {
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + _uhash_rehash(hash, &status);
|
| + }
|
| + }
|
| + return result;
|
| +}
|
| +
|
| +static UHashTok
|
| +_uhash_put(UHashtable *hash,
|
| + UHashTok key,
|
| + UHashTok value,
|
| + int8_t hint,
|
| + UErrorCode *status) {
|
| +
|
| + /* Put finds the position in the table for the new value. If the
|
| + * key is already in the table, it is deleted, if there is a
|
| + * non-NULL keyDeleter. Then the key, the hash and the value are
|
| + * all put at the position in their respective arrays.
|
| + */
|
| + int32_t hashcode;
|
| + UHashElement* e;
|
| + UHashTok emptytok;
|
| +
|
| + if (U_FAILURE(*status)) {
|
| + goto err;
|
| + }
|
| + U_ASSERT(hash != NULL);
|
| + /* Cannot always check pointer here or iSeries sees NULL every time. */
|
| + if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) {
|
| + /* Disallow storage of NULL values, since NULL is returned by
|
| + * get() to indicate an absent key. Storing NULL == removing.
|
| + */
|
| + return _uhash_remove(hash, key);
|
| + }
|
| + if (hash->count > hash->highWaterMark) {
|
| + _uhash_rehash(hash, status);
|
| + if (U_FAILURE(*status)) {
|
| + goto err;
|
| + }
|
| + }
|
| +
|
| + hashcode = (*hash->keyHasher)(key);
|
| + e = _uhash_find(hash, key, hashcode);
|
| + U_ASSERT(e != NULL);
|
| +
|
| + if (IS_EMPTY_OR_DELETED(e->hashcode)) {
|
| + /* Important: We must never actually fill the table up. If we
|
| + * do so, then _uhash_find() will return NULL, and we'll have
|
| + * to check for NULL after every call to _uhash_find(). To
|
| + * avoid this we make sure there is always at least one empty
|
| + * or deleted slot in the table. This only is a problem if we
|
| + * are out of memory and rehash isn't working.
|
| + */
|
| + ++hash->count;
|
| + if (hash->count == hash->length) {
|
| + /* Don't allow count to reach length */
|
| + --hash->count;
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + goto err;
|
| + }
|
| + }
|
| +
|
| + /* We must in all cases handle storage properly. If there was an
|
| + * old key, then it must be deleted (if the deleter != NULL).
|
| + * Make hashcodes stored in table positive.
|
| + */
|
| + return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint);
|
| +
|
| + err:
|
| + /* If the deleters are non-NULL, this method adopts its key and/or
|
| + * value arguments, and we must be sure to delete the key and/or
|
| + * value in all cases, even upon failure.
|
| + */
|
| + HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer);
|
| + emptytok.pointer = NULL; emptytok.integer = 0;
|
| + return emptytok;
|
| +}
|
| +
|
| +
|
| +/********************************************************************
|
| + * PUBLIC API
|
| + ********************************************************************/
|
| +
|
| +U_CAPI UHashtable* U_EXPORT2
|
| +uhash_open(UHashFunction *keyHash,
|
| + UKeyComparator *keyComp,
|
| + UValueComparator *valueComp,
|
| + UErrorCode *status) {
|
| +
|
| + return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
|
| +}
|
| +
|
| +U_CAPI UHashtable* U_EXPORT2
|
| +uhash_openSize(UHashFunction *keyHash,
|
| + UKeyComparator *keyComp,
|
| + UValueComparator *valueComp,
|
| + int32_t size,
|
| + UErrorCode *status) {
|
| +
|
| + /* Find the smallest index i for which PRIMES[i] >= size. */
|
| + int32_t i = 0;
|
| + while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
|
| + ++i;
|
| + }
|
| +
|
| + return _uhash_create(keyHash, keyComp, valueComp, i, status);
|
| +}
|
| +
|
| +U_CAPI UHashtable* U_EXPORT2
|
| +uhash_init(UHashtable *fillinResult,
|
| + UHashFunction *keyHash,
|
| + UKeyComparator *keyComp,
|
| + UValueComparator *valueComp,
|
| + UErrorCode *status) {
|
| +
|
| + return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
|
| +}
|
| +
|
| +U_CAPI void U_EXPORT2
|
| +uhash_close(UHashtable *hash) {
|
| + if (hash == NULL) {
|
| + return;
|
| + }
|
| + if (hash->elements != NULL) {
|
| + if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) {
|
| + int32_t pos=-1;
|
| + UHashElement *e;
|
| + while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) {
|
| + HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer);
|
| + }
|
| + }
|
| + uprv_free(hash->elements);
|
| + hash->elements = NULL;
|
| + }
|
| + if (hash->allocated) {
|
| + uprv_free(hash);
|
| + }
|
| +}
|
| +
|
| +U_CAPI UHashFunction *U_EXPORT2
|
| +uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) {
|
| + UHashFunction *result = hash->keyHasher;
|
| + hash->keyHasher = fn;
|
| + return result;
|
| +}
|
| +
|
| +U_CAPI UKeyComparator *U_EXPORT2
|
| +uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) {
|
| + UKeyComparator *result = hash->keyComparator;
|
| + hash->keyComparator = fn;
|
| + return result;
|
| +}
|
| +U_CAPI UValueComparator *U_EXPORT2
|
| +uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){
|
| + UValueComparator *result = hash->valueComparator;
|
| + hash->valueComparator = fn;
|
| + return result;
|
| +}
|
| +
|
| +U_CAPI UObjectDeleter *U_EXPORT2
|
| +uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) {
|
| + UObjectDeleter *result = hash->keyDeleter;
|
| + hash->keyDeleter = fn;
|
| + return result;
|
| +}
|
| +
|
| +U_CAPI UObjectDeleter *U_EXPORT2
|
| +uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) {
|
| + UObjectDeleter *result = hash->valueDeleter;
|
| + hash->valueDeleter = fn;
|
| + return result;
|
| +}
|
| +
|
| +U_CAPI void U_EXPORT2
|
| +uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + _uhash_internalSetResizePolicy(hash, policy);
|
| + hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
|
| + hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
|
| + _uhash_rehash(hash, &status);
|
| +}
|
| +
|
| +U_CAPI int32_t U_EXPORT2
|
| +uhash_count(const UHashtable *hash) {
|
| + return hash->count;
|
| +}
|
| +
|
| +U_CAPI void* U_EXPORT2
|
| +uhash_get(const UHashtable *hash,
|
| + const void* key) {
|
| + UHashTok keyholder;
|
| + keyholder.pointer = (void*) key;
|
| + return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
|
| +}
|
| +
|
| +U_CAPI void* U_EXPORT2
|
| +uhash_iget(const UHashtable *hash,
|
| + int32_t key) {
|
| + UHashTok keyholder;
|
| + keyholder.integer = key;
|
| + return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
|
| +}
|
| +
|
| +U_CAPI int32_t U_EXPORT2
|
| +uhash_geti(const UHashtable *hash,
|
| + const void* key) {
|
| + UHashTok keyholder;
|
| + keyholder.pointer = (void*) key;
|
| + return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
|
| +}
|
| +
|
| +U_CAPI int32_t U_EXPORT2
|
| +uhash_igeti(const UHashtable *hash,
|
| + int32_t key) {
|
| + UHashTok keyholder;
|
| + keyholder.integer = key;
|
| + return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
|
| +}
|
| +
|
| +U_CAPI void* U_EXPORT2
|
| +uhash_put(UHashtable *hash,
|
| + void* key,
|
| + void* value,
|
| + UErrorCode *status) {
|
| + UHashTok keyholder, valueholder;
|
| + keyholder.pointer = key;
|
| + valueholder.pointer = value;
|
| + return _uhash_put(hash, keyholder, valueholder,
|
| + HINT_KEY_POINTER | HINT_VALUE_POINTER,
|
| + status).pointer;
|
| +}
|
| +
|
| +U_CAPI void* U_EXPORT2
|
| +uhash_iput(UHashtable *hash,
|
| + int32_t key,
|
| + void* value,
|
| + UErrorCode *status) {
|
| + UHashTok keyholder, valueholder;
|
| + keyholder.integer = key;
|
| + valueholder.pointer = value;
|
| + return _uhash_put(hash, keyholder, valueholder,
|
| + HINT_VALUE_POINTER,
|
| + status).pointer;
|
| +}
|
| +
|
| +U_CAPI int32_t U_EXPORT2
|
| +uhash_puti(UHashtable *hash,
|
| + void* key,
|
| + int32_t value,
|
| + UErrorCode *status) {
|
| + UHashTok keyholder, valueholder;
|
| + keyholder.pointer = key;
|
| + valueholder.integer = value;
|
| + return _uhash_put(hash, keyholder, valueholder,
|
| + HINT_KEY_POINTER,
|
| + status).integer;
|
| +}
|
| +
|
| +
|
| +U_CAPI int32_t U_EXPORT2
|
| +uhash_iputi(UHashtable *hash,
|
| + int32_t key,
|
| + int32_t value,
|
| + UErrorCode *status) {
|
| + UHashTok keyholder, valueholder;
|
| + keyholder.integer = key;
|
| + valueholder.integer = value;
|
| + return _uhash_put(hash, keyholder, valueholder,
|
| + 0, /* neither is a ptr */
|
| + status).integer;
|
| +}
|
| +
|
| +U_CAPI void* U_EXPORT2
|
| +uhash_remove(UHashtable *hash,
|
| + const void* key) {
|
| + UHashTok keyholder;
|
| + keyholder.pointer = (void*) key;
|
| + return _uhash_remove(hash, keyholder).pointer;
|
| +}
|
| +
|
| +U_CAPI void* U_EXPORT2
|
| +uhash_iremove(UHashtable *hash,
|
| + int32_t key) {
|
| + UHashTok keyholder;
|
| + keyholder.integer = key;
|
| + return _uhash_remove(hash, keyholder).pointer;
|
| +}
|
| +
|
| +U_CAPI int32_t U_EXPORT2
|
| +uhash_removei(UHashtable *hash,
|
| + const void* key) {
|
| + UHashTok keyholder;
|
| + keyholder.pointer = (void*) key;
|
| + return _uhash_remove(hash, keyholder).integer;
|
| +}
|
| +
|
| +U_CAPI int32_t U_EXPORT2
|
| +uhash_iremovei(UHashtable *hash,
|
| + int32_t key) {
|
| + UHashTok keyholder;
|
| + keyholder.integer = key;
|
| + return _uhash_remove(hash, keyholder).integer;
|
| +}
|
| +
|
| +U_CAPI void U_EXPORT2
|
| +uhash_removeAll(UHashtable *hash) {
|
| + int32_t pos = -1;
|
| + const UHashElement *e;
|
| + U_ASSERT(hash != NULL);
|
| + if (hash->count != 0) {
|
| + while ((e = uhash_nextElement(hash, &pos)) != NULL) {
|
| + uhash_removeElement(hash, e);
|
| + }
|
| + }
|
| + U_ASSERT(hash->count == 0);
|
| +}
|
| +
|
| +U_CAPI const UHashElement* U_EXPORT2
|
| +uhash_find(const UHashtable *hash, const void* key) {
|
| + UHashTok keyholder;
|
| + const UHashElement *e;
|
| + keyholder.pointer = (void*) key;
|
| + e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
|
| + return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e;
|
| +}
|
| +
|
| +U_CAPI const UHashElement* U_EXPORT2
|
| +uhash_nextElement(const UHashtable *hash, int32_t *pos) {
|
| + /* Walk through the array until we find an element that is not
|
| + * EMPTY and not DELETED.
|
| + */
|
| + int32_t i;
|
| + U_ASSERT(hash != NULL);
|
| + for (i = *pos + 1; i < hash->length; ++i) {
|
| + if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) {
|
| + *pos = i;
|
| + return &(hash->elements[i]);
|
| + }
|
| + }
|
| +
|
| + /* No more elements */
|
| + return NULL;
|
| +}
|
| +
|
| +U_CAPI void* U_EXPORT2
|
| +uhash_removeElement(UHashtable *hash, const UHashElement* e) {
|
| + U_ASSERT(hash != NULL);
|
| + U_ASSERT(e != NULL);
|
| + if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
|
| + UHashElement *nce = (UHashElement *)e;
|
| + return _uhash_internalRemoveElement(hash, nce).pointer;
|
| + }
|
| + return NULL;
|
| +}
|
| +
|
| +/********************************************************************
|
| + * UHashTok convenience
|
| + ********************************************************************/
|
| +
|
| +/**
|
| + * Return a UHashTok for an integer.
|
| + */
|
| +/*U_CAPI UHashTok U_EXPORT2
|
| +uhash_toki(int32_t i) {
|
| + UHashTok tok;
|
| + tok.integer = i;
|
| + return tok;
|
| +}*/
|
| +
|
| +/**
|
| + * Return a UHashTok for a pointer.
|
| + */
|
| +/*U_CAPI UHashTok U_EXPORT2
|
| +uhash_tokp(void* p) {
|
| + UHashTok tok;
|
| + tok.pointer = p;
|
| + return tok;
|
| +}*/
|
| +
|
| +/********************************************************************
|
| + * PUBLIC Key Hash Functions
|
| + ********************************************************************/
|
| +
|
| +U_CAPI int32_t U_EXPORT2
|
| +uhash_hashUChars(const UHashTok key) {
|
| + const UChar *s = (const UChar *)key.pointer;
|
| + return s == NULL ? 0 : ustr_hashUCharsN(s, u_strlen(s));
|
| +}
|
| +
|
| +U_CAPI int32_t U_EXPORT2
|
| +uhash_hashChars(const UHashTok key) {
|
| + const char *s = (const char *)key.pointer;
|
| + return s == NULL ? 0 : ustr_hashCharsN(s, uprv_strlen(s));
|
| +}
|
| +
|
| +U_CAPI int32_t U_EXPORT2
|
| +uhash_hashIChars(const UHashTok key) {
|
| + const char *s = (const char *)key.pointer;
|
| + return s == NULL ? 0 : ustr_hashICharsN(s, uprv_strlen(s));
|
| +}
|
| +
|
| +U_CAPI UBool U_EXPORT2
|
| +uhash_equals(const UHashtable* hash1, const UHashtable* hash2){
|
| + int32_t count1, count2, pos, i;
|
| +
|
| + if(hash1==hash2){
|
| + return TRUE;
|
| + }
|
| +
|
| + /*
|
| + * Make sure that we are comparing 2 valid hashes of the same type
|
| + * with valid comparison functions.
|
| + * Without valid comparison functions, a binary comparison
|
| + * of the hash values will yield random results on machines
|
| + * with 64-bit pointers and 32-bit integer hashes.
|
| + * A valueComparator is normally optional.
|
| + */
|
| + if (hash1==NULL || hash2==NULL ||
|
| + hash1->keyComparator != hash2->keyComparator ||
|
| + hash1->valueComparator != hash2->valueComparator ||
|
| + hash1->valueComparator == NULL)
|
| + {
|
| + /*
|
| + Normally we would return an error here about incompatible hash tables,
|
| + but we return FALSE instead.
|
| + */
|
| + return FALSE;
|
| + }
|
| +
|
| + count1 = uhash_count(hash1);
|
| + count2 = uhash_count(hash2);
|
| + if(count1!=count2){
|
| + return FALSE;
|
| + }
|
| +
|
| + pos=-1;
|
| + for(i=0; i<count1; i++){
|
| + const UHashElement* elem1 = uhash_nextElement(hash1, &pos);
|
| + const UHashTok key1 = elem1->key;
|
| + const UHashTok val1 = elem1->value;
|
| + /* here the keys are not compared, instead the key form hash1 is used to fetch
|
| + * value from hash2. If the hashes are equal then then both hashes should
|
| + * contain equal values for the same key!
|
| + */
|
| + const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1));
|
| + const UHashTok val2 = elem2->value;
|
| + if(hash1->valueComparator(val1, val2)==FALSE){
|
| + return FALSE;
|
| + }
|
| + }
|
| + return TRUE;
|
| +}
|
| +
|
| +/********************************************************************
|
| + * PUBLIC Comparator Functions
|
| + ********************************************************************/
|
| +
|
| +U_CAPI UBool U_EXPORT2
|
| +uhash_compareUChars(const UHashTok key1, const UHashTok key2) {
|
| + const UChar *p1 = (const UChar*) key1.pointer;
|
| + const UChar *p2 = (const UChar*) key2.pointer;
|
| + if (p1 == p2) {
|
| + return TRUE;
|
| + }
|
| + if (p1 == NULL || p2 == NULL) {
|
| + return FALSE;
|
| + }
|
| + while (*p1 != 0 && *p1 == *p2) {
|
| + ++p1;
|
| + ++p2;
|
| + }
|
| + return (UBool)(*p1 == *p2);
|
| +}
|
| +
|
| +U_CAPI UBool U_EXPORT2
|
| +uhash_compareChars(const UHashTok key1, const UHashTok key2) {
|
| + const char *p1 = (const char*) key1.pointer;
|
| + const char *p2 = (const char*) key2.pointer;
|
| + if (p1 == p2) {
|
| + return TRUE;
|
| + }
|
| + if (p1 == NULL || p2 == NULL) {
|
| + return FALSE;
|
| + }
|
| + while (*p1 != 0 && *p1 == *p2) {
|
| + ++p1;
|
| + ++p2;
|
| + }
|
| + return (UBool)(*p1 == *p2);
|
| +}
|
| +
|
| +U_CAPI UBool U_EXPORT2
|
| +uhash_compareIChars(const UHashTok key1, const UHashTok key2) {
|
| + const char *p1 = (const char*) key1.pointer;
|
| + const char *p2 = (const char*) key2.pointer;
|
| + if (p1 == p2) {
|
| + return TRUE;
|
| + }
|
| + if (p1 == NULL || p2 == NULL) {
|
| + return FALSE;
|
| + }
|
| + while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) {
|
| + ++p1;
|
| + ++p2;
|
| + }
|
| + return (UBool)(*p1 == *p2);
|
| +}
|
| +
|
| +/********************************************************************
|
| + * PUBLIC int32_t Support Functions
|
| + ********************************************************************/
|
| +
|
| +U_CAPI int32_t U_EXPORT2
|
| +uhash_hashLong(const UHashTok key) {
|
| + return key.integer;
|
| +}
|
| +
|
| +U_CAPI UBool U_EXPORT2
|
| +uhash_compareLong(const UHashTok key1, const UHashTok key2) {
|
| + return (UBool)(key1.integer == key2.integer);
|
| +}
|
|
|
| Property changes on: icu51/source/common/uhash.c
|
| ___________________________________________________________________
|
| Added: svn:eol-style
|
| + LF
|
|
|
|
|