Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(3)

Unified Diff: icu51/source/common/dictbe.cpp

Issue 20882002: Check in the pristine copy of ICU 51.2 (Closed) Base URL: svn://chrome-svn/chrome/trunk/deps/third_party/
Patch Set: Created 7 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « icu51/source/common/dictbe.h ('k') | icu51/source/common/dictionarydata.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: icu51/source/common/dictbe.cpp
===================================================================
--- icu51/source/common/dictbe.cpp (revision 0)
+++ icu51/source/common/dictbe.cpp (revision 0)
@@ -0,0 +1,942 @@
+/**
+ *******************************************************************************
+ * Copyright (C) 2006-2012, International Business Machines Corporation
+ * and others. All Rights Reserved.
+ *******************************************************************************
+ */
+
+#include "unicode/utypes.h"
+
+#if !UCONFIG_NO_BREAK_ITERATION
+
+#include "brkeng.h"
+#include "dictbe.h"
+#include "unicode/uniset.h"
+#include "unicode/chariter.h"
+#include "unicode/ubrk.h"
+#include "uvector.h"
+#include "uassert.h"
+#include "unicode/normlzr.h"
+#include "cmemory.h"
+#include "dictionarydata.h"
+
+U_NAMESPACE_BEGIN
+
+/*
+ ******************************************************************
+ */
+
+DictionaryBreakEngine::DictionaryBreakEngine(uint32_t breakTypes) {
+ fTypes = breakTypes;
+}
+
+DictionaryBreakEngine::~DictionaryBreakEngine() {
+}
+
+UBool
+DictionaryBreakEngine::handles(UChar32 c, int32_t breakType) const {
+ return (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes)
+ && fSet.contains(c));
+}
+
+int32_t
+DictionaryBreakEngine::findBreaks( UText *text,
+ int32_t startPos,
+ int32_t endPos,
+ UBool reverse,
+ int32_t breakType,
+ UStack &foundBreaks ) const {
+ int32_t result = 0;
+
+ // Find the span of characters included in the set.
+ int32_t start = (int32_t)utext_getNativeIndex(text);
+ int32_t current;
+ int32_t rangeStart;
+ int32_t rangeEnd;
+ UChar32 c = utext_current32(text);
+ if (reverse) {
+ UBool isDict = fSet.contains(c);
+ while((current = (int32_t)utext_getNativeIndex(text)) > startPos && isDict) {
+ c = utext_previous32(text);
+ isDict = fSet.contains(c);
+ }
+ rangeStart = (current < startPos) ? startPos : current+(isDict ? 0 : 1);
+ rangeEnd = start + 1;
+ }
+ else {
+ while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) {
+ utext_next32(text); // TODO: recast loop for postincrement
+ c = utext_current32(text);
+ }
+ rangeStart = start;
+ rangeEnd = current;
+ }
+ if (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes)) {
+ result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks);
+ utext_setNativeIndex(text, current);
+ }
+
+ return result;
+}
+
+void
+DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) {
+ fSet = set;
+ // Compact for caching
+ fSet.compact();
+}
+
+/*
+ ******************************************************************
+ */
+
+
+// Helper class for improving readability of the Thai word break
+// algorithm. The implementation is completely inline.
+
+// List size, limited by the maximum number of words in the dictionary
+// that form a nested sequence.
+#define POSSIBLE_WORD_LIST_MAX 20
+
+class PossibleWord {
+private:
+ // list of word candidate lengths, in increasing length order
+ int32_t lengths[POSSIBLE_WORD_LIST_MAX];
+ int32_t count; // Count of candidates
+ int32_t prefix; // The longest match with a dictionary word
+ int32_t offset; // Offset in the text of these candidates
+ int mark; // The preferred candidate's offset
+ int current; // The candidate we're currently looking at
+
+public:
+ PossibleWord();
+ ~PossibleWord();
+
+ // Fill the list of candidates if needed, select the longest, and return the number found
+ int candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd );
+
+ // Select the currently marked candidate, point after it in the text, and invalidate self
+ int32_t acceptMarked( UText *text );
+
+ // Back up from the current candidate to the next shorter one; return TRUE if that exists
+ // and point the text after it
+ UBool backUp( UText *text );
+
+ // Return the longest prefix this candidate location shares with a dictionary word
+ int32_t longestPrefix();
+
+ // Mark the current candidate as the one we like
+ void markCurrent();
+};
+
+inline
+PossibleWord::PossibleWord() {
+ offset = -1;
+}
+
+inline
+PossibleWord::~PossibleWord() {
+}
+
+inline int
+PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) {
+ // TODO: If getIndex is too slow, use offset < 0 and add discardAll()
+ int32_t start = (int32_t)utext_getNativeIndex(text);
+ if (start != offset) {
+ offset = start;
+ prefix = dict->matches(text, rangeEnd-start, lengths, count, sizeof(lengths)/sizeof(lengths[0]));
+ // Dictionary leaves text after longest prefix, not longest word. Back up.
+ if (count <= 0) {
+ utext_setNativeIndex(text, start);
+ }
+ }
+ if (count > 0) {
+ utext_setNativeIndex(text, start+lengths[count-1]);
+ }
+ current = count-1;
+ mark = current;
+ return count;
+}
+
+inline int32_t
+PossibleWord::acceptMarked( UText *text ) {
+ utext_setNativeIndex(text, offset + lengths[mark]);
+ return lengths[mark];
+}
+
+inline UBool
+PossibleWord::backUp( UText *text ) {
+ if (current > 0) {
+ utext_setNativeIndex(text, offset + lengths[--current]);
+ return TRUE;
+ }
+ return FALSE;
+}
+
+inline int32_t
+PossibleWord::longestPrefix() {
+ return prefix;
+}
+
+inline void
+PossibleWord::markCurrent() {
+ mark = current;
+}
+
+// How many words in a row are "good enough"?
+#define THAI_LOOKAHEAD 3
+
+// Will not combine a non-word with a preceding dictionary word longer than this
+#define THAI_ROOT_COMBINE_THRESHOLD 3
+
+// Will not combine a non-word that shares at least this much prefix with a
+// dictionary word, with a preceding word
+#define THAI_PREFIX_COMBINE_THRESHOLD 3
+
+// Ellision character
+#define THAI_PAIYANNOI 0x0E2F
+
+// Repeat character
+#define THAI_MAIYAMOK 0x0E46
+
+// Minimum word size
+#define THAI_MIN_WORD 2
+
+// Minimum number of characters for two words
+#define THAI_MIN_WORD_SPAN (THAI_MIN_WORD * 2)
+
+ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
+ : DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)),
+ fDictionary(adoptDictionary)
+{
+ fThaiWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]]"), status);
+ if (U_SUCCESS(status)) {
+ setCharacters(fThaiWordSet);
+ }
+ fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]&[:M:]]"), status);
+ fMarkSet.add(0x0020);
+ fEndWordSet = fThaiWordSet;
+ fEndWordSet.remove(0x0E31); // MAI HAN-AKAT
+ fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
+ fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK
+ fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
+ fSuffixSet.add(THAI_PAIYANNOI);
+ fSuffixSet.add(THAI_MAIYAMOK);
+
+ // Compact for caching.
+ fMarkSet.compact();
+ fEndWordSet.compact();
+ fBeginWordSet.compact();
+ fSuffixSet.compact();
+}
+
+ThaiBreakEngine::~ThaiBreakEngine() {
+ delete fDictionary;
+}
+
+int32_t
+ThaiBreakEngine::divideUpDictionaryRange( UText *text,
+ int32_t rangeStart,
+ int32_t rangeEnd,
+ UStack &foundBreaks ) const {
+ if ((rangeEnd - rangeStart) < THAI_MIN_WORD_SPAN) {
+ return 0; // Not enough characters for two words
+ }
+
+ uint32_t wordsFound = 0;
+ int32_t wordLength;
+ int32_t current;
+ UErrorCode status = U_ZERO_ERROR;
+ PossibleWord words[THAI_LOOKAHEAD];
+ UChar32 uc;
+
+ utext_setNativeIndex(text, rangeStart);
+
+ while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
+ wordLength = 0;
+
+ // Look for candidate words at the current position
+ int candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+
+ // If we found exactly one, use that
+ if (candidates == 1) {
+ wordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
+ wordsFound += 1;
+ }
+ // If there was more than one, see which one can take us forward the most words
+ else if (candidates > 1) {
+ // If we're already at the end of the range, we're done
+ if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
+ goto foundBest;
+ }
+ do {
+ int wordsMatched = 1;
+ if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
+ if (wordsMatched < 2) {
+ // Followed by another dictionary word; mark first word as a good candidate
+ words[wordsFound%THAI_LOOKAHEAD].markCurrent();
+ wordsMatched = 2;
+ }
+
+ // If we're already at the end of the range, we're done
+ if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
+ goto foundBest;
+ }
+
+ // See if any of the possible second words is followed by a third word
+ do {
+ // If we find a third word, stop right away
+ if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
+ words[wordsFound % THAI_LOOKAHEAD].markCurrent();
+ goto foundBest;
+ }
+ }
+ while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text));
+ }
+ }
+ while (words[wordsFound % THAI_LOOKAHEAD].backUp(text));
+foundBest:
+ wordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
+ wordsFound += 1;
+ }
+
+ // We come here after having either found a word or not. We look ahead to the
+ // next word. If it's not a dictionary word, we will combine it withe the word we
+ // just found (if there is one), but only if the preceding word does not exceed
+ // the threshold.
+ // The text iterator should now be positioned at the end of the word we found.
+ if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength < THAI_ROOT_COMBINE_THRESHOLD) {
+ // if it is a dictionary word, do nothing. If it isn't, then if there is
+ // no preceding word, or the non-word shares less than the minimum threshold
+ // of characters with a dictionary word, then scan to resynchronize
+ if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
+ && (wordLength == 0
+ || words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) {
+ // Look for a plausible word boundary
+ //TODO: This section will need a rework for UText.
+ int32_t remaining = rangeEnd - (current+wordLength);
+ UChar32 pc = utext_current32(text);
+ int32_t chars = 0;
+ for (;;) {
+ utext_next32(text);
+ uc = utext_current32(text);
+ // TODO: Here we're counting on the fact that the SA languages are all
+ // in the BMP. This should get fixed with the UText rework.
+ chars += 1;
+ if (--remaining <= 0) {
+ break;
+ }
+ if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
+ // Maybe. See if it's in the dictionary.
+ // NOTE: In the original Apple code, checked that the next
+ // two characters after uc were not 0x0E4C THANTHAKHAT before
+ // checking the dictionary. That is just a performance filter,
+ // but it's not clear it's faster than checking the trie.
+ int candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+ utext_setNativeIndex(text, current + wordLength + chars);
+ if (candidates > 0) {
+ break;
+ }
+ }
+ pc = uc;
+ }
+
+ // Bump the word count if there wasn't already one
+ if (wordLength <= 0) {
+ wordsFound += 1;
+ }
+
+ // Update the length with the passed-over characters
+ wordLength += chars;
+ }
+ else {
+ // Back up to where we were for next iteration
+ utext_setNativeIndex(text, current+wordLength);
+ }
+ }
+
+ // Never stop before a combining mark.
+ int32_t currPos;
+ while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
+ utext_next32(text);
+ wordLength += (int32_t)utext_getNativeIndex(text) - currPos;
+ }
+
+ // Look ahead for possible suffixes if a dictionary word does not follow.
+ // We do this in code rather than using a rule so that the heuristic
+ // resynch continues to function. For example, one of the suffix characters
+ // could be a typo in the middle of a word.
+ if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) {
+ if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
+ && fSuffixSet.contains(uc = utext_current32(text))) {
+ if (uc == THAI_PAIYANNOI) {
+ if (!fSuffixSet.contains(utext_previous32(text))) {
+ // Skip over previous end and PAIYANNOI
+ utext_next32(text);
+ utext_next32(text);
+ wordLength += 1; // Add PAIYANNOI to word
+ uc = utext_current32(text); // Fetch next character
+ }
+ else {
+ // Restore prior position
+ utext_next32(text);
+ }
+ }
+ if (uc == THAI_MAIYAMOK) {
+ if (utext_previous32(text) != THAI_MAIYAMOK) {
+ // Skip over previous end and MAIYAMOK
+ utext_next32(text);
+ utext_next32(text);
+ wordLength += 1; // Add MAIYAMOK to word
+ }
+ else {
+ // Restore prior position
+ utext_next32(text);
+ }
+ }
+ }
+ else {
+ utext_setNativeIndex(text, current+wordLength);
+ }
+ }
+
+ // Did we find a word on this iteration? If so, push it on the break stack
+ if (wordLength > 0) {
+ foundBreaks.push((current+wordLength), status);
+ }
+ }
+
+ // Don't return a break for the end of the dictionary range if there is one there.
+ if (foundBreaks.peeki() >= rangeEnd) {
+ (void) foundBreaks.popi();
+ wordsFound -= 1;
+ }
+
+ return wordsFound;
+}
+
+// How many words in a row are "good enough"?
+#define KHMER_LOOKAHEAD 3
+
+// Will not combine a non-word with a preceding dictionary word longer than this
+#define KHMER_ROOT_COMBINE_THRESHOLD 3
+
+// Will not combine a non-word that shares at least this much prefix with a
+// dictionary word, with a preceding word
+#define KHMER_PREFIX_COMBINE_THRESHOLD 3
+
+// Minimum word size
+#define KHMER_MIN_WORD 2
+
+// Minimum number of characters for two words
+#define KHMER_MIN_WORD_SPAN (KHMER_MIN_WORD * 2)
+
+KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
+ : DictionaryBreakEngine((1 << UBRK_WORD) | (1 << UBRK_LINE)),
+ fDictionary(adoptDictionary)
+{
+ fKhmerWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]]"), status);
+ if (U_SUCCESS(status)) {
+ setCharacters(fKhmerWordSet);
+ }
+ fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]&[:M:]]"), status);
+ fMarkSet.add(0x0020);
+ fEndWordSet = fKhmerWordSet;
+ fBeginWordSet.add(0x1780, 0x17B3);
+ //fBeginWordSet.add(0x17A3, 0x17A4); // deprecated vowels
+ //fEndWordSet.remove(0x17A5, 0x17A9); // Khmer independent vowels that can't end a word
+ //fEndWordSet.remove(0x17B2); // Khmer independent vowel that can't end a word
+ fEndWordSet.remove(0x17D2); // KHMER SIGN COENG that combines some following characters
+ //fEndWordSet.remove(0x17B6, 0x17C5); // Remove dependent vowels
+// fEndWordSet.remove(0x0E31); // MAI HAN-AKAT
+// fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
+// fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK
+// fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
+// fSuffixSet.add(THAI_PAIYANNOI);
+// fSuffixSet.add(THAI_MAIYAMOK);
+
+ // Compact for caching.
+ fMarkSet.compact();
+ fEndWordSet.compact();
+ fBeginWordSet.compact();
+// fSuffixSet.compact();
+}
+
+KhmerBreakEngine::~KhmerBreakEngine() {
+ delete fDictionary;
+}
+
+int32_t
+KhmerBreakEngine::divideUpDictionaryRange( UText *text,
+ int32_t rangeStart,
+ int32_t rangeEnd,
+ UStack &foundBreaks ) const {
+ if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) {
+ return 0; // Not enough characters for two words
+ }
+
+ uint32_t wordsFound = 0;
+ int32_t wordLength;
+ int32_t current;
+ UErrorCode status = U_ZERO_ERROR;
+ PossibleWord words[KHMER_LOOKAHEAD];
+ UChar32 uc;
+
+ utext_setNativeIndex(text, rangeStart);
+
+ while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
+ wordLength = 0;
+
+ // Look for candidate words at the current position
+ int candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+
+ // If we found exactly one, use that
+ if (candidates == 1) {
+ wordLength = words[wordsFound%KHMER_LOOKAHEAD].acceptMarked(text);
+ wordsFound += 1;
+ }
+
+ // If there was more than one, see which one can take us forward the most words
+ else if (candidates > 1) {
+ // If we're already at the end of the range, we're done
+ if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
+ goto foundBest;
+ }
+ do {
+ int wordsMatched = 1;
+ if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
+ if (wordsMatched < 2) {
+ // Followed by another dictionary word; mark first word as a good candidate
+ words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
+ wordsMatched = 2;
+ }
+
+ // If we're already at the end of the range, we're done
+ if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
+ goto foundBest;
+ }
+
+ // See if any of the possible second words is followed by a third word
+ do {
+ // If we find a third word, stop right away
+ if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
+ words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
+ goto foundBest;
+ }
+ }
+ while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text));
+ }
+ }
+ while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text));
+foundBest:
+ wordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
+ wordsFound += 1;
+ }
+
+ // We come here after having either found a word or not. We look ahead to the
+ // next word. If it's not a dictionary word, we will combine it with the word we
+ // just found (if there is one), but only if the preceding word does not exceed
+ // the threshold.
+ // The text iterator should now be positioned at the end of the word we found.
+ if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength < KHMER_ROOT_COMBINE_THRESHOLD) {
+ // if it is a dictionary word, do nothing. If it isn't, then if there is
+ // no preceding word, or the non-word shares less than the minimum threshold
+ // of characters with a dictionary word, then scan to resynchronize
+ if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
+ && (wordLength == 0
+ || words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) {
+ // Look for a plausible word boundary
+ //TODO: This section will need a rework for UText.
+ int32_t remaining = rangeEnd - (current+wordLength);
+ UChar32 pc = utext_current32(text);
+ int32_t chars = 0;
+ for (;;) {
+ utext_next32(text);
+ uc = utext_current32(text);
+ // TODO: Here we're counting on the fact that the SA languages are all
+ // in the BMP. This should get fixed with the UText rework.
+ chars += 1;
+ if (--remaining <= 0) {
+ break;
+ }
+ if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
+ // Maybe. See if it's in the dictionary.
+ int candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+ utext_setNativeIndex(text, current+wordLength+chars);
+ if (candidates > 0) {
+ break;
+ }
+ }
+ pc = uc;
+ }
+
+ // Bump the word count if there wasn't already one
+ if (wordLength <= 0) {
+ wordsFound += 1;
+ }
+
+ // Update the length with the passed-over characters
+ wordLength += chars;
+ }
+ else {
+ // Back up to where we were for next iteration
+ utext_setNativeIndex(text, current+wordLength);
+ }
+ }
+
+ // Never stop before a combining mark.
+ int32_t currPos;
+ while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
+ utext_next32(text);
+ wordLength += (int32_t)utext_getNativeIndex(text) - currPos;
+ }
+
+ // Look ahead for possible suffixes if a dictionary word does not follow.
+ // We do this in code rather than using a rule so that the heuristic
+ // resynch continues to function. For example, one of the suffix characters
+ // could be a typo in the middle of a word.
+// if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) {
+// if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
+// && fSuffixSet.contains(uc = utext_current32(text))) {
+// if (uc == KHMER_PAIYANNOI) {
+// if (!fSuffixSet.contains(utext_previous32(text))) {
+// // Skip over previous end and PAIYANNOI
+// utext_next32(text);
+// utext_next32(text);
+// wordLength += 1; // Add PAIYANNOI to word
+// uc = utext_current32(text); // Fetch next character
+// }
+// else {
+// // Restore prior position
+// utext_next32(text);
+// }
+// }
+// if (uc == KHMER_MAIYAMOK) {
+// if (utext_previous32(text) != KHMER_MAIYAMOK) {
+// // Skip over previous end and MAIYAMOK
+// utext_next32(text);
+// utext_next32(text);
+// wordLength += 1; // Add MAIYAMOK to word
+// }
+// else {
+// // Restore prior position
+// utext_next32(text);
+// }
+// }
+// }
+// else {
+// utext_setNativeIndex(text, current+wordLength);
+// }
+// }
+
+ // Did we find a word on this iteration? If so, push it on the break stack
+ if (wordLength > 0) {
+ foundBreaks.push((current+wordLength), status);
+ }
+ }
+
+ // Don't return a break for the end of the dictionary range if there is one there.
+ if (foundBreaks.peeki() >= rangeEnd) {
+ (void) foundBreaks.popi();
+ wordsFound -= 1;
+ }
+
+ return wordsFound;
+}
+
+#if !UCONFIG_NO_NORMALIZATION
+/*
+ ******************************************************************
+ * CjkBreakEngine
+ */
+static const uint32_t kuint32max = 0xFFFFFFFF;
+CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status)
+: DictionaryBreakEngine(1 << UBRK_WORD), fDictionary(adoptDictionary) {
+ // Korean dictionary only includes Hangul syllables
+ fHangulWordSet.applyPattern(UNICODE_STRING_SIMPLE("[\\uac00-\\ud7a3]"), status);
+ fHanWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Han:]"), status);
+ fKatakanaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Katakana:]\\uff9e\\uff9f]"), status);
+ fHiraganaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Hiragana:]"), status);
+
+ if (U_SUCCESS(status)) {
+ // handle Korean and Japanese/Chinese using different dictionaries
+ if (type == kKorean) {
+ setCharacters(fHangulWordSet);
+ } else { //Chinese and Japanese
+ UnicodeSet cjSet;
+ cjSet.addAll(fHanWordSet);
+ cjSet.addAll(fKatakanaWordSet);
+ cjSet.addAll(fHiraganaWordSet);
+ cjSet.add(UNICODE_STRING_SIMPLE("\\uff70\\u30fc"));
+ setCharacters(cjSet);
+ }
+ }
+}
+
+CjkBreakEngine::~CjkBreakEngine(){
+ delete fDictionary;
+}
+
+// The katakanaCost values below are based on the length frequencies of all
+// katakana phrases in the dictionary
+static const int kMaxKatakanaLength = 8;
+static const int kMaxKatakanaGroupLength = 20;
+static const uint32_t maxSnlp = 255;
+
+static inline uint32_t getKatakanaCost(int wordLength){
+ //TODO: fill array with actual values from dictionary!
+ static const uint32_t katakanaCost[kMaxKatakanaLength + 1]
+ = {8192, 984, 408, 240, 204, 252, 300, 372, 480};
+ return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength];
+}
+
+static inline bool isKatakana(uint16_t value) {
+ return (value >= 0x30A1u && value <= 0x30FEu && value != 0x30FBu) ||
+ (value >= 0xFF66u && value <= 0xFF9fu);
+}
+
+// A very simple helper class to streamline the buffer handling in
+// divideUpDictionaryRange.
+template<class T, size_t N>
+class AutoBuffer {
+public:
+ AutoBuffer(size_t size) : buffer(stackBuffer), capacity(N) {
+ if (size > N) {
+ buffer = reinterpret_cast<T*>(uprv_malloc(sizeof(T)*size));
+ capacity = size;
+ }
+ }
+ ~AutoBuffer() {
+ if (buffer != stackBuffer)
+ uprv_free(buffer);
+ }
+
+ T* elems() {
+ return buffer;
+ }
+
+ const T& operator[] (size_t i) const {
+ return buffer[i];
+ }
+
+ T& operator[] (size_t i) {
+ return buffer[i];
+ }
+
+ // resize without copy
+ void resize(size_t size) {
+ if (size <= capacity)
+ return;
+ if (buffer != stackBuffer)
+ uprv_free(buffer);
+ buffer = reinterpret_cast<T*>(uprv_malloc(sizeof(T)*size));
+ capacity = size;
+ }
+
+private:
+ T stackBuffer[N];
+ T* buffer;
+ AutoBuffer();
+ size_t capacity;
+};
+
+
+/*
+ * @param text A UText representing the text
+ * @param rangeStart The start of the range of dictionary characters
+ * @param rangeEnd The end of the range of dictionary characters
+ * @param foundBreaks Output of C array of int32_t break positions, or 0
+ * @return The number of breaks found
+ */
+int32_t
+CjkBreakEngine::divideUpDictionaryRange( UText *text,
+ int32_t rangeStart,
+ int32_t rangeEnd,
+ UStack &foundBreaks ) const {
+ if (rangeStart >= rangeEnd) {
+ return 0;
+ }
+
+ const size_t defaultInputLength = 80;
+ size_t inputLength = rangeEnd - rangeStart;
+ // TODO: Replace by UnicodeString.
+ AutoBuffer<UChar, defaultInputLength> charString(inputLength);
+
+ // Normalize the input string and put it in normalizedText.
+ // The map from the indices of the normalized input to the raw
+ // input is kept in charPositions.
+ UErrorCode status = U_ZERO_ERROR;
+ utext_extract(text, rangeStart, rangeEnd, charString.elems(), inputLength, &status);
+ if (U_FAILURE(status)) {
+ return 0;
+ }
+
+ UnicodeString inputString(charString.elems(), inputLength);
+ // TODO: Use Normalizer2.
+ UNormalizationMode norm_mode = UNORM_NFKC;
+ UBool isNormalized =
+ Normalizer::quickCheck(inputString, norm_mode, status) == UNORM_YES ||
+ Normalizer::isNormalized(inputString, norm_mode, status);
+
+ // TODO: Replace by UVector32.
+ AutoBuffer<int32_t, defaultInputLength> charPositions(inputLength + 1);
+ int numChars = 0;
+ UText normalizedText = UTEXT_INITIALIZER;
+ // Needs to be declared here because normalizedText holds onto its buffer.
+ UnicodeString normalizedString;
+ if (isNormalized) {
+ int32_t index = 0;
+ charPositions[0] = 0;
+ while(index < inputString.length()) {
+ index = inputString.moveIndex32(index, 1);
+ charPositions[++numChars] = index;
+ }
+ utext_openUnicodeString(&normalizedText, &inputString, &status);
+ }
+ else {
+ Normalizer::normalize(inputString, norm_mode, 0, normalizedString, status);
+ if (U_FAILURE(status)) {
+ return 0;
+ }
+ charPositions.resize(normalizedString.length() + 1);
+ Normalizer normalizer(charString.elems(), inputLength, norm_mode);
+ int32_t index = 0;
+ charPositions[0] = 0;
+ while(index < normalizer.endIndex()){
+ /* UChar32 uc = */ normalizer.next();
+ charPositions[++numChars] = index = normalizer.getIndex();
+ }
+ utext_openUnicodeString(&normalizedText, &normalizedString, &status);
+ }
+
+ if (U_FAILURE(status)) {
+ return 0;
+ }
+
+ // From this point on, all the indices refer to the indices of
+ // the normalized input string.
+
+ // bestSnlp[i] is the snlp of the best segmentation of the first i
+ // characters in the range to be matched.
+ // TODO: Replace by UVector32.
+ AutoBuffer<uint32_t, defaultInputLength> bestSnlp(numChars + 1);
+ bestSnlp[0] = 0;
+ for(int i = 1; i <= numChars; i++) {
+ bestSnlp[i] = kuint32max;
+ }
+
+ // prev[i] is the index of the last CJK character in the previous word in
+ // the best segmentation of the first i characters.
+ // TODO: Replace by UVector32.
+ AutoBuffer<int, defaultInputLength> prev(numChars + 1);
+ for(int i = 0; i <= numChars; i++){
+ prev[i] = -1;
+ }
+
+ const size_t maxWordSize = 20;
+ // TODO: Replace both with UVector32.
+ AutoBuffer<int32_t, maxWordSize> values(numChars);
+ AutoBuffer<int32_t, maxWordSize> lengths(numChars);
+
+ // Dynamic programming to find the best segmentation.
+ bool is_prev_katakana = false;
+ for (int32_t i = 0; i < numChars; ++i) {
+ //utext_setNativeIndex(text, rangeStart + i);
+ utext_setNativeIndex(&normalizedText, i);
+ if (bestSnlp[i] == kuint32max)
+ continue;
+
+ int32_t count;
+ // limit maximum word length matched to size of current substring
+ int32_t maxSearchLength = (i + maxWordSize < (size_t) numChars)? maxWordSize : (numChars - i);
+
+ fDictionary->matches(&normalizedText, maxSearchLength, lengths.elems(), count, maxSearchLength, values.elems());
+
+ // if there are no single character matches found in the dictionary
+ // starting with this charcter, treat character as a 1-character word
+ // with the highest value possible, i.e. the least likely to occur.
+ // Exclude Korean characters from this treatment, as they should be left
+ // together by default.
+ if((count == 0 || lengths[0] != 1) &&
+ !fHangulWordSet.contains(utext_current32(&normalizedText))) {
+ values[count] = maxSnlp;
+ lengths[count++] = 1;
+ }
+
+ for (int j = 0; j < count; j++) {
+ uint32_t newSnlp = bestSnlp[i] + values[j];
+ if (newSnlp < bestSnlp[lengths[j] + i]) {
+ bestSnlp[lengths[j] + i] = newSnlp;
+ prev[lengths[j] + i] = i;
+ }
+ }
+
+ // In Japanese,
+ // Katakana word in single character is pretty rare. So we apply
+ // the following heuristic to Katakana: any continuous run of Katakana
+ // characters is considered a candidate word with a default cost
+ // specified in the katakanaCost table according to its length.
+ //utext_setNativeIndex(text, rangeStart + i);
+ utext_setNativeIndex(&normalizedText, i);
+ bool is_katakana = isKatakana(utext_current32(&normalizedText));
+ if (!is_prev_katakana && is_katakana) {
+ int j = i + 1;
+ utext_next32(&normalizedText);
+ // Find the end of the continuous run of Katakana characters
+ while (j < numChars && (j - i) < kMaxKatakanaGroupLength &&
+ isKatakana(utext_current32(&normalizedText))) {
+ utext_next32(&normalizedText);
+ ++j;
+ }
+ if ((j - i) < kMaxKatakanaGroupLength) {
+ uint32_t newSnlp = bestSnlp[i] + getKatakanaCost(j - i);
+ if (newSnlp < bestSnlp[j]) {
+ bestSnlp[j] = newSnlp;
+ prev[j] = i;
+ }
+ }
+ }
+ is_prev_katakana = is_katakana;
+ }
+
+ // Start pushing the optimal offset index into t_boundary (t for tentative).
+ // prev[numChars] is guaranteed to be meaningful.
+ // We'll first push in the reverse order, i.e.,
+ // t_boundary[0] = numChars, and afterwards do a swap.
+ // TODO: Replace by UVector32.
+ AutoBuffer<int, maxWordSize> t_boundary(numChars + 1);
+
+ int numBreaks = 0;
+ // No segmentation found, set boundary to end of range
+ if (bestSnlp[numChars] == kuint32max) {
+ t_boundary[numBreaks++] = numChars;
+ } else {
+ for (int i = numChars; i > 0; i = prev[i]) {
+ t_boundary[numBreaks++] = i;
+ }
+ U_ASSERT(prev[t_boundary[numBreaks - 1]] == 0);
+ }
+
+ // Reverse offset index in t_boundary.
+ // Don't add a break for the start of the dictionary range if there is one
+ // there already.
+ if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) {
+ t_boundary[numBreaks++] = 0;
+ }
+
+ // Now that we're done, convert positions in t_bdry[] (indices in
+ // the normalized input string) back to indices in the raw input string
+ // while reversing t_bdry and pushing values to foundBreaks.
+ for (int i = numBreaks-1; i >= 0; i--) {
+ foundBreaks.push(charPositions[t_boundary[i]] + rangeStart, status);
+ }
+
+ utext_close(&normalizedText);
+ return numBreaks;
+}
+#endif
+
+U_NAMESPACE_END
+
+#endif /* #if !UCONFIG_NO_BREAK_ITERATION */
+
Property changes on: icu51/source/common/dictbe.cpp
___________________________________________________________________
Added: svn:eol-style
+ LF
« no previous file with comments | « icu51/source/common/dictbe.h ('k') | icu51/source/common/dictionarydata.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698