Index: Source/wtf/dtoa/strtod.cc |
diff --git a/Source/wtf/dtoa/strtod.cc b/Source/wtf/dtoa/strtod.cc |
index 477e7158c373751da67623b2ae96b521f83d993e..06f28cd9e6c69e6d50becfc795d6f5643dba3f1d 100644 |
--- a/Source/wtf/dtoa/strtod.cc |
+++ b/Source/wtf/dtoa/strtod.cc |
@@ -38,14 +38,14 @@ |
namespace WTF { |
namespace double_conversion { |
- |
+ |
// 2^53 = 9007199254740992. |
// Any integer with at most 15 decimal digits will hence fit into a double |
// (which has a 53bit significand) without loss of precision. |
static const int kMaxExactDoubleIntegerDecimalDigits = 15; |
// 2^64 = 18446744073709551616 > 10^19 |
static const int kMaxUint64DecimalDigits = 19; |
- |
+ |
// Max double: 1.7976931348623157 x 10^308 |
// Min non-zero double: 4.9406564584124654 x 10^-324 |
// Any x >= 10^309 is interpreted as +infinity. |
@@ -54,11 +54,11 @@ namespace double_conversion { |
// as non-zero (equal to the min non-zero double). |
static const int kMaxDecimalPower = 309; |
static const int kMinDecimalPower = -324; |
- |
+ |
// 2^64 = 18446744073709551616 |
static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF); |
- |
- |
+ |
+ |
static const double exact_powers_of_ten[] = { |
1.0, // 10^0 |
10.0, |
@@ -86,12 +86,12 @@ namespace double_conversion { |
10000000000000000000000.0 |
}; |
static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten); |
- |
+ |
// Maximum number of significant digits in the decimal representation. |
// In fact the value is 772 (see conversions.cc), but to give us some margin |
// we round up to 780. |
static const int kMaxSignificantDecimalDigits = 780; |
- |
+ |
static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) { |
for (int i = 0; i < buffer.length(); i++) { |
if (buffer[i] != '0') { |
@@ -100,8 +100,8 @@ namespace double_conversion { |
} |
return Vector<const char>(buffer.start(), 0); |
} |
- |
- |
+ |
+ |
static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) { |
for (int i = buffer.length() - 1; i >= 0; --i) { |
if (buffer[i] != '0') { |
@@ -110,8 +110,8 @@ namespace double_conversion { |
} |
return Vector<const char>(buffer.start(), 0); |
} |
- |
- |
+ |
+ |
static void TrimToMaxSignificantDigits(Vector<const char> buffer, |
int exponent, |
char* significant_buffer, |
@@ -128,7 +128,7 @@ namespace double_conversion { |
*significant_exponent = |
exponent + (buffer.length() - kMaxSignificantDecimalDigits); |
} |
- |
+ |
// Reads digits from the buffer and converts them to a uint64. |
// Reads in as many digits as fit into a uint64. |
// When the string starts with "1844674407370955161" no further digit is read. |
@@ -146,8 +146,8 @@ namespace double_conversion { |
*number_of_read_digits = i; |
return result; |
} |
- |
- |
+ |
+ |
// Reads a DiyFp from the buffer. |
// The returned DiyFp is not necessarily normalized. |
// If remaining_decimals is zero then the returned DiyFp is accurate. |
@@ -171,8 +171,8 @@ namespace double_conversion { |
*remaining_decimals = buffer.length() - read_digits; |
} |
} |
- |
- |
+ |
+ |
static bool DoubleStrtod(Vector<const char> trimmed, |
int exponent, |
double* result) { |
@@ -223,8 +223,8 @@ namespace double_conversion { |
} |
return false; |
} |
- |
- |
+ |
+ |
// Returns 10^exponent as an exact DiyFp. |
// The given exponent must be in the range [1; kDecimalExponentDistance[. |
static DiyFp AdjustmentPowerOfTen(int exponent) { |
@@ -246,8 +246,8 @@ namespace double_conversion { |
return DiyFp(0, 0); |
} |
} |
- |
- |
+ |
+ |
// If the function returns true then the result is the correct double. |
// Otherwise it is either the correct double or the double that is just below |
// the correct double. |
@@ -267,11 +267,11 @@ namespace double_conversion { |
// Move the remaining decimals into the exponent. |
exponent += remaining_decimals; |
int error = (remaining_decimals == 0 ? 0 : kDenominator / 2); |
- |
+ |
int old_e = input.e(); |
input.Normalize(); |
error <<= old_e - input.e(); |
- |
+ |
ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent); |
if (exponent < PowersOfTenCache::kMinDecimalExponent) { |
*result = 0.0; |
@@ -282,7 +282,7 @@ namespace double_conversion { |
PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent, |
&cached_power, |
&cached_decimal_exponent); |
- |
+ |
if (cached_decimal_exponent != exponent) { |
int adjustment_exponent = exponent - cached_decimal_exponent; |
DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent); |
@@ -296,7 +296,7 @@ namespace double_conversion { |
error += kDenominator / 2; |
} |
} |
- |
+ |
input.Multiply(cached_power); |
// The error introduced by a multiplication of a*b equals |
// error_a + error_b + error_a*error_b/2^64 + 0.5 |
@@ -307,11 +307,11 @@ namespace double_conversion { |
int error_ab = (error == 0 ? 0 : 1); // We round up to 1. |
int fixed_error = kDenominator / 2; |
error += error_b + error_ab + fixed_error; |
- |
+ |
old_e = input.e(); |
input.Normalize(); |
error <<= old_e - input.e(); |
- |
+ |
// See if the double's significand changes if we add/subtract the error. |
int order_of_magnitude = DiyFp::kSignificandSize + input.e(); |
int effective_significand_size = |
@@ -348,7 +348,7 @@ namespace double_conversion { |
// If the last_bits are too close to the half-way case than we are too |
// inaccurate and round down. In this case we return false so that we can |
// fall back to a more precise algorithm. |
- |
+ |
*result = Double(rounded_input).value(); |
if (half_way - error < precision_bits && precision_bits < half_way + error) { |
// Too imprecise. The caller will have to fall back to a slower version. |
@@ -359,8 +359,8 @@ namespace double_conversion { |
return true; |
} |
} |
- |
- |
+ |
+ |
// Returns the correct double for the buffer*10^exponent. |
// The variable guess should be a close guess that is either the correct double |
// or its lower neighbor (the nearest double less than the correct one). |
@@ -374,9 +374,9 @@ namespace double_conversion { |
if (guess == Double::Infinity()) { |
return guess; |
} |
- |
+ |
DiyFp upper_boundary = Double(guess).UpperBoundary(); |
- |
+ |
ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1); |
ASSERT(buffer.length() + exponent > kMinDecimalPower); |
ASSERT(buffer.length() <= kMaxSignificantDecimalDigits); |
@@ -411,8 +411,8 @@ namespace double_conversion { |
return Double(guess).NextDouble(); |
} |
} |
- |
- |
+ |
+ |
double Strtod(Vector<const char> buffer, int exponent) { |
Vector<const char> left_trimmed = TrimLeadingZeros(buffer); |
Vector<const char> trimmed = TrimTrailingZeros(left_trimmed); |
@@ -433,7 +433,7 @@ namespace double_conversion { |
if (exponent + trimmed.length() <= kMinDecimalPower) { |
return 0.0; |
} |
- |
+ |
double guess; |
if (DoubleStrtod(trimmed, exponent, &guess) || |
DiyFpStrtod(trimmed, exponent, &guess)) { |
@@ -441,7 +441,7 @@ namespace double_conversion { |
} |
return BignumStrtod(trimmed, exponent, guess); |
} |
- |
+ |
} // namespace double_conversion |
} // namespace WTF |