OLD | NEW |
1 // Copyright 2010 the V8 project authors. All rights reserved. | 1 // Copyright 2010 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
(...skipping 18 matching lines...) Expand all Loading... |
29 | 29 |
30 #include "fast-dtoa.h" | 30 #include "fast-dtoa.h" |
31 | 31 |
32 #include "cached-powers.h" | 32 #include "cached-powers.h" |
33 #include "diy-fp.h" | 33 #include "diy-fp.h" |
34 #include "double.h" | 34 #include "double.h" |
35 | 35 |
36 namespace WTF { | 36 namespace WTF { |
37 | 37 |
38 namespace double_conversion { | 38 namespace double_conversion { |
39 | 39 |
40 // The minimal and maximal target exponent define the range of w's binary | 40 // The minimal and maximal target exponent define the range of w's binary |
41 // exponent, where 'w' is the result of multiplying the input by a cached po
wer | 41 // exponent, where 'w' is the result of multiplying the input by a cached po
wer |
42 // of ten. | 42 // of ten. |
43 // | 43 // |
44 // A different range might be chosen on a different platform, to optimize di
git | 44 // A different range might be chosen on a different platform, to optimize di
git |
45 // generation, but a smaller range requires more powers of ten to be cached. | 45 // generation, but a smaller range requires more powers of ten to be cached. |
46 static const int kMinimalTargetExponent = -60; | 46 static const int kMinimalTargetExponent = -60; |
47 static const int kMaximalTargetExponent = -32; | 47 static const int kMaximalTargetExponent = -32; |
48 | 48 |
49 | 49 |
50 // Adjusts the last digit of the generated number, and screens out generated | 50 // Adjusts the last digit of the generated number, and screens out generated |
51 // solutions that may be inaccurate. A solution may be inaccurate if it is | 51 // solutions that may be inaccurate. A solution may be inaccurate if it is |
52 // outside the safe interval, or if we cannot prove that it is closer to the | 52 // outside the safe interval, or if we cannot prove that it is closer to the |
53 // input than a neighboring representation of the same length. | 53 // input than a neighboring representation of the same length. |
54 // | 54 // |
55 // Input: * buffer containing the digits of too_high / 10^kappa | 55 // Input: * buffer containing the digits of too_high / 10^kappa |
56 // * the buffer's length | 56 // * the buffer's length |
57 // * distance_too_high_w == (too_high - w).f() * unit | 57 // * distance_too_high_w == (too_high - w).f() * unit |
58 // * unsafe_interval == (too_high - too_low).f() * unit | 58 // * unsafe_interval == (too_high - too_low).f() * unit |
59 // * rest = (too_high - buffer * 10^kappa).f() * unit | 59 // * rest = (too_high - buffer * 10^kappa).f() * unit |
(...skipping 10 matching lines...) Expand all Loading... |
70 uint64_t ten_kappa, | 70 uint64_t ten_kappa, |
71 uint64_t unit) { | 71 uint64_t unit) { |
72 uint64_t small_distance = distance_too_high_w - unit; | 72 uint64_t small_distance = distance_too_high_w - unit; |
73 uint64_t big_distance = distance_too_high_w + unit; | 73 uint64_t big_distance = distance_too_high_w + unit; |
74 // Let w_low = too_high - big_distance, and | 74 // Let w_low = too_high - big_distance, and |
75 // w_high = too_high - small_distance. | 75 // w_high = too_high - small_distance. |
76 // Note: w_low < w < w_high | 76 // Note: w_low < w < w_high |
77 // | 77 // |
78 // The real w (* unit) must lie somewhere inside the interval | 78 // The real w (* unit) must lie somewhere inside the interval |
79 // ]w_low; w_high[ (often written as "(w_low; w_high)") | 79 // ]w_low; w_high[ (often written as "(w_low; w_high)") |
80 | 80 |
81 // Basically the buffer currently contains a number in the unsafe interv
al | 81 // Basically the buffer currently contains a number in the unsafe interv
al |
82 // ]too_low; too_high[ with too_low < w < too_high | 82 // ]too_low; too_high[ with too_low < w < too_high |
83 // | 83 // |
84 // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - | 84 // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - |
85 // ^v 1 unit ^ ^ ^
^ | 85 // ^v 1 unit ^ ^ ^
^ |
86 // boundary_high --------------------- . . .
. | 86 // boundary_high --------------------- . . .
. |
87 // ^v 1 unit . . .
. | 87 // ^v 1 unit . . .
. |
88 // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - .
. | 88 // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - .
. |
89 // . . ^ .
. | 89 // . . ^ .
. |
90 // . big_distance . .
. | 90 // . big_distance . .
. |
(...skipping 52 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
143 // We need to do the following tests in this order to avoid over- and | 143 // We need to do the following tests in this order to avoid over- and |
144 // underflows. | 144 // underflows. |
145 ASSERT(rest <= unsafe_interval); | 145 ASSERT(rest <= unsafe_interval); |
146 while (rest < small_distance && // Negated condition 1 | 146 while (rest < small_distance && // Negated condition 1 |
147 unsafe_interval - rest >= ten_kappa && // Negated condition 2 | 147 unsafe_interval - rest >= ten_kappa && // Negated condition 2 |
148 (rest + ten_kappa < small_distance || // buffer{-1} > w_high | 148 (rest + ten_kappa < small_distance || // buffer{-1} > w_high |
149 small_distance - rest >= rest + ten_kappa - small_distance)) { | 149 small_distance - rest >= rest + ten_kappa - small_distance)) { |
150 buffer[length - 1]--; | 150 buffer[length - 1]--; |
151 rest += ten_kappa; | 151 rest += ten_kappa; |
152 } | 152 } |
153 | 153 |
154 // We have approached w+ as much as possible. We now test if approaching
w- | 154 // We have approached w+ as much as possible. We now test if approaching
w- |
155 // would require changing the buffer. If yes, then we have two possible | 155 // would require changing the buffer. If yes, then we have two possible |
156 // representations close to w, but we cannot decide which one is closer. | 156 // representations close to w, but we cannot decide which one is closer. |
157 if (rest < big_distance && | 157 if (rest < big_distance && |
158 unsafe_interval - rest >= ten_kappa && | 158 unsafe_interval - rest >= ten_kappa && |
159 (rest + ten_kappa < big_distance || | 159 (rest + ten_kappa < big_distance || |
160 big_distance - rest > rest + ten_kappa - big_distance)) { | 160 big_distance - rest > rest + ten_kappa - big_distance)) { |
161 return false; | 161 return false; |
162 } | 162 } |
163 | 163 |
164 // Weeding test. | 164 // Weeding test. |
165 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp] | 165 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp] |
166 // Since too_low = too_high - unsafe_interval this is equivalent to | 166 // Since too_low = too_high - unsafe_interval this is equivalent to |
167 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] | 167 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] |
168 // Conceptually we have: rest ~= too_high - buffer | 168 // Conceptually we have: rest ~= too_high - buffer |
169 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit); | 169 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit); |
170 } | 170 } |
171 | 171 |
172 | 172 |
173 // Rounds the buffer upwards if the result is closer to v by possibly adding | 173 // Rounds the buffer upwards if the result is closer to v by possibly adding |
174 // 1 to the buffer. If the precision of the calculation is not sufficient to | 174 // 1 to the buffer. If the precision of the calculation is not sufficient to |
175 // round correctly, return false. | 175 // round correctly, return false. |
176 // The rounding might shift the whole buffer in which case the kappa is | 176 // The rounding might shift the whole buffer in which case the kappa is |
177 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4. | 177 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4. |
178 // | 178 // |
179 // If 2*rest > ten_kappa then the buffer needs to be round up. | 179 // If 2*rest > ten_kappa then the buffer needs to be round up. |
180 // rest can have an error of +/- 1 unit. This function accounts for the | 180 // rest can have an error of +/- 1 unit. This function accounts for the |
181 // imprecision and returns false, if the rounding direction cannot be | 181 // imprecision and returns false, if the rounding direction cannot be |
182 // unambiguously determined. | 182 // unambiguously determined. |
(...skipping 35 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
218 // first digit to '1' and adjust the kappa. Example: "99" becomes "1
0" and | 218 // first digit to '1' and adjust the kappa. Example: "99" becomes "1
0" and |
219 // the power (the kappa) is increased. | 219 // the power (the kappa) is increased. |
220 if (buffer[0] == '0' + 10) { | 220 if (buffer[0] == '0' + 10) { |
221 buffer[0] = '1'; | 221 buffer[0] = '1'; |
222 (*kappa) += 1; | 222 (*kappa) += 1; |
223 } | 223 } |
224 return true; | 224 return true; |
225 } | 225 } |
226 return false; | 226 return false; |
227 } | 227 } |
228 | 228 |
229 | 229 |
230 static const uint32_t kTen4 = 10000; | 230 static const uint32_t kTen4 = 10000; |
231 static const uint32_t kTen5 = 100000; | 231 static const uint32_t kTen5 = 100000; |
232 static const uint32_t kTen6 = 1000000; | 232 static const uint32_t kTen6 = 1000000; |
233 static const uint32_t kTen7 = 10000000; | 233 static const uint32_t kTen7 = 10000000; |
234 static const uint32_t kTen8 = 100000000; | 234 static const uint32_t kTen8 = 100000000; |
235 static const uint32_t kTen9 = 1000000000; | 235 static const uint32_t kTen9 = 1000000000; |
236 | 236 |
237 // Returns the biggest power of ten that is less than or equal to the given | 237 // Returns the biggest power of ten that is less than or equal to the given |
238 // number. We furthermore receive the maximum number of bits 'number' has. | 238 // number. We furthermore receive the maximum number of bits 'number' has. |
239 // If number_bits == 0 then 0^-1 is returned | 239 // If number_bits == 0 then 0^-1 is returned |
240 // The number of bits must be <= 32. | 240 // The number of bits must be <= 32. |
241 // Precondition: number < (1 << (number_bits + 1)). | 241 // Precondition: number < (1 << (number_bits + 1)). |
242 static void BiggestPowerTen(uint32_t number, | 242 static void BiggestPowerTen(uint32_t number, |
243 int number_bits, | 243 int number_bits, |
244 uint32_t* power, | 244 uint32_t* power, |
245 int* exponent) { | 245 int* exponent) { |
246 ASSERT(number < (uint32_t)(1 << (number_bits + 1))); | 246 ASSERT(number < (uint32_t)(1 << (number_bits + 1))); |
247 | 247 |
248 switch (number_bits) { | 248 switch (number_bits) { |
249 case 32: | 249 case 32: |
250 case 31: | 250 case 31: |
251 case 30: | 251 case 30: |
252 if (kTen9 <= number) { | 252 if (kTen9 <= number) { |
253 *power = kTen9; | 253 *power = kTen9; |
254 *exponent = 9; | 254 *exponent = 9; |
255 break; | 255 break; |
256 } // else fallthrough | 256 } // else fallthrough |
257 case 29: | 257 case 29: |
(...skipping 74 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
332 *power = 0; | 332 *power = 0; |
333 *exponent = -1; | 333 *exponent = -1; |
334 break; | 334 break; |
335 default: | 335 default: |
336 // Following assignments are here to silence compiler warnings. | 336 // Following assignments are here to silence compiler warnings. |
337 *power = 0; | 337 *power = 0; |
338 *exponent = 0; | 338 *exponent = 0; |
339 UNREACHABLE(); | 339 UNREACHABLE(); |
340 } | 340 } |
341 } | 341 } |
342 | 342 |
343 | 343 |
344 // Generates the digits of input number w. | 344 // Generates the digits of input number w. |
345 // w is a floating-point number (DiyFp), consisting of a significand and an | 345 // w is a floating-point number (DiyFp), consisting of a significand and an |
346 // exponent. Its exponent is bounded by kMinimalTargetExponent and | 346 // exponent. Its exponent is bounded by kMinimalTargetExponent and |
347 // kMaximalTargetExponent. | 347 // kMaximalTargetExponent. |
348 // Hence -60 <= w.e() <= -32. | 348 // Hence -60 <= w.e() <= -32. |
349 // | 349 // |
350 // Returns false if it fails, in which case the generated digits in the buff
er | 350 // Returns false if it fails, in which case the generated digits in the buff
er |
351 // should not be used. | 351 // should not be used. |
352 // Preconditions: | 352 // Preconditions: |
353 // * low, w and high are correct up to 1 ulp (unit in the last place). That | 353 // * low, w and high are correct up to 1 ulp (unit in the last place). That |
(...skipping 91 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
445 // Reminder: unsafe_interval.e() == one.e() | 445 // Reminder: unsafe_interval.e() == one.e() |
446 if (rest < unsafe_interval.f()) { | 446 if (rest < unsafe_interval.f()) { |
447 // Rounding down (by not emitting the remaining digits) yields a
number | 447 // Rounding down (by not emitting the remaining digits) yields a
number |
448 // that lies within the unsafe interval. | 448 // that lies within the unsafe interval. |
449 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(), | 449 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(), |
450 unsafe_interval.f(), rest, | 450 unsafe_interval.f(), rest, |
451 static_cast<uint64_t>(divisor) << -one.e(), uni
t); | 451 static_cast<uint64_t>(divisor) << -one.e(), uni
t); |
452 } | 452 } |
453 divisor /= 10; | 453 divisor /= 10; |
454 } | 454 } |
455 | 455 |
456 // The integrals have been generated. We are at the point of the decimal | 456 // The integrals have been generated. We are at the point of the decimal |
457 // separator. In the following loop we simply multiply the remaining dig
its by | 457 // separator. In the following loop we simply multiply the remaining dig
its by |
458 // 10 and divide by one. We just need to pay attention to multiply assoc
iated | 458 // 10 and divide by one. We just need to pay attention to multiply assoc
iated |
459 // data (like the interval or 'unit'), too. | 459 // data (like the interval or 'unit'), too. |
460 // Note that the multiplication by 10 does not overflow, because w.e >=
-60 | 460 // Note that the multiplication by 10 does not overflow, because w.e >=
-60 |
461 // and thus one.e >= -60. | 461 // and thus one.e >= -60. |
462 ASSERT(one.e() >= -60); | 462 ASSERT(one.e() >= -60); |
463 ASSERT(fractionals < one.f()); | 463 ASSERT(fractionals < one.f()); |
464 ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); | 464 ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); |
465 while (true) { | 465 while (true) { |
466 fractionals *= 10; | 466 fractionals *= 10; |
467 unit *= 10; | 467 unit *= 10; |
468 unsafe_interval.set_f(unsafe_interval.f() * 10); | 468 unsafe_interval.set_f(unsafe_interval.f() * 10); |
469 // Integer division by one. | 469 // Integer division by one. |
470 int digit = static_cast<int>(fractionals >> -one.e()); | 470 int digit = static_cast<int>(fractionals >> -one.e()); |
471 buffer[*length] = '0' + digit; | 471 buffer[*length] = '0' + digit; |
472 (*length)++; | 472 (*length)++; |
473 fractionals &= one.f() - 1; // Modulo by one. | 473 fractionals &= one.f() - 1; // Modulo by one. |
474 (*kappa)--; | 474 (*kappa)--; |
475 if (fractionals < unsafe_interval.f()) { | 475 if (fractionals < unsafe_interval.f()) { |
476 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f()
* unit, | 476 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f()
* unit, |
477 unsafe_interval.f(), fractionals, one.f(), unit
); | 477 unsafe_interval.f(), fractionals, one.f(), unit
); |
478 } | 478 } |
479 } | 479 } |
480 } | 480 } |
481 | 481 |
482 | 482 |
483 | 483 |
484 // Generates (at most) requested_digits digits of input number w. | 484 // Generates (at most) requested_digits digits of input number w. |
485 // w is a floating-point number (DiyFp), consisting of a significand and an | 485 // w is a floating-point number (DiyFp), consisting of a significand and an |
486 // exponent. Its exponent is bounded by kMinimalTargetExponent and | 486 // exponent. Its exponent is bounded by kMinimalTargetExponent and |
487 // kMaximalTargetExponent. | 487 // kMaximalTargetExponent. |
488 // Hence -60 <= w.e() <= -32. | 488 // Hence -60 <= w.e() <= -32. |
489 // | 489 // |
490 // Returns false if it fails, in which case the generated digits in the buff
er | 490 // Returns false if it fails, in which case the generated digits in the buff
er |
491 // should not be used. | 491 // should not be used. |
492 // Preconditions: | 492 // Preconditions: |
493 // * w is correct up to 1 ulp (unit in the last place). That | 493 // * w is correct up to 1 ulp (unit in the last place). That |
(...skipping 34 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
528 // Division by one is a shift. | 528 // Division by one is a shift. |
529 uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e()); | 529 uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e()); |
530 // Modulo by one is an and. | 530 // Modulo by one is an and. |
531 uint64_t fractionals = w.f() & (one.f() - 1); | 531 uint64_t fractionals = w.f() & (one.f() - 1); |
532 uint32_t divisor; | 532 uint32_t divisor; |
533 int divisor_exponent; | 533 int divisor_exponent; |
534 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), | 534 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), |
535 &divisor, &divisor_exponent); | 535 &divisor, &divisor_exponent); |
536 *kappa = divisor_exponent + 1; | 536 *kappa = divisor_exponent + 1; |
537 *length = 0; | 537 *length = 0; |
538 | 538 |
539 // Loop invariant: buffer = w / 10^kappa (integer division) | 539 // Loop invariant: buffer = w / 10^kappa (integer division) |
540 // The invariant holds for the first iteration: kappa has been initializ
ed | 540 // The invariant holds for the first iteration: kappa has been initializ
ed |
541 // with the divisor exponent + 1. And the divisor is the biggest power o
f ten | 541 // with the divisor exponent + 1. And the divisor is the biggest power o
f ten |
542 // that is smaller than 'integrals'. | 542 // that is smaller than 'integrals'. |
543 while (*kappa > 0) { | 543 while (*kappa > 0) { |
544 int digit = integrals / divisor; | 544 int digit = integrals / divisor; |
545 buffer[*length] = '0' + digit; | 545 buffer[*length] = '0' + digit; |
546 (*length)++; | 546 (*length)++; |
547 requested_digits--; | 547 requested_digits--; |
548 integrals %= divisor; | 548 integrals %= divisor; |
549 (*kappa)--; | 549 (*kappa)--; |
550 // Note that kappa now equals the exponent of the divisor and that t
he | 550 // Note that kappa now equals the exponent of the divisor and that t
he |
551 // invariant thus holds again. | 551 // invariant thus holds again. |
552 if (requested_digits == 0) break; | 552 if (requested_digits == 0) break; |
553 divisor /= 10; | 553 divisor /= 10; |
554 } | 554 } |
555 | 555 |
556 if (requested_digits == 0) { | 556 if (requested_digits == 0) { |
557 uint64_t rest = | 557 uint64_t rest = |
558 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; | 558 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; |
559 return RoundWeedCounted(buffer, *length, rest, | 559 return RoundWeedCounted(buffer, *length, rest, |
560 static_cast<uint64_t>(divisor) << -one.e(),
w_error, | 560 static_cast<uint64_t>(divisor) << -one.e(),
w_error, |
561 kappa); | 561 kappa); |
562 } | 562 } |
563 | 563 |
564 // The integrals have been generated. We are at the point of the decimal | 564 // The integrals have been generated. We are at the point of the decimal |
565 // separator. In the following loop we simply multiply the remaining dig
its by | 565 // separator. In the following loop we simply multiply the remaining dig
its by |
566 // 10 and divide by one. We just need to pay attention to multiply assoc
iated | 566 // 10 and divide by one. We just need to pay attention to multiply assoc
iated |
567 // data (the 'unit'), too. | 567 // data (the 'unit'), too. |
568 // Note that the multiplication by 10 does not overflow, because w.e >=
-60 | 568 // Note that the multiplication by 10 does not overflow, because w.e >=
-60 |
569 // and thus one.e >= -60. | 569 // and thus one.e >= -60. |
570 ASSERT(one.e() >= -60); | 570 ASSERT(one.e() >= -60); |
571 ASSERT(fractionals < one.f()); | 571 ASSERT(fractionals < one.f()); |
572 ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); | 572 ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); |
573 while (requested_digits > 0 && fractionals > w_error) { | 573 while (requested_digits > 0 && fractionals > w_error) { |
574 fractionals *= 10; | 574 fractionals *= 10; |
575 w_error *= 10; | 575 w_error *= 10; |
576 // Integer division by one. | 576 // Integer division by one. |
577 int digit = static_cast<int>(fractionals >> -one.e()); | 577 int digit = static_cast<int>(fractionals >> -one.e()); |
578 buffer[*length] = '0' + digit; | 578 buffer[*length] = '0' + digit; |
579 (*length)++; | 579 (*length)++; |
580 requested_digits--; | 580 requested_digits--; |
581 fractionals &= one.f() - 1; // Modulo by one. | 581 fractionals &= one.f() - 1; // Modulo by one. |
582 (*kappa)--; | 582 (*kappa)--; |
583 } | 583 } |
584 if (requested_digits != 0) return false; | 584 if (requested_digits != 0) return false; |
585 return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error, | 585 return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error, |
586 kappa); | 586 kappa); |
587 } | 587 } |
588 | 588 |
589 | 589 |
590 // Provides a decimal representation of v. | 590 // Provides a decimal representation of v. |
591 // Returns true if it succeeds, otherwise the result cannot be trusted. | 591 // Returns true if it succeeds, otherwise the result cannot be trusted. |
592 // There will be *length digits inside the buffer (not null-terminated). | 592 // There will be *length digits inside the buffer (not null-terminated). |
593 // If the function returns true then | 593 // If the function returns true then |
594 // v == (double) (buffer * 10^decimal_exponent). | 594 // v == (double) (buffer * 10^decimal_exponent). |
595 // The digits in the buffer are the shortest representation possible: no | 595 // The digits in the buffer are the shortest representation possible: no |
596 // 0.09999999999999999 instead of 0.1. The shorter representation will even
be | 596 // 0.09999999999999999 instead of 0.1. The shorter representation will even
be |
597 // chosen even if the longer one would be closer to v. | 597 // chosen even if the longer one would be closer to v. |
598 // The last digit will be closest to the actual v. That is, even if several | 598 // The last digit will be closest to the actual v. That is, even if several |
599 // digits might correctly yield 'v' when read again, the closest will be | 599 // digits might correctly yield 'v' when read again, the closest will be |
(...skipping 19 matching lines...) Expand all Loading... |
619 PowersOfTenCache::GetCachedPowerForBinaryExponentRange( | 619 PowersOfTenCache::GetCachedPowerForBinaryExponentRange( |
620 ten_mk_minimal_bi
nary_exponent, | 620 ten_mk_minimal_bi
nary_exponent, |
621 ten_mk_maximal_bi
nary_exponent, | 621 ten_mk_maximal_bi
nary_exponent, |
622 &ten_mk, &mk); | 622 &ten_mk, &mk); |
623 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + | 623 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + |
624 DiyFp::kSignificandSize) && | 624 DiyFp::kSignificandSize) && |
625 (kMaximalTargetExponent >= w.e() + ten_mk.e() + | 625 (kMaximalTargetExponent >= w.e() + ten_mk.e() + |
626 DiyFp::kSignificandSize)); | 626 DiyFp::kSignificandSize)); |
627 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only cont
ains a | 627 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only cont
ains a |
628 // 64 bit significand and ten_mk is thus only precise up to 64 bits. | 628 // 64 bit significand and ten_mk is thus only precise up to 64 bits. |
629 | 629 |
630 // The DiyFp::Times procedure rounds its result, and ten_mk is approxima
ted | 630 // The DiyFp::Times procedure rounds its result, and ten_mk is approxima
ted |
631 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) ar
e now | 631 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) ar
e now |
632 // off by a small amount. | 632 // off by a small amount. |
633 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_
w. | 633 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_
w. |
634 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then | 634 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then |
635 // (f-1) * 2^e < w*10^k < (f+1) * 2^e | 635 // (f-1) * 2^e < w*10^k < (f+1) * 2^e |
636 DiyFp scaled_w = DiyFp::Times(w, ten_mk); | 636 DiyFp scaled_w = DiyFp::Times(w, ten_mk); |
637 ASSERT(scaled_w.e() == | 637 ASSERT(scaled_w.e() == |
638 boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize); | 638 boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize); |
639 // In theory it would be possible to avoid some recomputations by comput
ing | 639 // In theory it would be possible to avoid some recomputations by comput
ing |
640 // the difference between w and boundary_minus/plus (a power of 2) and t
o | 640 // the difference between w and boundary_minus/plus (a power of 2) and t
o |
641 // compute scaled_boundary_minus/plus by subtracting/adding from | 641 // compute scaled_boundary_minus/plus by subtracting/adding from |
642 // scaled_w. However the code becomes much less readable and the speed | 642 // scaled_w. However the code becomes much less readable and the speed |
643 // enhancements are not terriffic. | 643 // enhancements are not terriffic. |
644 DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk); | 644 DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk); |
645 DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk); | 645 DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk); |
646 | 646 |
647 // DigitGen will generate the digits of scaled_w. Therefore we have | 647 // DigitGen will generate the digits of scaled_w. Therefore we have |
648 // v == (double) (scaled_w * 10^-mk). | 648 // v == (double) (scaled_w * 10^-mk). |
649 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is n
ot an | 649 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is n
ot an |
650 // integer than it will be updated. For instance if scaled_w == 1.23 the
n | 650 // integer than it will be updated. For instance if scaled_w == 1.23 the
n |
651 // the buffer will be filled with "123" und the decimal_exponent will be | 651 // the buffer will be filled with "123" und the decimal_exponent will be |
652 // decreased by 2. | 652 // decreased by 2. |
653 int kappa; | 653 int kappa; |
654 bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_
plus, | 654 bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_
plus, |
655 buffer, length, &kappa); | 655 buffer, length, &kappa); |
656 *decimal_exponent = -mk + kappa; | 656 *decimal_exponent = -mk + kappa; |
657 return result; | 657 return result; |
658 } | 658 } |
659 | 659 |
660 | 660 |
661 // The "counted" version of grisu3 (see above) only generates requested_digi
ts | 661 // The "counted" version of grisu3 (see above) only generates requested_digi
ts |
662 // number of digits. This version does not generate the shortest representat
ion, | 662 // number of digits. This version does not generate the shortest representat
ion, |
663 // and with enough requested digits 0.1 will at some point print as 0.999999
9... | 663 // and with enough requested digits 0.1 will at some point print as 0.999999
9... |
664 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and | 664 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and |
665 // therefore the rounding strategy for halfway cases is irrelevant. | 665 // therefore the rounding strategy for halfway cases is irrelevant. |
666 static bool Grisu3Counted(double v, | 666 static bool Grisu3Counted(double v, |
667 int requested_digits, | 667 int requested_digits, |
668 Vector<char> buffer, | 668 Vector<char> buffer, |
669 int* length, | 669 int* length, |
670 int* decimal_exponent) { | 670 int* decimal_exponent) { |
671 DiyFp w = Double(v).AsNormalizedDiyFp(); | 671 DiyFp w = Double(v).AsNormalizedDiyFp(); |
672 DiyFp ten_mk; // Cached power of ten: 10^-k | 672 DiyFp ten_mk; // Cached power of ten: 10^-k |
673 int mk; // -k | 673 int mk; // -k |
674 int ten_mk_minimal_binary_exponent = | 674 int ten_mk_minimal_binary_exponent = |
675 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); | 675 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); |
676 int ten_mk_maximal_binary_exponent = | 676 int ten_mk_maximal_binary_exponent = |
677 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); | 677 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); |
678 PowersOfTenCache::GetCachedPowerForBinaryExponentRange( | 678 PowersOfTenCache::GetCachedPowerForBinaryExponentRange( |
679 ten_mk_minimal_bi
nary_exponent, | 679 ten_mk_minimal_bi
nary_exponent, |
680 ten_mk_maximal_bi
nary_exponent, | 680 ten_mk_maximal_bi
nary_exponent, |
681 &ten_mk, &mk); | 681 &ten_mk, &mk); |
682 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + | 682 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + |
683 DiyFp::kSignificandSize) && | 683 DiyFp::kSignificandSize) && |
684 (kMaximalTargetExponent >= w.e() + ten_mk.e() + | 684 (kMaximalTargetExponent >= w.e() + ten_mk.e() + |
685 DiyFp::kSignificandSize)); | 685 DiyFp::kSignificandSize)); |
686 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only cont
ains a | 686 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only cont
ains a |
687 // 64 bit significand and ten_mk is thus only precise up to 64 bits. | 687 // 64 bit significand and ten_mk is thus only precise up to 64 bits. |
688 | 688 |
689 // The DiyFp::Times procedure rounds its result, and ten_mk is approxima
ted | 689 // The DiyFp::Times procedure rounds its result, and ten_mk is approxima
ted |
690 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) ar
e now | 690 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) ar
e now |
691 // off by a small amount. | 691 // off by a small amount. |
692 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_
w. | 692 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_
w. |
693 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then | 693 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then |
694 // (f-1) * 2^e < w*10^k < (f+1) * 2^e | 694 // (f-1) * 2^e < w*10^k < (f+1) * 2^e |
695 DiyFp scaled_w = DiyFp::Times(w, ten_mk); | 695 DiyFp scaled_w = DiyFp::Times(w, ten_mk); |
696 | 696 |
697 // We now have (double) (scaled_w * 10^-mk). | 697 // We now have (double) (scaled_w * 10^-mk). |
698 // DigitGen will generate the first requested_digits digits of scaled_w
and | 698 // DigitGen will generate the first requested_digits digits of scaled_w
and |
699 // return together with a kappa such that scaled_w ~= buffer * 10^kappa.
(It | 699 // return together with a kappa such that scaled_w ~= buffer * 10^kappa.
(It |
700 // will not always be exactly the same since DigitGenCounted only produc
es a | 700 // will not always be exactly the same since DigitGenCounted only produc
es a |
701 // limited number of digits.) | 701 // limited number of digits.) |
702 int kappa; | 702 int kappa; |
703 bool result = DigitGenCounted(scaled_w, requested_digits, | 703 bool result = DigitGenCounted(scaled_w, requested_digits, |
704 buffer, length, &kappa); | 704 buffer, length, &kappa); |
705 *decimal_exponent = -mk + kappa; | 705 *decimal_exponent = -mk + kappa; |
706 return result; | 706 return result; |
707 } | 707 } |
708 | 708 |
709 | 709 |
710 bool FastDtoa(double v, | 710 bool FastDtoa(double v, |
711 FastDtoaMode mode, | 711 FastDtoaMode mode, |
712 int requested_digits, | 712 int requested_digits, |
713 Vector<char> buffer, | 713 Vector<char> buffer, |
714 int* length, | 714 int* length, |
715 int* decimal_point) { | 715 int* decimal_point) { |
716 ASSERT(v > 0); | 716 ASSERT(v > 0); |
717 ASSERT(!Double(v).IsSpecial()); | 717 ASSERT(!Double(v).IsSpecial()); |
718 | 718 |
719 bool result = false; | 719 bool result = false; |
720 int decimal_exponent = 0; | 720 int decimal_exponent = 0; |
721 switch (mode) { | 721 switch (mode) { |
722 case FAST_DTOA_SHORTEST: | 722 case FAST_DTOA_SHORTEST: |
723 result = Grisu3(v, buffer, length, &decimal_exponent); | 723 result = Grisu3(v, buffer, length, &decimal_exponent); |
724 break; | 724 break; |
725 case FAST_DTOA_PRECISION: | 725 case FAST_DTOA_PRECISION: |
726 result = Grisu3Counted(v, requested_digits, | 726 result = Grisu3Counted(v, requested_digits, |
727 buffer, length, &decimal_exponent); | 727 buffer, length, &decimal_exponent); |
728 break; | 728 break; |
729 default: | 729 default: |
730 UNREACHABLE(); | 730 UNREACHABLE(); |
731 } | 731 } |
732 if (result) { | 732 if (result) { |
733 *decimal_point = *length + decimal_exponent; | 733 *decimal_point = *length + decimal_exponent; |
734 buffer[*length] = '\0'; | 734 buffer[*length] = '\0'; |
735 } | 735 } |
736 return result; | 736 return result; |
737 } | 737 } |
738 | 738 |
739 } // namespace double_conversion | 739 } // namespace double_conversion |
740 | 740 |
741 } // namespace WTF | 741 } // namespace WTF |
OLD | NEW |