OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2006 The Android Open Source Project | 2 * Copyright 2006 The Android Open Source Project |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "SkMatrix.h" | 8 #include "SkMatrix.h" |
9 #include "Sk64.h" | 9 #include "Sk64.h" |
10 #include "SkFloatBits.h" | 10 #include "SkFloatBits.h" |
(...skipping 152 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
163 | 163 |
164 return ma[0] == mb[0] && ma[1] == mb[1] && ma[2] == mb[2] && | 164 return ma[0] == mb[0] && ma[1] == mb[1] && ma[2] == mb[2] && |
165 ma[3] == mb[3] && ma[4] == mb[4] && ma[5] == mb[5] && | 165 ma[3] == mb[3] && ma[4] == mb[4] && ma[5] == mb[5] && |
166 ma[6] == mb[6] && ma[7] == mb[7] && ma[8] == mb[8]; | 166 ma[6] == mb[6] && ma[7] == mb[7] && ma[8] == mb[8]; |
167 } | 167 } |
168 | 168 |
169 #endif | 169 #endif |
170 | 170 |
171 /////////////////////////////////////////////////////////////////////////////// | 171 /////////////////////////////////////////////////////////////////////////////// |
172 | 172 |
| 173 // helper function to determine if upper-left 2x2 of matrix is degenerate |
| 174 static inline bool is_degenerate_2x2(SkScalar scaleX, SkScalar skewX, |
| 175 SkScalar skewY, SkScalar scaleY) { |
| 176 SkScalar perp_dot = scaleX*scaleY - skewX*skewY; |
| 177 return SkScalarNearlyZero(perp_dot, SK_ScalarNearlyZero*SK_ScalarNearlyZero)
; |
| 178 } |
| 179 |
| 180 /////////////////////////////////////////////////////////////////////////////// |
| 181 |
173 bool SkMatrix::isSimilarity(SkScalar tol) const { | 182 bool SkMatrix::isSimilarity(SkScalar tol) const { |
174 // if identity or translate matrix | 183 // if identity or translate matrix |
175 TypeMask mask = this->getType(); | 184 TypeMask mask = this->getType(); |
176 if (mask <= kTranslate_Mask) { | 185 if (mask <= kTranslate_Mask) { |
177 return true; | 186 return true; |
178 } | 187 } |
179 if (mask & kPerspective_Mask) { | 188 if (mask & kPerspective_Mask) { |
180 return false; | 189 return false; |
181 } | 190 } |
182 | 191 |
183 SkScalar mx = fMat[kMScaleX]; | 192 SkScalar mx = fMat[kMScaleX]; |
184 SkScalar my = fMat[kMScaleY]; | 193 SkScalar my = fMat[kMScaleY]; |
185 // if no skew, can just compare scale factors | 194 // if no skew, can just compare scale factors |
186 if (!(mask & kAffine_Mask)) { | 195 if (!(mask & kAffine_Mask)) { |
187 return !SkScalarNearlyZero(mx) && SkScalarNearlyEqual(SkScalarAbs(mx), S
kScalarAbs(my)); | 196 return !SkScalarNearlyZero(mx) && SkScalarNearlyEqual(SkScalarAbs(mx), S
kScalarAbs(my)); |
188 } | 197 } |
189 SkScalar sx = fMat[kMSkewX]; | 198 SkScalar sx = fMat[kMSkewX]; |
190 SkScalar sy = fMat[kMSkewY]; | 199 SkScalar sy = fMat[kMSkewY]; |
191 | 200 |
192 // TODO: I (rphillips) think there should be an || in here (see preservesRig
htAngles) | 201 if (is_degenerate_2x2(mx, sx, sy, my)) { |
193 // degenerate matrix, non-similarity | |
194 if (SkScalarNearlyZero(mx) && SkScalarNearlyZero(my) | |
195 && SkScalarNearlyZero(sx) && SkScalarNearlyZero(sy)) { | |
196 return false; | 202 return false; |
197 } | 203 } |
198 | 204 |
199 // it has scales and skews, but it could also be rotation, check it out. | 205 // it has scales and skews, but it could also be rotation, check it out. |
200 SkVector vec[2]; | 206 SkVector vec[2]; |
201 vec[0].set(mx, sx); | 207 vec[0].set(mx, sx); |
202 vec[1].set(sy, my); | 208 vec[1].set(sy, my); |
203 | 209 |
204 return SkScalarNearlyZero(vec[0].dot(vec[1]), SkScalarSquare(tol)) && | 210 return SkScalarNearlyZero(vec[0].dot(vec[1]), SkScalarSquare(tol)) && |
205 SkScalarNearlyEqual(vec[0].lengthSqd(), vec[1].lengthSqd(), | 211 SkScalarNearlyEqual(vec[0].lengthSqd(), vec[1].lengthSqd(), |
(...skipping 11 matching lines...) Expand all Loading... |
217 return false; | 223 return false; |
218 } | 224 } |
219 | 225 |
220 SkASSERT(mask & kAffine_Mask); | 226 SkASSERT(mask & kAffine_Mask); |
221 | 227 |
222 SkScalar mx = fMat[kMScaleX]; | 228 SkScalar mx = fMat[kMScaleX]; |
223 SkScalar my = fMat[kMScaleY]; | 229 SkScalar my = fMat[kMScaleY]; |
224 SkScalar sx = fMat[kMSkewX]; | 230 SkScalar sx = fMat[kMSkewX]; |
225 SkScalar sy = fMat[kMSkewY]; | 231 SkScalar sy = fMat[kMSkewY]; |
226 | 232 |
227 if ((SkScalarNearlyZero(mx) && SkScalarNearlyZero(sx)) || | 233 if (is_degenerate_2x2(mx, sx, sy, my)) { |
228 (SkScalarNearlyZero(my) && SkScalarNearlyZero(sy))) { | |
229 // degenerate matrix | |
230 return false; | 234 return false; |
231 } | 235 } |
232 | 236 |
233 // it has scales and skews, but it could also be rotation, check it out. | 237 // it has scales and skews, but it could also be rotation, check it out. |
234 SkVector vec[2]; | 238 SkVector vec[2]; |
235 vec[0].set(mx, sx); | 239 vec[0].set(mx, sx); |
236 vec[1].set(sy, my); | 240 vec[1].set(sy, my); |
237 | 241 |
238 return SkScalarNearlyZero(vec[0].dot(vec[1]), SkScalarSquare(tol)) && | 242 return SkScalarNearlyZero(vec[0].dot(vec[1]), SkScalarSquare(tol)) && |
239 SkScalarNearlyEqual(vec[0].lengthSqd(), vec[1].lengthSqd(), | 243 SkScalarNearlyEqual(vec[0].lengthSqd(), vec[1].lengthSqd(), |
(...skipping 1732 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1972 SkScalar* xScale, SkScalar* yScale, | 1976 SkScalar* xScale, SkScalar* yScale, |
1973 SkScalar* rotation1) { | 1977 SkScalar* rotation1) { |
1974 | 1978 |
1975 // borrowed from Jim Blinn's article "Consider the Lowly 2x2 Matrix" | 1979 // borrowed from Jim Blinn's article "Consider the Lowly 2x2 Matrix" |
1976 // Note: he uses row vectors, so we have to do some swapping of terms | 1980 // Note: he uses row vectors, so we have to do some swapping of terms |
1977 SkScalar A = matrix[SkMatrix::kMScaleX]; | 1981 SkScalar A = matrix[SkMatrix::kMScaleX]; |
1978 SkScalar B = matrix[SkMatrix::kMSkewX]; | 1982 SkScalar B = matrix[SkMatrix::kMSkewX]; |
1979 SkScalar C = matrix[SkMatrix::kMSkewY]; | 1983 SkScalar C = matrix[SkMatrix::kMSkewY]; |
1980 SkScalar D = matrix[SkMatrix::kMScaleY]; | 1984 SkScalar D = matrix[SkMatrix::kMScaleY]; |
1981 | 1985 |
| 1986 if (is_degenerate_2x2(A, B, C, D)) { |
| 1987 return false; |
| 1988 } |
| 1989 |
1982 SkScalar E = SK_ScalarHalf*(A + D); | 1990 SkScalar E = SK_ScalarHalf*(A + D); |
1983 SkScalar F = SK_ScalarHalf*(A - D); | 1991 SkScalar F = SK_ScalarHalf*(A - D); |
1984 SkScalar G = SK_ScalarHalf*(C + B); | 1992 SkScalar G = SK_ScalarHalf*(C + B); |
1985 SkScalar H = SK_ScalarHalf*(C - B); | 1993 SkScalar H = SK_ScalarHalf*(C - B); |
1986 | 1994 |
1987 SkScalar sqrt0 = SkScalarSqrt(E*E + H*H); | 1995 SkScalar sqrt0 = SkScalarSqrt(E*E + H*H); |
1988 SkScalar sqrt1 = SkScalarSqrt(F*F + G*G); | 1996 SkScalar sqrt1 = SkScalarSqrt(F*F + G*G); |
1989 | 1997 |
1990 SkScalar xs, ys, r0, r1; | 1998 SkScalar xs, ys, r0, r1; |
1991 | 1999 |
1992 // can't have zero yScale, must be degenerate | |
1993 if (SkScalarNearlyEqual(sqrt0, sqrt1)) { | |
1994 return false; | |
1995 } | |
1996 xs = sqrt0 + sqrt1; | 2000 xs = sqrt0 + sqrt1; |
1997 ys = sqrt0 - sqrt1; | 2001 ys = sqrt0 - sqrt1; |
| 2002 // can't have zero yScale, must be degenerate |
| 2003 SkASSERT(!SkScalarNearlyZero(ys)); |
1998 | 2004 |
1999 // uniformly scaled rotation | 2005 // uniformly scaled rotation |
2000 if (SkScalarNearlyZero(F) && SkScalarNearlyZero(G)) { | 2006 if (SkScalarNearlyZero(F) && SkScalarNearlyZero(G)) { |
2001 SkASSERT(!SkScalarNearlyZero(E)); | 2007 SkASSERT(!SkScalarNearlyZero(E) || !SkScalarNearlyZero(H)); |
2002 r0 = SkScalarATan2(H, E); | 2008 r0 = SkScalarATan2(H, E); |
2003 r1 = 0; | 2009 r1 = 0; |
2004 // uniformly scaled reflection | 2010 // uniformly scaled reflection |
2005 } else if (SkScalarNearlyZero(E) && SkScalarNearlyZero(H)) { | 2011 } else if (SkScalarNearlyZero(E) && SkScalarNearlyZero(H)) { |
2006 SkASSERT(!SkScalarNearlyZero(F)); | 2012 SkASSERT(!SkScalarNearlyZero(F) || !SkScalarNearlyZero(G)); |
2007 r0 = -SkScalarATan2(G, F); | 2013 r0 = -SkScalarATan2(G, F); |
2008 r1 = 0; | 2014 r1 = 0; |
2009 } else { | 2015 } else { |
2010 SkASSERT(!SkScalarNearlyZero(E)); | 2016 SkASSERT(!SkScalarNearlyZero(E) || !SkScalarNearlyZero(H)); |
2011 SkASSERT(!SkScalarNearlyZero(F)); | 2017 SkASSERT(!SkScalarNearlyZero(F) || !SkScalarNearlyZero(G)); |
2012 | 2018 |
2013 SkScalar arctan0 = SkScalarATan2(H, E); | 2019 SkScalar arctan0 = SkScalarATan2(H, E); |
2014 SkScalar arctan1 = SkScalarATan2(G, F); | 2020 SkScalar arctan1 = SkScalarATan2(G, F); |
2015 r0 = SK_ScalarHalf*(arctan0 - arctan1); | 2021 r0 = SK_ScalarHalf*(arctan0 - arctan1); |
2016 r1 = SK_ScalarHalf*(arctan0 + arctan1); | 2022 r1 = SK_ScalarHalf*(arctan0 + arctan1); |
2017 | 2023 |
2018 // simplify the results | 2024 // simplify the results |
2019 const SkScalar kHalfPI = SK_ScalarHalf*SK_ScalarPI; | 2025 const SkScalar kHalfPI = SK_ScalarHalf*SK_ScalarPI; |
2020 if (SkScalarNearlyEqual(SkScalarAbs(r0), kHalfPI)) { | 2026 if (SkScalarNearlyEqual(SkScalarAbs(r0), kHalfPI)) { |
2021 SkScalar tmp = xs; | 2027 SkScalar tmp = xs; |
(...skipping 20 matching lines...) Expand all Loading... |
2042 } | 2048 } |
2043 if (NULL != rotation0) { | 2049 if (NULL != rotation0) { |
2044 *rotation0 = r0; | 2050 *rotation0 = r0; |
2045 } | 2051 } |
2046 if (NULL != rotation1) { | 2052 if (NULL != rotation1) { |
2047 *rotation1 = r1; | 2053 *rotation1 = r1; |
2048 } | 2054 } |
2049 | 2055 |
2050 return true; | 2056 return true; |
2051 } | 2057 } |
OLD | NEW |