| Index: webrtc/base/timestampaligner_unittest.cc
|
| diff --git a/webrtc/base/timestampaligner_unittest.cc b/webrtc/base/timestampaligner_unittest.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..ae96de0a88a13320bc96e7cb971faa70eac8af15
|
| --- /dev/null
|
| +++ b/webrtc/base/timestampaligner_unittest.cc
|
| @@ -0,0 +1,133 @@
|
| +/*
|
| + * Copyright 2016 The WebRTC Project Authors. All rights reserved.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license
|
| + * that can be found in the LICENSE file in the root of the source
|
| + * tree. An additional intellectual property rights grant can be found
|
| + * in the file PATENTS. All contributing project authors may
|
| + * be found in the AUTHORS file in the root of the source tree.
|
| + */
|
| +
|
| +#include <math.h>
|
| +
|
| +#include <algorithm>
|
| +
|
| +#include "webrtc/base/gunit.h"
|
| +#include "webrtc/base/random.h"
|
| +#include "webrtc/base/timestampaligner.h"
|
| +
|
| +namespace rtc {
|
| +
|
| +namespace {
|
| +// Computes the difference x_k - mean(x), when x_k is the linear sequence x_k =
|
| +// k, and the "mean" is plain mean for the first |window_size| samples, followed
|
| +// by exponential averaging with weight 1 / |window_size| for each new sample.
|
| +// This is needed to predict the effect of camera clock drift on the timestamp
|
| +// translation. See the comment on TimestampAligner::UpdateOffset for more
|
| +// context.
|
| +double MeanTimeDifference(int nsamples, int window_size) {
|
| + if (nsamples <= window_size) {
|
| + // Plain averaging.
|
| + return nsamples / 2.0;
|
| + } else {
|
| + // Exponential convergence towards
|
| + // interval_error * (window_size - 1)
|
| + double alpha = 1.0 - 1.0 / window_size;
|
| +
|
| + return ((window_size - 1) -
|
| + (window_size / 2.0 - 1) * pow(alpha, nsamples - window_size));
|
| + }
|
| +}
|
| +
|
| +} // Anonymous namespace
|
| +
|
| +class TimestampAlignerTest : public testing::Test {
|
| + protected:
|
| + void TestTimestampFilter(double rel_freq_error) {
|
| + const int64_t kEpoch = 10000;
|
| + const int64_t kJitterUs = 5000;
|
| + const int64_t kIntervalUs = 33333; // 30 FPS
|
| + const int kWindowSize = 100;
|
| + const int kNumFrames = 3 * kWindowSize;
|
| +
|
| + int64_t interval_error_us = kIntervalUs * rel_freq_error;
|
| + int64_t system_start_us = rtc::TimeMicros();
|
| + webrtc::Random random(17);
|
| +
|
| + int64_t prev_translated_time_us = system_start_us;
|
| +
|
| + for (int i = 0; i < kNumFrames; i++) {
|
| + // Camera time subject to drift.
|
| + int64_t camera_time_us = kEpoch + i * (kIntervalUs + interval_error_us);
|
| + int64_t system_time_us = system_start_us + i * kIntervalUs;
|
| + // And system time readings are subject to jitter.
|
| + int64_t system_measured_us = system_time_us + random.Rand(kJitterUs);
|
| +
|
| + int64_t offset_us =
|
| + timestamp_aligner_.UpdateOffset(camera_time_us, system_measured_us);
|
| +
|
| + int64_t filtered_time_us = camera_time_us + offset_us;
|
| + int64_t translated_time_us = timestamp_aligner_.ClipTimestamp(
|
| + filtered_time_us, system_measured_us);
|
| +
|
| + EXPECT_LE(translated_time_us, system_measured_us);
|
| + EXPECT_GE(translated_time_us, prev_translated_time_us);
|
| +
|
| + // The relative frequency error contributes to the expected error
|
| + // by a factor which is the difference between the current time
|
| + // and the average of earlier sample times.
|
| + int64_t expected_error_us =
|
| + kJitterUs / 2 +
|
| + rel_freq_error * kIntervalUs * MeanTimeDifference(i, kWindowSize);
|
| +
|
| + int64_t bias_us = filtered_time_us - translated_time_us;
|
| + EXPECT_GE(bias_us, 0);
|
| +
|
| + if (i == 0) {
|
| + EXPECT_EQ(translated_time_us, system_measured_us);
|
| + } else {
|
| + EXPECT_NEAR(filtered_time_us, system_time_us + expected_error_us,
|
| + 2.0 * kJitterUs / sqrt(std::max(i, kWindowSize)));
|
| + }
|
| + // If the camera clock runs too fast (rel_freq_error > 0.0), The
|
| + // bias is expected to roughly cancel the expected error from the
|
| + // clock drift, as this grows. Otherwise, it reflects the
|
| + // measurement noise. The tolerances here were selected after some
|
| + // trial and error.
|
| + if (i < 10 || rel_freq_error <= 0.0) {
|
| + EXPECT_LE(bias_us, 3000);
|
| + } else {
|
| + EXPECT_NEAR(bias_us, expected_error_us, 1500);
|
| + }
|
| + prev_translated_time_us = translated_time_us;
|
| + }
|
| + }
|
| +
|
| + private:
|
| + TimestampAligner timestamp_aligner_;
|
| +};
|
| +
|
| +TEST_F(TimestampAlignerTest, AttenuateTimestampJitterNoDrift) {
|
| + TestTimestampFilter(0.0);
|
| +}
|
| +
|
| +// 100 ppm is a worst case for a reasonable crystal.
|
| +TEST_F(TimestampAlignerTest, AttenuateTimestampJitterSmallPosDrift) {
|
| + TestTimestampFilter(0.0001);
|
| +}
|
| +
|
| +TEST_F(TimestampAlignerTest, AttenuateTimestampJitterSmallNegDrift) {
|
| + TestTimestampFilter(-0.0001);
|
| +}
|
| +
|
| +// 3000 ppm, 3 ms / s, is the worst observed drift, see
|
| +// https://bugs.chromium.org/p/webrtc/issues/detail?id=5456
|
| +TEST_F(TimestampAlignerTest, AttenuateTimestampJitterLargePosDrift) {
|
| + TestTimestampFilter(0.003);
|
| +}
|
| +
|
| +TEST_F(TimestampAlignerTest, AttenuateTimestampJitterLargeNegDrift) {
|
| + TestTimestampFilter(-0.003);
|
| +}
|
| +
|
| +} // namespace rtc
|
|
|