| Index: tests/MatrixTest.cpp
|
| diff --git a/tests/MatrixTest.cpp b/tests/MatrixTest.cpp
|
| index 5dface74d82d0e79f7389212ac650dba54035bbc..f57a964dc8315d946c3abfdf258f72e84a19114b 100644
|
| --- a/tests/MatrixTest.cpp
|
| +++ b/tests/MatrixTest.cpp
|
| @@ -8,6 +8,7 @@
|
| #include "Test.h"
|
| #include "SkMath.h"
|
| #include "SkMatrix.h"
|
| +#include "SkMatrixUtils.h"
|
| #include "SkRandom.h"
|
|
|
| static bool nearly_equal_scalar(SkScalar a, SkScalar b) {
|
| @@ -345,6 +346,252 @@ static void test_matrix_is_similarity(skiatest::Reporter* reporter) {
|
| REPORTER_ASSERT(reporter, mat.isSimilarity());
|
| }
|
|
|
| +// For test_matrix_decomposition, below.
|
| +static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b,
|
| + SkScalar tolerance = SK_ScalarNearlyZero) {
|
| + // from Bruce Dawson
|
| + SkScalar diff = SkScalarAbs(a - b);
|
| + if (diff < tolerance) {
|
| + return true;
|
| + }
|
| +
|
| + a = SkScalarAbs(a);
|
| + b = SkScalarAbs(b);
|
| + SkScalar largest = (b > a) ? b : a;
|
| +
|
| + if (diff <= largest*tolerance) {
|
| + return true;
|
| + }
|
| +
|
| + return false;
|
| +}
|
| +
|
| +static void test_matrix_decomposition(skiatest::Reporter* reporter) {
|
| + SkMatrix mat;
|
| + SkScalar rotation0, scaleX, scaleY, rotation1;
|
| +
|
| + const float kRotation0 = 15.5f;
|
| + const float kRotation1 = -50.f;
|
| + const float kScale0 = 5000.f;
|
| + const float kScale1 = 0.001f;
|
| +
|
| + // identity
|
| + mat.reset();
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| + // make sure it doesn't crash if we pass in NULLs
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL, NULL));
|
| +
|
| + // rotation only
|
| + mat.setRotate(kRotation0);
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0)));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| +
|
| + // uniform scale only
|
| + mat.setScale(kScale0, kScale0);
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| +
|
| + // anisotropic scale only
|
| + mat.setScale(kScale1, kScale0);
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| +
|
| + // rotation then uniform scale
|
| + mat.setRotate(kRotation1);
|
| + mat.postScale(kScale0, kScale0);
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| +
|
| + // uniform scale then rotation
|
| + mat.setScale(kScale0, kScale0);
|
| + mat.postRotate(kRotation1);
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| +
|
| + // rotation then uniform scale+reflection
|
| + mat.setRotate(kRotation0);
|
| + mat.postScale(kScale1, -kScale1);
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0)));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| +
|
| + // uniform scale+reflection, then rotate
|
| + mat.setScale(kScale0, -kScale0);
|
| + mat.postRotate(kRotation1);
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(-kRotation1)));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| +
|
| + // rotation then anisotropic scale
|
| + mat.setRotate(kRotation1);
|
| + mat.postScale(kScale1, kScale0);
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| +
|
| + // anisotropic scale then rotation
|
| + mat.setScale(kScale1, kScale0);
|
| + mat.postRotate(kRotation0);
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation1, SkDegreesToRadians(kRotation0)));
|
| +
|
| + // rotation, uniform scale, then different rotation
|
| + mat.setRotate(kRotation1);
|
| + mat.postScale(kScale0, kScale0);
|
| + mat.postRotate(kRotation0);
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0,
|
| + SkDegreesToRadians(kRotation0 + kRotation1)));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
| +
|
| + // rotation, anisotropic scale, then different rotation
|
| + mat.setRotate(kRotation0);
|
| + mat.postScale(kScale1, kScale0);
|
| + mat.postRotate(kRotation1);
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + // Because of the shear/skew we won't get the same results, so we need to multiply it out.
|
| + // Generating the matrices requires doing a radian-to-degree calculation, then degree-to-radian
|
| + // calculation (in setRotate()), which adds error, so this just computes the matrix elements
|
| + // directly.
|
| + SkScalar c0;
|
| + SkScalar s0 = SkScalarSinCos(rotation0, &c0);
|
| + SkScalar c1;
|
| + SkScalar s1 = SkScalarSinCos(rotation1, &c1);
|
| + // We do a relative check here because large scale factors cause problems with an absolute check
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
| + scaleX*c0*c1 - scaleY*s0*s1));
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
| + -scaleX*s0*c1 - scaleY*c0*s1));
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
| + scaleX*c0*s1 + scaleY*s0*c1));
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
| + -scaleX*s0*s1 + scaleY*c0*c1));
|
| +
|
| + // try some random matrices
|
| + SkMWCRandom rand;
|
| + for (int m = 0; m < 1000; ++m) {
|
| + SkScalar rot0 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI);
|
| + SkScalar sx = rand.nextRangeF(-3000.f, 3000.f);
|
| + SkScalar sy = rand.nextRangeF(-3000.f, 3000.f);
|
| + SkScalar rot1 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI);
|
| + mat.setRotate(rot0);
|
| + mat.postScale(sx, sy);
|
| + mat.postRotate(rot1);
|
| +
|
| + if (SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)) {
|
| + SkScalar c0;
|
| + SkScalar s0 = SkScalarSinCos(rotation0, &c0);
|
| + SkScalar c1;
|
| + SkScalar s1 = SkScalarSinCos(rotation1, &c1);
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
| + scaleX*c0*c1 - scaleY*s0*s1));
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
| + -scaleX*s0*c1 - scaleY*c0*s1));
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
| + scaleX*c0*s1 + scaleY*s0*c1));
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
| + -scaleX*s0*s1 + scaleY*c0*c1));
|
| + } else {
|
| + // if the matrix is degenerate, the basis vectors should be near-parallel or near-zero
|
| + SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] -
|
| + mat[SkMatrix::kMSkewX]*mat[SkMatrix::kMSkewY];
|
| + REPORTER_ASSERT(reporter, SkScalarNearlyZero(perpdot));
|
| + }
|
| + }
|
| +
|
| + // translation shouldn't affect this
|
| + mat.postTranslate(-1000.f, 1000.f);
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + s0 = SkScalarSinCos(rotation0, &c0);
|
| + s1 = SkScalarSinCos(rotation1, &c1);
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
| + scaleX*c0*c1 - scaleY*s0*s1));
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
| + -scaleX*s0*c1 - scaleY*c0*s1));
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
| + scaleX*c0*s1 + scaleY*s0*c1));
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
| + -scaleX*s0*s1 + scaleY*c0*c1));
|
| +
|
| + // perspective shouldn't affect this
|
| + mat[SkMatrix::kMPersp0] = 12.0;
|
| + mat[SkMatrix::kMPersp1] = 4.0;
|
| + mat[SkMatrix::kMPersp2] = 1872.0;
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + s0 = SkScalarSinCos(rotation0, &c0);
|
| + s1 = SkScalarSinCos(rotation1, &c1);
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
| + scaleX*c0*c1 - scaleY*s0*s1));
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
| + -scaleX*s0*c1 - scaleY*c0*s1));
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
| + scaleX*c0*s1 + scaleY*s0*c1));
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
| + -scaleX*s0*s1 + scaleY*c0*c1));
|
| +
|
| + // rotation, anisotropic scale + reflection, then different rotation
|
| + mat.setRotate(kRotation0);
|
| + mat.postScale(-kScale1, kScale0);
|
| + mat.postRotate(kRotation1);
|
| + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + s0 = SkScalarSinCos(rotation0, &c0);
|
| + s1 = SkScalarSinCos(rotation1, &c1);
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
| + scaleX*c0*c1 - scaleY*s0*s1));
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
| + -scaleX*s0*c1 - scaleY*c0*s1));
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
| + scaleX*c0*s1 + scaleY*s0*c1));
|
| + REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
| + -scaleX*s0*s1 + scaleY*c0*c1));
|
| +
|
| + // degenerate matrices
|
| + // mostly zero entries
|
| + mat.reset();
|
| + mat[SkMatrix::kMScaleX] = 0.f;
|
| + REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + mat.reset();
|
| + mat[SkMatrix::kMScaleY] = 0.f;
|
| + REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| + mat.reset();
|
| + // linearly dependent entries
|
| + mat[SkMatrix::kMScaleX] = 1.f;
|
| + mat[SkMatrix::kMSkewX] = 2.f;
|
| + mat[SkMatrix::kMSkewY] = 4.f;
|
| + mat[SkMatrix::kMScaleY] = 8.f;
|
| + REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
| +}
|
| +
|
| static void TestMatrix(skiatest::Reporter* reporter) {
|
| SkMatrix mat, inverse, iden1, iden2;
|
|
|
| @@ -465,6 +712,7 @@ static void TestMatrix(skiatest::Reporter* reporter) {
|
| test_matrix_max_stretch(reporter);
|
| test_matrix_is_similarity(reporter);
|
| test_matrix_recttorect(reporter);
|
| + test_matrix_decomposition(reporter);
|
| }
|
|
|
| #include "TestClassDef.h"
|
|
|