| Index: base/strings/safe_sprintf.cc
|
| diff --git a/base/strings/safe_sprintf.cc b/base/strings/safe_sprintf.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..55ab09a36d79a10e61dd210d32912c97e3252ca4
|
| --- /dev/null
|
| +++ b/base/strings/safe_sprintf.cc
|
| @@ -0,0 +1,681 @@
|
| +// Copyright (c) 2013 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "base/strings/safe_sprintf.h"
|
| +
|
| +#include <limits>
|
| +
|
| +#if !defined(NDEBUG)
|
| +// In debug builds, we use RAW_CHECK() to print useful error messages, if
|
| +// SafeSPrintf() is called with broken arguments.
|
| +// As our contract promises that SafeSPrintf() can be called from any
|
| +// restricted run-time context, it is not actually safe to call logging
|
| +// functions from it; and we only ever do so for debug builds and hope for the
|
| +// best. We should _never_ call any logging function other than RAW_CHECK(),
|
| +// and we should _never_ include any logging code that is active in production
|
| +// builds. Most notably, we should not include these logging functions in
|
| +// unofficial release builds, even though those builds would otherwise have
|
| +// DCHECKS() enabled.
|
| +// In other words; please do not remove the #ifdef around this #include.
|
| +// Instead, in production builds we opt for returning a degraded result,
|
| +// whenever an error is encountered.
|
| +// E.g. The broken function call
|
| +// SafeSPrintf("errno = %d (%x)", errno, strerror(errno))
|
| +// will print something like
|
| +// errno = 13, (%x)
|
| +// instead of
|
| +// errno = 13 (Access denied)
|
| +// In most of the anticipated use cases, that's probably the preferred
|
| +// behavior.
|
| +#include "base/logging.h"
|
| +#define DEBUG_CHECK RAW_CHECK
|
| +#else
|
| +#define DEBUG_CHECK(x) do { if (x) { } } while (0)
|
| +#endif
|
| +
|
| +namespace base {
|
| +namespace strings {
|
| +
|
| +// The code in this file is extremely careful to be async-signal-safe.
|
| +//
|
| +// Most obviously, we avoid calling any code that could dynamically allocate
|
| +// memory. Doing so would almost certainly result in bugs and dead-locks.
|
| +// We also avoid calling any other STL functions that could have unintended
|
| +// side-effects involving memory allocation or access to other shared
|
| +// resources.
|
| +//
|
| +// But on top of that, we also avoid calling other library functions, as many
|
| +// of them have the side-effect of calling getenv() (in order to deal with
|
| +// localization) or accessing errno. The latter sounds benign, but there are
|
| +// several execution contexts where it isn't even possible to safely read let
|
| +// alone write errno.
|
| +//
|
| +// The stated design goal of the SafeSPrintf() function is that it can be
|
| +// called from any context that can safely call C or C++ code (i.e. anything
|
| +// that doesn't require assembly code).
|
| +//
|
| +// For a brief overview of some but not all of the issues with async-signal-
|
| +// safety, refer to:
|
| +// http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html
|
| +
|
| +namespace {
|
| +const size_t kSSizeMaxConst = ((size_t)(ssize_t)-1) >> 1;
|
| +
|
| +const char kUpCaseHexDigits[] = "0123456789ABCDEF";
|
| +const char kDownCaseHexDigits[] = "0123456789abcdef";
|
| +}
|
| +
|
| +#if defined(NDEBUG)
|
| +// We would like to define kSSizeMax as std::numeric_limits<ssize_t>::max(),
|
| +// but C++ doesn't allow us to do that for constants. Instead, we have to
|
| +// use careful casting and shifting. We later use a COMPILE_ASSERT to
|
| +// verify that this worked correctly.
|
| +namespace {
|
| +const size_t kSSizeMax = kSSizeMaxConst;
|
| +}
|
| +#else // defined(NDEBUG)
|
| +// For efficiency, we really need kSSizeMax to be a constant. But for unit
|
| +// tests, it should be adjustable. This allows us to verify edge cases without
|
| +// having to fill the entire available address space. As a compromise, we make
|
| +// kSSizeMax adjustable in debug builds, and then only compile that particular
|
| +// part of the unit test in debug builds.
|
| +namespace {
|
| +static size_t kSSizeMax = kSSizeMaxConst;
|
| +}
|
| +
|
| +namespace internal {
|
| +void SetSafeSPrintfSSizeMaxForTest(size_t max) {
|
| + kSSizeMax = max;
|
| +}
|
| +
|
| +size_t GetSafeSPrintfSSizeMaxForTest() {
|
| + return kSSizeMax;
|
| +}
|
| +}
|
| +#endif // defined(NDEBUG)
|
| +
|
| +namespace {
|
| +class Buffer {
|
| + public:
|
| + // |buffer| is caller-allocated storage that SafeSPrintf() writes to. It
|
| + // has |size| bytes of writable storage. It is the caller's responsibility
|
| + // to ensure that the buffer is at least one byte in size, so that it fits
|
| + // the trailing NUL that will be added by the destructor. The buffer also
|
| + // must be smaller or equal to kSSizeMax in size.
|
| + Buffer(char* buffer, size_t size)
|
| + : buffer_(buffer),
|
| + size_(size - 1), // Account for trailing NUL byte
|
| + count_(0) {
|
| +// This test should work on all C++11 compilers, but apparently something is
|
| +// not working on all versions of clang just yet (e.g. on Mac, IOS, and
|
| +// Android). We are conservative and exclude all of clang for the time being.
|
| +// TODO(markus): Check if this restriction can be lifted.
|
| +#if __cplusplus >= 201103 && !defined(__clang__)
|
| + COMPILE_ASSERT(kSSizeMaxConst == std::numeric_limits<ssize_t>::max(),
|
| + kSSizeMax_is_the_max_value_of_an_ssize_t);
|
| +#endif
|
| + DEBUG_CHECK(size > 0);
|
| + DEBUG_CHECK(size <= kSSizeMax);
|
| + }
|
| +
|
| + ~Buffer() {
|
| + // The code calling the constructor guaranteed that there was enough space
|
| + // to store a trailing NUL -- and in debug builds, we are actually
|
| + // verifying this with DEBUG_CHECK()s in the constructor. So, we can
|
| + // always unconditionally write the NUL byte in the destructor. We do not
|
| + // need to adjust the count_, as SafeSPrintf() copies snprintf() in not
|
| + // including the NUL byte in its return code.
|
| + *GetInsertionPoint() = '\000';
|
| + }
|
| +
|
| + // Returns true, iff the buffer is filled all the way to |kSSizeMax-1|. The
|
| + // caller can now stop adding more data, as GetCount() has reached its
|
| + // maximum possible value.
|
| + inline bool OutOfAddressableSpace() const {
|
| + return count_ == static_cast<size_t>(kSSizeMax - 1);
|
| + }
|
| +
|
| + // Returns the number of bytes that would have been emitted to |buffer_|
|
| + // if it was sized sufficiently large. This number can be larger than
|
| + // |size_|, if the caller provided an insufficiently large output buffer.
|
| + // But it will never be bigger than |kSSizeMax-1|.
|
| + inline ssize_t GetCount() const {
|
| + DEBUG_CHECK(count_ < kSSizeMax);
|
| + return static_cast<ssize_t>(count_);
|
| + }
|
| +
|
| + // Emits one |ch| character into the |buffer_| and updates the |count_| of
|
| + // characters that are currently supposed to be in the buffer.
|
| + // Returns "false", iff the buffer was already full.
|
| + // N.B. |count_| increases even if no characters have been written. This is
|
| + // needed so that GetCount() can return the number of bytes that should
|
| + // have been allocated for the |buffer_|.
|
| + inline bool Out(char ch) {
|
| + if (size_ >= 1 && count_ < size_) {
|
| + buffer_[count_] = ch;
|
| + return IncrementCountByOne();
|
| + }
|
| + // |count_| still needs to be updated, even if the buffer has been
|
| + // filled completely. This allows SafeSPrintf() to return the number of
|
| + // bytes that should have been emitted.
|
| + IncrementCountByOne();
|
| + return false;
|
| + }
|
| +
|
| + // Inserts |padding|-|len| bytes worth of padding into the |buffer_|.
|
| + // |count_| will also be incremented by the number of bytes that were meant
|
| + // to be emitted. The |pad| character is typically either a ' ' space
|
| + // or a '0' zero, but other non-NUL values are legal.
|
| + // Returns "false", iff the the |buffer_| filled up (i.e. |count_|
|
| + // overflowed |size_|) at any time during padding.
|
| + inline bool Pad(char pad, size_t padding, size_t len) {
|
| + DEBUG_CHECK(pad);
|
| + DEBUG_CHECK(padding >= 0 && padding <= kSSizeMax);
|
| + DEBUG_CHECK(len >= 0);
|
| + for (; padding > len; --padding) {
|
| + if (!Out(pad)) {
|
| + if (--padding) {
|
| + IncrementCount(padding-len);
|
| + }
|
| + return false;
|
| + }
|
| + }
|
| + return true;
|
| + }
|
| +
|
| + // POSIX doesn't define any async-signal-safe function for converting
|
| + // an integer to ASCII. Define our own version.
|
| + //
|
| + // This also gives us the ability to make the function a little more
|
| + // powerful and have it deal with |padding|, with truncation, and with
|
| + // predicting the length of the untruncated output.
|
| + //
|
| + // IToASCII() converts an integer |i| to ASCII.
|
| + //
|
| + // Unlike similar functions in the standard C library, it never appends a
|
| + // NUL character. This is left for the caller to do.
|
| + //
|
| + // While the function signature takes a signed int64_t, the code decides at
|
| + // run-time whether to treat the argument as signed (int64_t) or as unsigned
|
| + // (uint64_t) based on the value of |sign|.
|
| + //
|
| + // It supports |base|s 2 through 16. Only a |base| of 10 is allowed to have
|
| + // a |sign|. Otherwise, |i| is treated as unsigned.
|
| + //
|
| + // For bases larger than 10, |upcase| decides whether lower-case or upper-
|
| + // case letters should be used to designate digits greater than 10.
|
| + //
|
| + // Padding can be done with either '0' zeros or ' ' spaces. Padding has to
|
| + // be positive and will always be applied to the left of the output.
|
| + //
|
| + // Prepends a |prefix| to the number (e.g. "0x"). This prefix goes to
|
| + // the left of |padding|, if |pad| is '0'; and to the right of |padding|
|
| + // if |pad| is ' '.
|
| + //
|
| + // Returns "false", if the |buffer_| overflowed at any time.
|
| + bool IToASCII(bool sign, bool upcase, int64_t i, int base,
|
| + char pad, size_t padding, const char* prefix);
|
| +
|
| + private:
|
| + // Increments |count_| by |inc| unless this would cause |count_| to
|
| + // overflow |kSSizeMax-1|. Returns "false", iff an overflow was detected;
|
| + // it then clamps |count_| to |kSSizeMax-1|.
|
| + inline bool IncrementCount(size_t inc) {
|
| + // "inc" is either 1 or a "padding" value. Padding is clamped at
|
| + // run-time to at most kSSizeMax-1. So, we know that "inc" is always in
|
| + // the range 1..kSSizeMax-1.
|
| + // This allows us to compute "kSSizeMax - 1 - inc" without incurring any
|
| + // integer overflows.
|
| + DEBUG_CHECK(inc <= kSSizeMax - 1);
|
| + if (count_ > kSSizeMax - 1 - inc) {
|
| + count_ = kSSizeMax - 1;
|
| + return false;
|
| + } else {
|
| + count_ += inc;
|
| + return true;
|
| + }
|
| + }
|
| +
|
| + // Convenience method for the common case of incrementing |count_| by one.
|
| + inline bool IncrementCountByOne() {
|
| + return IncrementCount(1);
|
| + }
|
| +
|
| + // Return the current insertion point into the buffer. This is typically
|
| + // at |buffer_| + |count_|, but could be before that if truncation
|
| + // happened. It always points to one byte past the last byte that was
|
| + // successfully placed into the |buffer_|.
|
| + inline char* GetInsertionPoint() const {
|
| + size_t idx = count_;
|
| + if (idx > size_) {
|
| + idx = size_;
|
| + }
|
| + return buffer_ + idx;
|
| + }
|
| +
|
| + // User-provided buffer that will receive the fully formatted output string.
|
| + char* buffer_;
|
| +
|
| + // Number of bytes that are available in the buffer excluding the trailing
|
| + // NUL byte that will be added by the destructor.
|
| + const size_t size_;
|
| +
|
| + // Number of bytes that would have been emitted to the buffer, if the buffer
|
| + // was sufficiently big. This number always excludes the trailing NUL byte
|
| + // and it is guaranteed to never grow bigger than kSSizeMax-1.
|
| + size_t count_;
|
| +
|
| + DISALLOW_COPY_AND_ASSIGN(Buffer);
|
| +};
|
| +
|
| +
|
| +bool Buffer::IToASCII(bool sign, bool upcase, int64_t i, int base,
|
| + char pad, size_t padding, const char* prefix) {
|
| + // Sanity check for parameters. None of these should ever fail, but see
|
| + // above for the rationale why we can't call CHECK().
|
| + DEBUG_CHECK(base >= 2);
|
| + DEBUG_CHECK(base <= 16);
|
| + DEBUG_CHECK(!sign || base == 10);
|
| + DEBUG_CHECK(pad == '0' || pad == ' ');
|
| + DEBUG_CHECK(padding >= 0);
|
| + DEBUG_CHECK(padding <= kSSizeMax);
|
| + DEBUG_CHECK(!(sign && prefix && *prefix));
|
| +
|
| + // Handle negative numbers, if the caller indicated that |i| should be
|
| + // treated as a signed number; otherwise treat |i| as unsigned (even if the
|
| + // MSB is set!)
|
| + // Details are tricky, because of limited data-types, but equivalent pseudo-
|
| + // code would look like:
|
| + // if (sign && i < 0)
|
| + // prefix = "-";
|
| + // num = abs(i);
|
| + int minint = 0;
|
| + uint64_t num;
|
| + if (sign && i < 0) {
|
| + prefix = "-";
|
| +
|
| + // Turn our number positive.
|
| + if (i == std::numeric_limits<int64_t>::min()) {
|
| + // The most negative integer needs special treatment.
|
| + minint = 1;
|
| + num = static_cast<uint64_t>(-(i + 1));
|
| + } else {
|
| + // "Normal" negative numbers are easy.
|
| + num = static_cast<uint64_t>(-i);
|
| + }
|
| + } else {
|
| + num = static_cast<uint64_t>(i);
|
| + }
|
| +
|
| + // If padding with '0' zero, emit the prefix or '-' character now. Otherwise,
|
| + // make the prefix accessible in reverse order, so that we can later output
|
| + // it right between padding and the number.
|
| + // We cannot choose the easier approach of just reversing the number, as that
|
| + // fails in situations where we need to truncate numbers that have padding
|
| + // and/or prefixes.
|
| + const char* reverse_prefix = NULL;
|
| + if (prefix && *prefix) {
|
| + if (pad == '0') {
|
| + while (*prefix) {
|
| + if (padding) {
|
| + --padding;
|
| + }
|
| + Out(*prefix++);
|
| + }
|
| + prefix = NULL;
|
| + } else {
|
| + for (reverse_prefix = prefix; *reverse_prefix; ++reverse_prefix) {
|
| + }
|
| + }
|
| + } else
|
| + prefix = NULL;
|
| + const size_t prefix_length = reverse_prefix - prefix;
|
| +
|
| + // Loop until we have converted the entire number. Output at least one
|
| + // character (i.e. '0').
|
| + size_t start = count_;
|
| + size_t discarded = 0;
|
| + bool started = false;
|
| + do {
|
| + // Make sure there is still enough space left in our output buffer.
|
| + if (count_ >= size_) {
|
| + if (start < size_) {
|
| + // It is rare that we need to output a partial number. But if asked
|
| + // to do so, we will still make sure we output the correct number of
|
| + // leading digits.
|
| + // Since we are generating the digits in reverse order, we actually
|
| + // have to discard digits in the order that we have already emitted
|
| + // them. This is essentially equivalent to:
|
| + // memmove(buffer_ + start, buffer_ + start + 1, size_ - start - 1)
|
| + for (char* move = buffer_ + start, *end = buffer_ + size_ - 1;
|
| + move < end;
|
| + ++move) {
|
| + *move = move[1];
|
| + }
|
| + ++discarded;
|
| + --count_;
|
| + } else if (count_ - size_ > 1) {
|
| + // Need to increment either |count_| or |discarded| to make progress.
|
| + // The latter is more efficient, as it eventually triggers fast
|
| + // handling of padding. But we have to ensure we don't accidentally
|
| + // change the overall state (i.e. switch the state-machine from
|
| + // discarding to non-discarding). |count_| needs to always stay
|
| + // bigger than |size_|.
|
| + --count_;
|
| + ++discarded;
|
| + }
|
| + }
|
| +
|
| + // Output the next digit and (if necessary) compensate for the most
|
| + // negative integer needing special treatment. This works because,
|
| + // no matter the bit width of the integer, the lowest-most decimal
|
| + // integer always ends in 2, 4, 6, or 8.
|
| + if (!num && started) {
|
| + if (reverse_prefix > prefix) {
|
| + Out(*--reverse_prefix);
|
| + } else {
|
| + Out(pad);
|
| + }
|
| + } else {
|
| + started = true;
|
| + Out((upcase ? kUpCaseHexDigits : kDownCaseHexDigits)[num%base + minint]);
|
| + }
|
| +
|
| + minint = 0;
|
| + num /= base;
|
| +
|
| + // Add padding, if requested.
|
| + if (padding > 0) {
|
| + --padding;
|
| +
|
| + // Performance optimization for when we are asked to output excessive
|
| + // padding, but our output buffer is limited in size. Even if we output
|
| + // a 64bit number in binary, we would never write more than 64 plus
|
| + // prefix non-padding characters. So, once this limit has been passed,
|
| + // any further state change can be computed arithmetically; we know that
|
| + // by this time, our entire final output consists of padding characters
|
| + // that have all already been output.
|
| + if (discarded > 8*sizeof(num) + prefix_length) {
|
| + IncrementCount(padding);
|
| + padding = 0;
|
| + }
|
| + }
|
| + } while (num || padding || (reverse_prefix > prefix));
|
| +
|
| + // Conversion to ASCII actually resulted in the digits being in reverse
|
| + // order. We can't easily generate them in forward order, as we can't tell
|
| + // the number of characters needed until we are done converting.
|
| + // So, now, we reverse the string (except for the possible '-' sign).
|
| + char* front = buffer_ + start;
|
| + char* back = GetInsertionPoint();
|
| + while (--back > front) {
|
| + char ch = *back;
|
| + *back = *front;
|
| + *front++ = ch;
|
| + }
|
| +
|
| + IncrementCount(discarded);
|
| + return !discarded;
|
| +}
|
| +
|
| +} // anonymous namespace
|
| +
|
| +namespace internal {
|
| +
|
| +ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt, const Arg* args,
|
| + const size_t max_args) {
|
| + // Make sure that at least one NUL byte can be written, and that the buffer
|
| + // never overflows kSSizeMax. Not only does that use up most or all of the
|
| + // address space, it also would result in a return code that cannot be
|
| + // represented.
|
| + if (static_cast<ssize_t>(sz) < 1) {
|
| + return -1;
|
| + } else if (sz > kSSizeMax) {
|
| + sz = kSSizeMax;
|
| + }
|
| +
|
| + // Iterate over format string and interpret '%' arguments as they are
|
| + // encountered.
|
| + Buffer buffer(buf, sz);
|
| + size_t padding;
|
| + char pad;
|
| + for (unsigned int cur_arg = 0; *fmt && !buffer.OutOfAddressableSpace(); ) {
|
| + if (*fmt++ == '%') {
|
| + padding = 0;
|
| + pad = ' ';
|
| + char ch = *fmt++;
|
| + format_character_found:
|
| + switch (ch) {
|
| + case '0': case '1': case '2': case '3': case '4':
|
| + case '5': case '6': case '7': case '8': case '9':
|
| + // Found a width parameter. Convert to an integer value and store in
|
| + // "padding". If the leading digit is a zero, change the padding
|
| + // character from a space ' ' to a zero '0'.
|
| + pad = ch == '0' ? '0' : ' ';
|
| + for (;;) {
|
| + // The maximum allowed padding fills all the available address
|
| + // space and leaves just enough space to insert the trailing NUL.
|
| + const size_t max_padding = kSSizeMax - 1;
|
| + if (padding > max_padding/10 ||
|
| + 10*padding > max_padding - (ch - '0')) {
|
| + DEBUG_CHECK(padding <= max_padding/10 &&
|
| + 10*padding <= max_padding - (ch - '0'));
|
| + // Integer overflow detected. Skip the rest of the width until
|
| + // we find the format character, then do the normal error handling.
|
| + padding_overflow:
|
| + padding = max_padding;
|
| + while ((ch = *fmt++) >= '0' && ch <= '9') {
|
| + }
|
| + if (cur_arg < max_args) {
|
| + ++cur_arg;
|
| + }
|
| + goto fail_to_expand;
|
| + }
|
| + padding = 10*padding + ch - '0';
|
| + if (padding > max_padding) {
|
| + // This doesn't happen for "sane" values of kSSizeMax. But once
|
| + // kSSizeMax gets smaller than about 10, our earlier range checks
|
| + // are incomplete. Unittests do trigger this artificial corner
|
| + // case.
|
| + DEBUG_CHECK(padding <= max_padding);
|
| + goto padding_overflow;
|
| + }
|
| + ch = *fmt++;
|
| + if (ch < '0' || ch > '9') {
|
| + // Reached the end of the width parameter. This is where the format
|
| + // character is found.
|
| + goto format_character_found;
|
| + }
|
| + }
|
| + break;
|
| + case 'c': { // Output an ASCII character.
|
| + // Check that there are arguments left to be inserted.
|
| + if (cur_arg >= max_args) {
|
| + DEBUG_CHECK(cur_arg < max_args);
|
| + goto fail_to_expand;
|
| + }
|
| +
|
| + // Check that the argument has the expected type.
|
| + const Arg& arg = args[cur_arg++];
|
| + if (arg.type != Arg::INT && arg.type != Arg::UINT) {
|
| + DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
|
| + goto fail_to_expand;
|
| + }
|
| +
|
| + // Apply padding, if needed.
|
| + buffer.Pad(' ', padding, 1);
|
| +
|
| + // Convert the argument to an ASCII character and output it.
|
| + char ch = static_cast<char>(arg.i);
|
| + if (!ch) {
|
| + goto end_of_output_buffer;
|
| + }
|
| + buffer.Out(ch);
|
| + break; }
|
| + case 'd': // Output a possibly signed decimal value.
|
| + case 'o': // Output an unsigned octal value.
|
| + case 'x': // Output an unsigned hexadecimal value.
|
| + case 'X':
|
| + case 'p': { // Output a pointer value.
|
| + // Check that there are arguments left to be inserted.
|
| + if (cur_arg >= max_args) {
|
| + DEBUG_CHECK(cur_arg < max_args);
|
| + goto fail_to_expand;
|
| + }
|
| +
|
| + const Arg& arg = args[cur_arg++];
|
| + int64_t i;
|
| + const char* prefix = NULL;
|
| + if (ch != 'p') {
|
| + // Check that the argument has the expected type.
|
| + if (arg.type != Arg::INT && arg.type != Arg::UINT) {
|
| + DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
|
| + goto fail_to_expand;
|
| + }
|
| + i = arg.i;
|
| +
|
| + if (ch != 'd') {
|
| + // The Arg() constructor automatically performed sign expansion on
|
| + // signed parameters. This is great when outputting a %d decimal
|
| + // number, but can result in unexpected leading 0xFF bytes when
|
| + // outputting a %x hexadecimal number. Mask bits, if necessary.
|
| + // We have to do this here, instead of in the Arg() constructor, as
|
| + // the Arg() constructor cannot tell whether we will output a %d
|
| + // or a %x. Only the latter should experience masking.
|
| + if (arg.width < sizeof(int64_t)) {
|
| + i &= (1LL << (8*arg.width)) - 1;
|
| + }
|
| + }
|
| + } else {
|
| + // Pointer values require an actual pointer or a string.
|
| + if (arg.type == Arg::POINTER) {
|
| + i = reinterpret_cast<uintptr_t>(arg.ptr);
|
| + } else if (arg.type == Arg::STRING) {
|
| + i = reinterpret_cast<uintptr_t>(arg.str);
|
| + } else if (arg.type == Arg::INT && arg.width == sizeof(void *) &&
|
| + arg.i == 0) { // Allow C++'s version of NULL
|
| + i = 0;
|
| + } else {
|
| + DEBUG_CHECK(arg.type == Arg::POINTER || arg.type == Arg::STRING);
|
| + goto fail_to_expand;
|
| + }
|
| +
|
| + // Pointers always include the "0x" prefix.
|
| + prefix = "0x";
|
| + }
|
| +
|
| + // Use IToASCII() to convert to ASCII representation. For decimal
|
| + // numbers, optionally print a sign. For hexadecimal numbers,
|
| + // distinguish between upper and lower case. %p addresses are always
|
| + // printed as upcase. Supports base 8, 10, and 16. Prints padding
|
| + // and/or prefixes, if so requested.
|
| + buffer.IToASCII(ch == 'd' && arg.type == Arg::INT,
|
| + ch != 'x', i,
|
| + ch == 'o' ? 8 : ch == 'd' ? 10 : 16,
|
| + pad, padding, prefix);
|
| + break; }
|
| + case 's': {
|
| + // Check that there are arguments left to be inserted.
|
| + if (cur_arg >= max_args) {
|
| + DEBUG_CHECK(cur_arg < max_args);
|
| + goto fail_to_expand;
|
| + }
|
| +
|
| + // Check that the argument has the expected type.
|
| + const Arg& arg = args[cur_arg++];
|
| + const char *s;
|
| + if (arg.type == Arg::STRING)
|
| + s = arg.str ? arg.str : "<NULL>";
|
| + else if (arg.type == Arg::INT && arg.width == sizeof(void *) &&
|
| + arg.i == 0) { // Allow C++'s version of NULL
|
| + s = "<NULL>";
|
| + } else {
|
| + DEBUG_CHECK(arg.type == Arg::STRING);
|
| + goto fail_to_expand;
|
| + }
|
| +
|
| + // Apply padding, if needed. This requires us to first check the
|
| + // length of the string that we are outputting.
|
| + if (padding) {
|
| + size_t len = 0;
|
| + for (const char* src = s; *src++; ) {
|
| + ++len;
|
| + }
|
| + buffer.Pad(' ', padding, len);
|
| + }
|
| +
|
| + // Printing a string involves nothing more than copying it into the
|
| + // output buffer and making sure we don't output more bytes than
|
| + // available space; Out() takes care of doing that.
|
| + for (const char* src = s; *src; ) {
|
| + buffer.Out(*src++);
|
| + }
|
| + break; }
|
| + case '%':
|
| + // Quoted percent '%' character.
|
| + goto copy_verbatim;
|
| + fail_to_expand:
|
| + // C++ gives us tools to do type checking -- something that snprintf()
|
| + // could never really do. So, whenever we see arguments that don't
|
| + // match up with the format string, we refuse to output them. But
|
| + // since we have to be extremely conservative about being async-
|
| + // signal-safe, we are limited in the type of error handling that we
|
| + // can do in production builds (in debug builds we can use
|
| + // DEBUG_CHECK() and hope for the best). So, all we do is pass the
|
| + // format string unchanged. That should eventually get the user's
|
| + // attention; and in the meantime, it hopefully doesn't lose too much
|
| + // data.
|
| + default:
|
| + // Unknown or unsupported format character. Just copy verbatim to
|
| + // output.
|
| + buffer.Out('%');
|
| + DEBUG_CHECK(ch);
|
| + if (!ch) {
|
| + goto end_of_format_string;
|
| + }
|
| + buffer.Out(ch);
|
| + break;
|
| + }
|
| + } else {
|
| + copy_verbatim:
|
| + buffer.Out(fmt[-1]);
|
| + }
|
| + }
|
| + end_of_format_string:
|
| + end_of_output_buffer:
|
| + return buffer.GetCount();
|
| +}
|
| +
|
| +} // namespace internal
|
| +
|
| +ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt) {
|
| + // Make sure that at least one NUL byte can be written, and that the buffer
|
| + // never overflows kSSizeMax. Not only does that use up most or all of the
|
| + // address space, it also would result in a return code that cannot be
|
| + // represented.
|
| + if (static_cast<ssize_t>(sz) < 1) {
|
| + return -1;
|
| + } else if (sz > kSSizeMax) {
|
| + sz = kSSizeMax;
|
| + }
|
| +
|
| + Buffer buffer(buf, sz);
|
| +
|
| + // In the slow-path, we deal with errors by copying the contents of
|
| + // "fmt" unexpanded. This means, if there are no arguments passed, the
|
| + // SafeSPrintf() function always degenerates to a version of strncpy() that
|
| + // de-duplicates '%' characters.
|
| + const char* src = fmt;
|
| + for (; *src; ++src) {
|
| + buffer.Out(*src);
|
| + DEBUG_CHECK(src[0] != '%' || src[1] == '%');
|
| + if (src[0] == '%' && src[1] == '%') {
|
| + ++src;
|
| + }
|
| + }
|
| + return buffer.GetCount();
|
| +}
|
| +
|
| +} // namespace strings
|
| +} // namespace base
|
|
|