Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 // | |
| 5 // Author: markus@chromium.org | |
| 6 | |
| 7 #include <limits> | |
| 8 | |
| 9 #include "base/debug/format.h" | |
| 10 | |
| 11 #if !defined(NDEBUG) | |
| 12 // In debug builds, we use RAW_CHECK() to print useful error messages, if | |
| 13 // Format() is called with broken arguments. | |
| 14 // As our contract promises that Format() can be called from any crazy | |
|
jln (very slow on Chromium)
2013/08/01 00:03:15
nit: remove crazy
| |
| 15 // run-time context, it is not actually safe to call logging functions from it; | |
| 16 // and we only ever do so for debug builds and hope for the best. | |
| 17 // We should _never_ call any logging function other than RAW_CHECK(), and | |
| 18 // we should _never_ include any logging code that is active in production | |
| 19 // builds. | |
| 20 // In other words; please do not remove the #ifdef around this #include. | |
| 21 // Instead, in production builds we opt for returning a degraded result, | |
| 22 // whenever an error is encountered. | |
| 23 // E.g. The broken function call | |
| 24 // Format("errno = %d (%x)", errno, strerror(errno)) | |
| 25 // will print something like | |
| 26 // errno = 13, (%x) | |
| 27 // instead of | |
| 28 // errno = 13 (Access denied) | |
| 29 // In most of the anticipated use cases, that's probably the preferred | |
| 30 // behavior. | |
| 31 #include "base/logging.h" | |
| 32 #define RAW_DCHECK RAW_CHECK | |
| 33 #else | |
| 34 #define RAW_DCHECK(x) do { if (x) { } } while (0) | |
|
jln (very slow on Chromium)
2013/08/01 00:03:15
Do you want to just add this to base/logging.h ?
| |
| 35 #endif | |
| 36 | |
| 37 | |
| 38 namespace base { | |
| 39 namespace debug { | |
| 40 | |
| 41 // The code in this file is extremely careful to be async-signal-safe. | |
| 42 // | |
| 43 // Most obviously, we avoid calling any code that could dynamically allocate | |
| 44 // memory. Doing so would almost certainly result in bugs and dead-locks. | |
| 45 // We also avoid calling any other STL functions that could have unintended | |
| 46 // side-effects involving memory allocation or access to other shared | |
| 47 // resources. | |
| 48 // | |
| 49 // But on top of that, we also avoid calling other library functions, as many | |
| 50 // of them have the side-effect of calling getenv() (in order to deal with | |
| 51 // localization) or accessing errno. The latter sounds benign, but there are | |
| 52 // several execution contexts where it isn't even possible to safely read let | |
| 53 // alone write errno. | |
| 54 // | |
| 55 // The stated design goal of the Format() function is that it can be called | |
| 56 // from any context that can safely call C or C++ code (i.e. anything that | |
| 57 // doesn't require assembly code). | |
| 58 // | |
| 59 // For a brief overview of some but not all of the issues with async-signal- | |
| 60 // safety, refer to: | |
| 61 // http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html | |
| 62 | |
| 63 namespace { | |
| 64 | |
|
jln (very slow on Chromium)
2013/08/01 00:03:15
Please document this function and its |parameters|
| |
| 65 inline bool IncrementCount(size_t* count, size_t inc = 1) { | |
|
jln (very slow on Chromium)
2013/08/01 00:03:15
Please, avoid default parameters. Just have a Incr
| |
| 66 // "inc" is either 1 or a "padding" value. Padding is clamped at run-time to | |
| 67 // at most SSIZE_MAX. So, we know that "inc" is always in the range | |
| 68 // 1..SSIZE_MAX. | |
| 69 // This allows us to compute "SSIZE_MAX - inc" without incurring any | |
| 70 // integer overflows. | |
| 71 RAW_DCHECK((size_t)inc <= (size_t)std::numeric_limits<ssize_t>::max()); | |
| 72 if (*count > std::numeric_limits<ssize_t>::max() - inc) { | |
| 73 *count = std::numeric_limits<ssize_t>::max(); | |
| 74 return false; | |
| 75 } else { | |
| 76 *count += inc; | |
| 77 return true; | |
| 78 } | |
| 79 } | |
| 80 | |
| 81 inline bool Out(char* buf, size_t sz, size_t* count, char ch) { | |
|
jln (very slow on Chromium)
2013/08/01 00:03:15
Please document this function and its |parameters|
| |
| 82 if (*count + 1 < sz) { | |
|
jln (very slow on Chromium)
2013/08/01 00:03:15
if (sz >= 1 && count < sz - 1)
| |
| 83 buf[*count] = ch; | |
| 84 IncrementCount(count); | |
| 85 return true; | |
| 86 } | |
| 87 IncrementCount(count); | |
| 88 return false; | |
| 89 } | |
| 90 | |
| 91 inline void Pad(char* buf, size_t sz, size_t* count, char pad, size_t padding, | |
|
jln (very slow on Chromium)
2013/08/01 00:03:15
Please document this function and its |parameters|
| |
| 92 size_t len, char** ptr) { | |
| 93 char *dst = *ptr; | |
| 94 for (; padding > len; --padding) | |
| 95 if (Out(buf, sz, count, pad)) | |
| 96 ++dst; | |
| 97 else { | |
| 98 if (--padding) | |
| 99 IncrementCount(count, padding-len); | |
| 100 break; | |
| 101 } | |
| 102 *ptr = dst; | |
| 103 } | |
| 104 | |
| 105 // POSIX doesn't define any async-signal-safe function for converting | |
| 106 // an integer to ASCII. Define our own version. | |
| 107 // | |
| 108 // This also gives us the ability to make the function a little more powerful | |
| 109 // and have it deal with padding, with truncation, and with predicting the | |
| 110 // length of the untruncated output. | |
| 111 // | |
| 112 // IToASCII() converts an (optionally signed) integer to ASCII. It never | |
| 113 // writes more than "sz" bytes. Output will be truncated as needed, and a NUL | |
| 114 // character is appended, unless "sz" is zero. It returns the number of non-NUL | |
| 115 // bytes that would be output if no truncation had happened. | |
| 116 // | |
| 117 // It supports bases 2 through 16. Padding can be done with either '0' zeros | |
| 118 // or ' ' spaces. | |
| 119 size_t IToASCII(bool sign, bool upcase, int64_t i, char* buf, size_t sz, | |
| 120 int base, size_t padding, char pad) { | |
| 121 // Sanity check for the "base". | |
| 122 if (base < 2 || base > 16 || (sign && base != 10)) { | |
| 123 if (static_cast<ssize_t>(sz) >= 1) | |
| 124 buf[0] = '\000'; | |
| 125 return 0; | |
| 126 } | |
| 127 | |
| 128 // Handle negative numbers, if requested by caller. | |
| 129 size_t count = 0; | |
| 130 size_t n = 1; | |
| 131 char* start = buf; | |
| 132 int minint = 0; | |
| 133 bool needs_minus = false; | |
| 134 uint64_t num; | |
| 135 if (sign && i < 0) { | |
| 136 // If we aren't inserting padding, or if we are padding with '0' zeros, | |
| 137 // we should insert the minus character now. It makes it easier to | |
| 138 // correctly deal with truncated padded numbers. | |
| 139 // On the other hand, if we are padding with ' ' spaces, we have to | |
| 140 // delay outputting the minus character until later. | |
| 141 if (padding <= 2 || pad == '0') { | |
| 142 ++count; | |
| 143 | |
| 144 // Make sure we can write the '-' character. | |
| 145 if (++n > sz) { | |
| 146 if (sz > 0) | |
| 147 *start = '\000'; | |
| 148 } else | |
| 149 *start++ = '-'; | |
| 150 | |
| 151 // Adjust padding, since we just output one character already. | |
| 152 if (padding) | |
| 153 --padding; | |
| 154 } else | |
| 155 needs_minus = true; | |
| 156 | |
| 157 // Turn our number positive. | |
| 158 if (i == std::numeric_limits<int64_t>::min()) { | |
| 159 // The most negative integer needs special treatment. | |
| 160 minint = 1; | |
| 161 num = -(i + 1); | |
| 162 } else { | |
| 163 // "Normal" negative numbers are easy. | |
| 164 num = -i; | |
| 165 } | |
| 166 } else | |
| 167 num = i; | |
| 168 | |
| 169 // Loop until we have converted the entire number. Output at least one | |
| 170 // character (i.e. '0'). | |
| 171 char* ptr = start; | |
| 172 bool started = false; | |
| 173 do { | |
| 174 // Sanity check. If padding is used to fill the entire address space, | |
| 175 // don't allow more than SSIZE_MAX bytes. | |
| 176 if (++count == static_cast<size_t>(std::numeric_limits<ssize_t>::max())) { | |
| 177 RAW_DCHECK(count < | |
| 178 static_cast<size_t>(std::numeric_limits<ssize_t>::max())); | |
| 179 break; | |
| 180 } | |
| 181 | |
| 182 // Make sure there is still enough space left in our output buffer. | |
| 183 if (n == sz) { | |
| 184 if (ptr > start) { | |
| 185 // It is rare that we need to output a partial number. But if asked | |
| 186 // to do so, we will still make sure we output the correct number of | |
| 187 // leading digits. | |
| 188 // Since we are generating the digits in reverse order, we actually | |
| 189 // have to discard digits in the order that we have already emitted | |
| 190 // them. This is essentially equivalent to: | |
| 191 // memmove(start, start+1, --ptr - start) | |
| 192 --ptr; | |
| 193 for (char* move = start; move < ptr; ++move) | |
| 194 *move = move[1]; | |
| 195 } else | |
| 196 goto cannot_write_anything_but_nul; | |
|
jln (very slow on Chromium)
2013/08/01 00:03:15
Any way to split this to a subfunction ?
| |
| 197 } else | |
| 198 ++n; | |
| 199 | |
| 200 // Output the next digit and (if necessary) compensate for the lowest- | |
| 201 // most negative integer needing special treatment. This works because, | |
| 202 // no matter the bit width of the integer, the lowest-most decimal | |
| 203 // integer always ends in 2, 4, 6, or 8. | |
| 204 if (n <= sz) { | |
| 205 if (!num && started) | |
| 206 if (needs_minus) { | |
| 207 *ptr++ = '-'; | |
| 208 needs_minus = false; | |
| 209 } else | |
| 210 *ptr++ = pad; | |
| 211 else { | |
| 212 started = true; | |
| 213 *ptr++ = (upcase ? "0123456789ABCDEF" : "0123456789abcdef") | |
| 214 [num%base+minint]; | |
| 215 } | |
| 216 } | |
| 217 | |
| 218 cannot_write_anything_but_nul: | |
| 219 minint = 0; | |
| 220 num /= base; | |
| 221 | |
| 222 // Add padding, if requested. | |
| 223 if (padding > 0) { | |
| 224 --padding; | |
| 225 | |
| 226 // Performance optimization for when we are asked to output | |
| 227 // excessive padding, but our output buffer is limited in size. | |
| 228 // Even if we output a 128bit number in binary, we would never | |
| 229 // write more than 130 characters. So, anything beyond this limit | |
| 230 // and we can compute the result arithmetically. | |
| 231 if (count > n && count - n > 130) { | |
| 232 IncrementCount(&count, padding); | |
| 233 padding = 0; | |
| 234 } | |
| 235 } | |
| 236 } while (num || padding || needs_minus); | |
| 237 | |
| 238 // Terminate the output with a NUL character. | |
| 239 if (sz > 0) | |
| 240 *ptr = '\000'; | |
| 241 | |
| 242 // Conversion to ASCII actually resulted in the digits being in reverse | |
| 243 // order. We can't easily generate them in forward order, as we can't tell | |
| 244 // the number of characters needed until we are done converting. | |
| 245 // So, now, we reverse the string (except for the possible '-' sign). | |
| 246 while (--ptr > start) { | |
| 247 char ch = *ptr; | |
| 248 *ptr = *start; | |
| 249 *start++ = ch; | |
| 250 } | |
| 251 return count; | |
| 252 } | |
| 253 | |
| 254 } // anonymous namespace | |
| 255 | |
| 256 ssize_t internal::FormatN(char* buf, size_t sz, const char* fmt, | |
| 257 const Arg* args, const size_t max_args) { | |
| 258 // Make sure we can write at least one NUL byte. | |
| 259 if (static_cast<ssize_t>(sz) < 1) | |
| 260 return -1; | |
| 261 | |
| 262 // Iterate over format string and interpret '%' arguments as they are | |
| 263 // encountered. | |
| 264 char* ptr = buf; | |
| 265 size_t padding; | |
| 266 char pad; | |
| 267 size_t count = 0; | |
| 268 for (unsigned int cur_arg = 0; | |
| 269 *fmt && | |
| 270 count != static_cast<size_t>(std::numeric_limits<ssize_t>::max()); ) { | |
| 271 if (*fmt++ == '%') { | |
| 272 padding = 0; | |
| 273 pad = ' '; | |
| 274 char ch = *fmt++; | |
| 275 format_character_found: | |
| 276 switch (ch) { | |
| 277 case '0': case '1': case '2': case '3': case '4': | |
| 278 case '5': case '6': case '7': case '8': case '9': | |
| 279 // Found a width parameter. Convert to an integer value and store in | |
| 280 // "padding". If the leading digit is a zero, change the padding | |
| 281 // character from a space ' ' to a zero '0'. | |
| 282 pad = ch == '0' ? '0' : ' '; | |
| 283 for (;;) { | |
| 284 const size_t max_padding = std::numeric_limits<ssize_t>::max(); | |
| 285 if (padding > max_padding/10 || | |
| 286 10*padding > max_padding - (ch - '0')) { | |
| 287 RAW_DCHECK(padding <= max_padding/10 && | |
| 288 10*padding <= max_padding - (ch - '0')); | |
| 289 // Integer overflow detected. Skip the rest of the width until | |
| 290 // we find the format character, then do the normal error handling. | |
| 291 while ((ch = *fmt++) >= '0' && ch <= '9') { | |
| 292 } | |
| 293 goto fail_to_expand; | |
| 294 } | |
| 295 padding = 10*padding + ch - '0'; | |
| 296 ch = *fmt++; | |
| 297 if (ch < '0' || ch > '9') { | |
| 298 // Reached the end of the width parameter. This is where the format | |
| 299 // character is found. | |
| 300 goto format_character_found; | |
| 301 } | |
| 302 } | |
| 303 break; | |
| 304 case 'c': { // Output an ASCII character. | |
| 305 // Check that there are arguments left to be inserted. | |
| 306 if (cur_arg >= max_args) { | |
| 307 RAW_DCHECK(cur_arg < max_args); | |
| 308 goto fail_to_expand; | |
| 309 } | |
| 310 | |
| 311 // Check that the argument has the expected type. | |
| 312 const Arg& arg = args[cur_arg++]; | |
| 313 if (arg.type_ != Arg::INT && | |
| 314 arg.type_ != Arg::UINT) { | |
| 315 RAW_DCHECK(arg.type_ == Arg::INT || | |
| 316 arg.type_ == Arg::UINT); | |
| 317 goto fail_to_expand; | |
| 318 } | |
| 319 | |
| 320 // Apply padding, if needed. | |
| 321 Pad(buf, sz, &count, ' ', padding, 1, &ptr); | |
| 322 | |
| 323 // Convert the argument to an ASCII character and output it. | |
| 324 char ch = static_cast<char>(arg.i_); | |
| 325 if (!ch) | |
| 326 goto end_of_output_buffer; | |
| 327 if (Out(buf, sz, &count, ch)) | |
| 328 ++ptr; | |
| 329 break; } | |
| 330 case 'd': { // Output a signed or unsigned integer-like value. | |
| 331 // Check that there are arguments left to be inserted. | |
| 332 if (cur_arg >= max_args) { | |
| 333 RAW_DCHECK(cur_arg < max_args); | |
| 334 goto fail_to_expand; | |
| 335 } | |
| 336 | |
| 337 // Check that the argument has the expected type. | |
| 338 const Arg& arg = args[cur_arg++]; | |
| 339 if (arg.type_ != Arg::INT && | |
| 340 arg.type_ != Arg::UINT) { | |
| 341 RAW_DCHECK(arg.type_ == Arg::INT || | |
| 342 arg.type_ == Arg::UINT); | |
| 343 goto fail_to_expand; | |
| 344 } | |
| 345 | |
| 346 // Our implementation of IToASCII() can handle all widths of data types | |
| 347 // and can print both signed and unsigned values. | |
| 348 IncrementCount(&count, | |
| 349 IToASCII(arg.type_ == Arg::INT, false, arg.i_, | |
| 350 ptr, sz - (ptr - buf), 10, padding, pad)); | |
| 351 | |
| 352 // Advance "ptr" to the end of the string that was just emitted. | |
| 353 if (sz - (ptr - buf)) | |
| 354 while (*ptr) | |
| 355 ++ptr; | |
| 356 break; } | |
| 357 case 'x': // Output an unsigned hexadecimal value. | |
| 358 case 'X': | |
| 359 case 'p': { // Output a pointer value. | |
| 360 // Check that there are arguments left to be inserted. | |
| 361 if (cur_arg >= max_args) { | |
| 362 RAW_DCHECK(cur_arg < max_args); | |
| 363 goto fail_to_expand; | |
| 364 } | |
| 365 | |
| 366 const Arg& arg = args[cur_arg++]; | |
| 367 int64_t i; | |
| 368 switch (ch) { | |
| 369 case 'x': // Hexadecimal values are available for integer-like args. | |
| 370 case 'X': | |
| 371 // Check that the argument has the expected type. | |
| 372 if (arg.type_ != Arg::INT && | |
| 373 arg.type_ != Arg::UINT) { | |
| 374 RAW_DCHECK(arg.type_ == Arg::INT || | |
| 375 arg.type_ == Arg::UINT); | |
| 376 goto fail_to_expand; | |
| 377 } | |
| 378 i = arg.i_; | |
| 379 | |
| 380 // The Arg() constructor automatically performed sign expansion on | |
| 381 // signed parameters. This is great when outputting a %d decimal | |
| 382 // number, but can result in unexpected leading 0xFF bytes when | |
| 383 // outputting a %c hexadecimal number. Mask bits, if necessary. | |
| 384 // We have to do this here, instead of in the Arg() constructor, as | |
| 385 // the Arg() constructor cannot tell whether we will output a %d | |
| 386 // or a %x. Only the latter should experience masking. | |
| 387 if (arg.width_ < sizeof(int64_t)) | |
| 388 i &= (1LL << (8*arg.width_)) - 1; | |
| 389 break; | |
| 390 default: | |
| 391 // Pointer values require an actual pointer or a string. | |
| 392 if (arg.type_ == Arg::POINTER) | |
| 393 i = reinterpret_cast<uintptr_t>(arg.ptr_); | |
| 394 else if (arg.type_ == Arg::STRING) | |
| 395 i = reinterpret_cast<uintptr_t>(arg.s_); | |
| 396 else if (arg.type_ == Arg::INT && arg.width_ == sizeof(void *) && | |
| 397 arg.i_ == 0) // Allow C++'s version of NULL | |
| 398 i = 0; | |
| 399 else { | |
| 400 RAW_DCHECK(arg.type_ == Arg::POINTER || | |
| 401 arg.type_ == Arg::STRING); | |
| 402 goto fail_to_expand; | |
| 403 } | |
| 404 | |
| 405 // Pointers always include the "0x" prefix. This affects padding. | |
| 406 if (padding) { | |
| 407 if (pad == ' ') { | |
| 408 // Predict the number of hex digits (including "0x" prefix) that | |
| 409 // will be output for this address when it is converted to ASCII. | |
| 410 size_t chars = 2; | |
| 411 uint64_t j = i; | |
| 412 do { | |
| 413 ++chars; | |
| 414 j >>= 4; | |
| 415 } while (j); | |
| 416 | |
| 417 // Output the necessary number of space characters to perform | |
| 418 // padding. We can't rely on IToASCII() to do that for us, as it | |
| 419 // would incorrectly add padding _after_ the "0x" prefix. | |
| 420 Pad(buf, sz, &count, pad, padding, chars, &ptr); | |
| 421 | |
| 422 // Inform IToASCII() that it no longer needs to handle the | |
| 423 // padding. | |
| 424 padding = 0; | |
| 425 } else { | |
| 426 // Adjust for the two-character "0x" prefix. | |
| 427 padding = padding >= 2 ? padding - 2 : 0; | |
| 428 } | |
| 429 } | |
| 430 | |
| 431 // Insert "0x" prefix, if there is still sufficient space in the | |
| 432 // output buffer. | |
| 433 if (Out(buf, sz, &count, '0')) | |
| 434 ++ptr; | |
| 435 if (Out(buf, sz, &count, 'x')) | |
| 436 ++ptr; | |
| 437 break; | |
| 438 } | |
| 439 | |
| 440 // No matter what data type this value originated from, print it as | |
| 441 // a regular hexadecimal number. | |
| 442 IncrementCount(&count, | |
| 443 IToASCII(false, ch != 'x', i, ptr, sz - (ptr - buf), | |
| 444 16, padding, pad)); | |
| 445 | |
| 446 // Advance "ptr" to the end of the string that was just emitted. | |
| 447 if (sz - (ptr - buf)) | |
| 448 while (*ptr) | |
| 449 ++ptr; | |
| 450 break; } | |
| 451 case 's': { | |
| 452 // Check that there are arguments left to be inserted. | |
| 453 if (cur_arg >= max_args) { | |
| 454 RAW_DCHECK(cur_arg < max_args); | |
| 455 goto fail_to_expand; | |
| 456 } | |
| 457 | |
| 458 // Check that the argument has the expected type. | |
| 459 const Arg& arg = args[cur_arg++]; | |
| 460 const char *s; | |
| 461 if (arg.type_ == Arg::STRING) | |
| 462 s = arg.s_ ? arg.s_ : "<NULL>"; | |
| 463 else if (arg.type_ == Arg::INT && arg.width_ == sizeof(void *) && | |
| 464 arg.i_ == 0) // Allow C++'s version of NULL | |
| 465 s = "<NULL>"; | |
| 466 else { | |
| 467 RAW_DCHECK(arg.type_ == Arg::STRING); | |
| 468 goto fail_to_expand; | |
| 469 } | |
| 470 | |
| 471 // Apply padding, if needed. This requires us to first check the | |
| 472 // length of the string that we are outputting. | |
| 473 if (padding) { | |
| 474 size_t len = 0; | |
| 475 for (const char* src = s; *src++; ) | |
| 476 ++len; | |
| 477 Pad(buf, sz, &count, ' ', padding, len, &ptr); | |
| 478 } | |
| 479 | |
| 480 // Printing a string involves nothing more than copying it into the | |
| 481 // output buffer and making sure we don't output more bytes than | |
| 482 // available space. | |
| 483 for (const char* src = s; *src; ) | |
| 484 if (Out(buf, sz, &count, *src++)) | |
| 485 ++ptr; | |
| 486 break; } | |
| 487 case '%': | |
| 488 // Quoted percent '%' character. | |
| 489 goto copy_verbatim; | |
| 490 fail_to_expand: | |
| 491 // C++ gives us tools to do type checking -- something that snprintf() | |
| 492 // could never really do. So, whenever we see arguments that don't | |
| 493 // match up with the format string, we refuse to output them. But | |
| 494 // since we have to be extremely conservative about being async- | |
| 495 // signal-safe, we are limited in the type of error handling that we | |
| 496 // can do in production builds (in debug builds we can use RAW_DCHECK() | |
| 497 // and hope for the best). So, all we do is pass the format string | |
| 498 // unchanged. That should eventually get the user's attention; and in | |
| 499 // the meantime, it hopefully doesn't lose too much data. | |
| 500 default: | |
| 501 // Unknown or unsupported format character. Just copy verbatim to | |
| 502 // output. | |
| 503 if (Out(buf, sz, &count, '%')) | |
| 504 ++ptr; | |
| 505 if (!ch) | |
| 506 goto end_of_format_string; | |
| 507 if (Out(buf, sz, &count, ch)) | |
| 508 ++ptr; | |
| 509 break; | |
| 510 } | |
| 511 } else { | |
| 512 copy_verbatim: | |
| 513 if (Out(buf, sz, &count, fmt[-1])) | |
| 514 ++ptr; | |
| 515 } | |
| 516 } | |
| 517 end_of_format_string: | |
| 518 end_of_output_buffer: | |
| 519 *ptr = '\000'; | |
| 520 IncrementCount(&count); | |
| 521 return static_cast<ssize_t>(count)-1; | |
| 522 } | |
| 523 | |
| 524 ssize_t FormatN(char* buf, size_t N, const char* fmt) { | |
| 525 // Make sure we can write at least one NUL byte. | |
| 526 ssize_t n = static_cast<ssize_t>(N); | |
| 527 if (n < 1) | |
| 528 return -1; | |
| 529 size_t count = 0; | |
| 530 | |
| 531 // In the slow-path, we deal with errors by copying the contents of | |
| 532 // "fmt" unexpanded. This means, if there are no arguments passed, the | |
| 533 // Format() function always degenerates to version of strncpy() that | |
| 534 // de-duplicates '%' characters. | |
| 535 char* dst = buf; | |
| 536 const char* src = fmt; | |
| 537 for (; *src; ++src) { | |
| 538 char ch = *src; | |
| 539 if (!IncrementCount(&count) && n > 1) { | |
| 540 --dst; | |
| 541 break; | |
| 542 } | |
| 543 if (n > 1) { | |
| 544 --n; | |
| 545 *dst++ = ch; | |
| 546 } | |
| 547 if (ch == '%' && src[1] == '%') | |
| 548 ++src; | |
| 549 } | |
| 550 IncrementCount(&count); | |
| 551 *dst = '\000'; | |
| 552 return static_cast<ssize_t>(count)-1; | |
| 553 } | |
| 554 | |
| 555 } // namespace debug | |
| 556 } // namespace base | |
| OLD | NEW |