| Index: src/opts/SkBlitRow_opts_SSE2.cpp
|
| diff --git a/src/opts/SkBlitRow_opts_SSE2.cpp b/src/opts/SkBlitRow_opts_SSE2.cpp
|
| index 27ce1e5f62851bcd2f210f3f692ac74a070a77ba..f3d010e3bc4502f1c54d4cb9b09488c6494a1a98 100644
|
| --- a/src/opts/SkBlitRow_opts_SSE2.cpp
|
| +++ b/src/opts/SkBlitRow_opts_SSE2.cpp
|
| @@ -544,149 +544,232 @@ void SkARGB32_A8_BlitMask_SSE2(void* device, size_t dstRB, const void* maskPtr,
|
| #define SkPackedB16x5ToUnmaskedB32x5_SSE2(x) (_mm_srli_epi32(x, -SK_B16x5_B32x5_SHIFT))
|
| #endif
|
|
|
| -static __m128i SkBlendLCD16_SSE2(__m128i &srci, __m128i &dst,
|
| - __m128i &mask, __m128i &scale) {
|
| +static __m128i SkBlendLCD16_SSE2(__m128i &src, __m128i &dst,
|
| + __m128i &mask, __m128i &srcA) {
|
| + // In the following comments, the components of src, dst and mask are
|
| + // abbreviated as (s)rc, (d)st, and (m)ask. Color components are marked
|
| + // by an R, G, B, or A suffix. Components of one of the four pixels that
|
| + // are processed in parallel are marked with 0, 1, 2, and 3. "d1B", for
|
| + // example is the blue channel of the second destination pixel. Memory
|
| + // layout is shown for an ARGB byte order in a color value.
|
| +
|
| + // src and srcA store 8-bit values interleaved with zeros.
|
| + // src = (0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
|
| + // srcA = (srcA, 0, srcA, 0, srcA, 0, srcA, 0,
|
| + // srcA, 0, srcA, 0, srcA, 0, srcA, 0)
|
| + // mask stores 16-bit values (compressed three channels) interleaved with zeros.
|
| + // Lo and Hi denote the low and high bytes of a 16-bit value, respectively.
|
| + // mask = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0,
|
| + // m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0)
|
| +
|
| // Get the R,G,B of each 16bit mask pixel, we want all of them in 5 bits.
|
| + // r = (0, m0R, 0, 0, 0, m1R, 0, 0, 0, m2R, 0, 0, 0, m3R, 0, 0)
|
| __m128i r = _mm_and_si128(SkPackedR16x5ToUnmaskedR32x5_SSE2(mask),
|
| _mm_set1_epi32(0x1F << SK_R32_SHIFT));
|
|
|
| + // g = (0, 0, m0G, 0, 0, 0, m1G, 0, 0, 0, m2G, 0, 0, 0, m3G, 0)
|
| __m128i g = _mm_and_si128(SkPackedG16x5ToUnmaskedG32x5_SSE2(mask),
|
| _mm_set1_epi32(0x1F << SK_G32_SHIFT));
|
|
|
| + // b = (0, 0, 0, m0B, 0, 0, 0, m1B, 0, 0, 0, m2B, 0, 0, 0, m3B)
|
| __m128i b = _mm_and_si128(SkPackedB16x5ToUnmaskedB32x5_SSE2(mask),
|
| _mm_set1_epi32(0x1F << SK_B32_SHIFT));
|
|
|
| // Pack the 4 16bit mask pixels into 4 32bit pixels, (p0, p1, p2, p3)
|
| + // Each component (m0R, m0G, etc.) is then a 5-bit value aligned to an
|
| + // 8-bit position
|
| + // mask = (0, m0R, m0G, m0B, 0, m1R, m1G, m1B,
|
| + // 0, m2R, m2G, m2B, 0, m3R, m3G, m3B)
|
| mask = _mm_or_si128(_mm_or_si128(r, g), b);
|
|
|
| // Interleave R,G,B into the lower byte of word.
|
| + // i.e. split the sixteen 8-bit values from mask into two sets of eight
|
| + // 16-bit values, padded by zero.
|
| __m128i maskLo, maskHi;
|
| + // maskLo = (0, 0, m0R, 0, m0G, 0, m0B, 0, 0, 0, m1R, 0, m1G, 0, m1B, 0)
|
| maskLo = _mm_unpacklo_epi8(mask, _mm_setzero_si128());
|
| + // maskHi = (0, 0, m2R, 0, m2G, 0, m2B, 0, 0, 0, m3R, 0, m3G, 0, m3B, 0)
|
| maskHi = _mm_unpackhi_epi8(mask, _mm_setzero_si128());
|
|
|
| - // Upscale to 0..32
|
| + // Upscale from 0..31 to 0..32
|
| + // (allows to replace division by left-shift further down)
|
| + // Left-shift each component by 4 and add the result back to that component,
|
| + // mapping numbers in the range 0..15 to 0..15, and 16..31 to 17..32
|
| maskLo = _mm_add_epi16(maskLo, _mm_srli_epi16(maskLo, 4));
|
| maskHi = _mm_add_epi16(maskHi, _mm_srli_epi16(maskHi, 4));
|
|
|
| - maskLo = _mm_mullo_epi16(maskLo, scale);
|
| - maskHi = _mm_mullo_epi16(maskHi, scale);
|
| + // Multiply each component of maskLo and maskHi by srcA
|
| + maskLo = _mm_mullo_epi16(maskLo, srcA);
|
| + maskHi = _mm_mullo_epi16(maskHi, srcA);
|
|
|
| + // Left shift mask components by 8 (divide by 256)
|
| maskLo = _mm_srli_epi16(maskLo, 8);
|
| maskHi = _mm_srli_epi16(maskHi, 8);
|
|
|
| - // Interleave R,G,B into the lower byte of the word.
|
| + // Interleave R,G,B into the lower byte of the word
|
| + // dstLo = (0, 0, d0R, 0, d0G, 0, d0B, 0, 0, 0, d1R, 0, d1G, 0, d1B, 0)
|
| __m128i dstLo = _mm_unpacklo_epi8(dst, _mm_setzero_si128());
|
| + // dstLo = (0, 0, d2R, 0, d2G, 0, d2B, 0, 0, 0, d3R, 0, d3G, 0, d3B, 0)
|
| __m128i dstHi = _mm_unpackhi_epi8(dst, _mm_setzero_si128());
|
|
|
| - maskLo = _mm_mullo_epi16(maskLo, _mm_sub_epi16(srci, dstLo));
|
| - maskHi = _mm_mullo_epi16(maskHi, _mm_sub_epi16(srci, dstHi));
|
| + // mask = (src - dst) * mask
|
| + maskLo = _mm_mullo_epi16(maskLo, _mm_sub_epi16(src, dstLo));
|
| + maskHi = _mm_mullo_epi16(maskHi, _mm_sub_epi16(src, dstHi));
|
|
|
| + // mask = (src - dst) * mask >> 5
|
| maskLo = _mm_srai_epi16(maskLo, 5);
|
| maskHi = _mm_srai_epi16(maskHi, 5);
|
|
|
| // Add two pixels into result.
|
| + // result = dst + ((src - dst) * mask >> 5)
|
| __m128i resultLo = _mm_add_epi16(dstLo, maskLo);
|
| __m128i resultHi = _mm_add_epi16(dstHi, maskHi);
|
|
|
| - // Pack into 4 32bit dst pixels
|
| + // Pack into 4 32bit dst pixels.
|
| + // resultLo and resultHi contain eight 16-bit components (two pixels) each.
|
| + // Merge into one SSE regsiter with sixteen 8-bit values (four pixels),
|
| + // clamping to 255 if necessary.
|
| return _mm_packus_epi16(resultLo, resultHi);
|
| }
|
|
|
| -static __m128i SkBlendLCD16Opaque_SSE2(__m128i &srci, __m128i &dst,
|
| +static __m128i SkBlendLCD16Opaque_SSE2(__m128i &src, __m128i &dst,
|
| __m128i &mask) {
|
| + // In the following comments, the components of src, dst and mask are
|
| + // abbreviated as (s)rc, (d)st, and (m)ask. Color components are marked
|
| + // by an R, G, B, or A suffix. Components of one of the four pixels that
|
| + // are processed in parallel are marked with 0, 1, 2, and 3. "d1B", for
|
| + // example is the blue channel of the second destination pixel. Memory
|
| + // layout is shown for an ARGB byte order in a color value.
|
| +
|
| + // src and srcA store 8-bit values interleaved with zeros.
|
| + // src = (0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
|
| + // mask stores 16-bit values (shown as high and low bytes) interleaved with
|
| + // zeros
|
| + // mask = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0,
|
| + // m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0)
|
| +
|
| // Get the R,G,B of each 16bit mask pixel, we want all of them in 5 bits.
|
| + // r = (0, m0R, 0, 0, 0, m1R, 0, 0, 0, m2R, 0, 0, 0, m3R, 0, 0)
|
| __m128i r = _mm_and_si128(SkPackedR16x5ToUnmaskedR32x5_SSE2(mask),
|
| _mm_set1_epi32(0x1F << SK_R32_SHIFT));
|
|
|
| + // g = (0, 0, m0G, 0, 0, 0, m1G, 0, 0, 0, m2G, 0, 0, 0, m3G, 0)
|
| __m128i g = _mm_and_si128(SkPackedG16x5ToUnmaskedG32x5_SSE2(mask),
|
| _mm_set1_epi32(0x1F << SK_G32_SHIFT));
|
|
|
| + // b = (0, 0, 0, m0B, 0, 0, 0, m1B, 0, 0, 0, m2B, 0, 0, 0, m3B)
|
| __m128i b = _mm_and_si128(SkPackedB16x5ToUnmaskedB32x5_SSE2(mask),
|
| _mm_set1_epi32(0x1F << SK_B32_SHIFT));
|
|
|
| // Pack the 4 16bit mask pixels into 4 32bit pixels, (p0, p1, p2, p3)
|
| + // Each component (m0R, m0G, etc.) is then a 5-bit value aligned to an
|
| + // 8-bit position
|
| + // mask = (0, m0R, m0G, m0B, 0, m1R, m1G, m1B,
|
| + // 0, m2R, m2G, m2B, 0, m3R, m3G, m3B)
|
| mask = _mm_or_si128(_mm_or_si128(r, g), b);
|
|
|
| // Interleave R,G,B into the lower byte of word.
|
| + // i.e. split the sixteen 8-bit values from mask into two sets of eight
|
| + // 16-bit values, padded by zero.
|
| __m128i maskLo, maskHi;
|
| + // maskLo = (0, 0, m0R, 0, m0G, 0, m0B, 0, 0, 0, m1R, 0, m1G, 0, m1B, 0)
|
| maskLo = _mm_unpacklo_epi8(mask, _mm_setzero_si128());
|
| + // maskHi = (0, 0, m2R, 0, m2G, 0, m2B, 0, 0, 0, m3R, 0, m3G, 0, m3B, 0)
|
| maskHi = _mm_unpackhi_epi8(mask, _mm_setzero_si128());
|
|
|
| - // Upscale to 0..32
|
| + // Upscale from 0..31 to 0..32
|
| + // (allows to replace division by left-shift further down)
|
| + // Left-shift each component by 4 and add the result back to that component,
|
| + // mapping numbers in the range 0..15 to 0..15, and 16..31 to 17..32
|
| maskLo = _mm_add_epi16(maskLo, _mm_srli_epi16(maskLo, 4));
|
| maskHi = _mm_add_epi16(maskHi, _mm_srli_epi16(maskHi, 4));
|
|
|
| - // Interleave R,G,B into the lower byte of the word.
|
| + // Interleave R,G,B into the lower byte of the word
|
| + // dstLo = (0, 0, d0R, 0, d0G, 0, d0B, 0, 0, 0, d1R, 0, d1G, 0, d1B, 0)
|
| __m128i dstLo = _mm_unpacklo_epi8(dst, _mm_setzero_si128());
|
| + // dstLo = (0, 0, d2R, 0, d2G, 0, d2B, 0, 0, 0, d3R, 0, d3G, 0, d3B, 0)
|
| __m128i dstHi = _mm_unpackhi_epi8(dst, _mm_setzero_si128());
|
|
|
| - maskLo = _mm_mullo_epi16(maskLo, _mm_sub_epi16(srci, dstLo));
|
| - maskHi = _mm_mullo_epi16(maskHi, _mm_sub_epi16(srci, dstHi));
|
| + // mask = (src - dst) * mask
|
| + maskLo = _mm_mullo_epi16(maskLo, _mm_sub_epi16(src, dstLo));
|
| + maskHi = _mm_mullo_epi16(maskHi, _mm_sub_epi16(src, dstHi));
|
|
|
| + // mask = (src - dst) * mask >> 5
|
| maskLo = _mm_srai_epi16(maskLo, 5);
|
| maskHi = _mm_srai_epi16(maskHi, 5);
|
|
|
| // Add two pixels into result.
|
| + // result = dst + ((src - dst) * mask >> 5)
|
| __m128i resultLo = _mm_add_epi16(dstLo, maskLo);
|
| __m128i resultHi = _mm_add_epi16(dstHi, maskHi);
|
|
|
| // Pack into 4 32bit dst pixels and force opaque.
|
| + // resultLo and resultHi contain eight 16-bit components (two pixels) each.
|
| + // Merge into one SSE regsiter with sixteen 8-bit values (four pixels),
|
| + // clamping to 255 if necessary. Set alpha components to 0xFF.
|
| return _mm_or_si128(_mm_packus_epi16(resultLo, resultHi),
|
| _mm_set1_epi32(SK_A32_MASK << SK_A32_SHIFT));
|
| }
|
|
|
| -void SkBlitLCD16Row_SSE2(SkPMColor dst[], const uint16_t src[],
|
| - SkColor color, int width, SkPMColor) {
|
| +void SkBlitLCD16Row_SSE2(SkPMColor dst[], const uint16_t mask[],
|
| + SkColor src, int width, SkPMColor) {
|
| if (width <= 0) {
|
| return;
|
| }
|
|
|
| - int srcA = SkColorGetA(color);
|
| - int srcR = SkColorGetR(color);
|
| - int srcG = SkColorGetG(color);
|
| - int srcB = SkColorGetB(color);
|
| + int srcA = SkColorGetA(src);
|
| + int srcR = SkColorGetR(src);
|
| + int srcG = SkColorGetG(src);
|
| + int srcB = SkColorGetB(src);
|
|
|
| srcA = SkAlpha255To256(srcA);
|
|
|
| if (width >= 4) {
|
| SkASSERT(((size_t)dst & 0x03) == 0);
|
| while (((size_t)dst & 0x0F) != 0) {
|
| - *dst = SkBlendLCD16(srcA, srcR, srcG, srcB, *dst, *src);
|
| - src++;
|
| + *dst = SkBlendLCD16(srcA, srcR, srcG, srcB, *dst, *mask);
|
| + mask++;
|
| dst++;
|
| width--;
|
| }
|
|
|
| __m128i *d = reinterpret_cast<__m128i*>(dst);
|
| - __m128i srci = _mm_set1_epi32(SkPackARGB32(0xFF, srcR, srcG, srcB));
|
| - srci = _mm_unpacklo_epi8(srci, _mm_setzero_si128());
|
| - __m128i scale = _mm_set1_epi16(srcA);
|
| + // Set alpha to 0xFF and replicate source four times in SSE register.
|
| + __m128i src_sse = _mm_set1_epi32(SkPackARGB32(0xFF, srcR, srcG, srcB));
|
| + // Interleave with zeros to get two sets of four 16-bit values.
|
| + src_sse = _mm_unpacklo_epi8(src_sse, _mm_setzero_si128());
|
| + // Set srcA_sse to contain eight copies of srcA, padded with zero.
|
| + // src_sse=(0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
|
| + __m128i srcA_sse = _mm_set1_epi16(srcA);
|
| while (width >= 4) {
|
| - __m128i dst_pixel = _mm_load_si128(d);
|
| - __m128i mask_pixel = _mm_loadl_epi64(
|
| - reinterpret_cast<const __m128i*>(src));
|
| -
|
| - // Check whether mask_pixels are equal to 0 and get the highest bit
|
| - // of each byte of result, if mask pixes are all zero, we will get
|
| + // Load four destination pixels into dst_sse.
|
| + __m128i dst_sse = _mm_load_si128(d);
|
| + // Load four 16-bit masks into lower half of mask_sse.
|
| + __m128i mask_sse = _mm_loadl_epi64(
|
| + reinterpret_cast<const __m128i*>(mask));
|
| +
|
| + // Check whether masks are equal to 0 and get the highest bit
|
| + // of each byte of result, if masks are all zero, we will get
|
| // pack_cmp to 0xFFFF
|
| - int pack_cmp = _mm_movemask_epi8(_mm_cmpeq_epi16(mask_pixel,
|
| + int pack_cmp = _mm_movemask_epi8(_mm_cmpeq_epi16(mask_sse,
|
| _mm_setzero_si128()));
|
|
|
| // if mask pixels are not all zero, we will blend the dst pixels
|
| if (pack_cmp != 0xFFFF) {
|
| // Unpack 4 16bit mask pixels to
|
| - // (p0, 0, p1, 0, p2, 0, p3, 0)
|
| - mask_pixel = _mm_unpacklo_epi16(mask_pixel,
|
| - _mm_setzero_si128());
|
| + // mask_sse = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0,
|
| + // m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0)
|
| + mask_sse = _mm_unpacklo_epi16(mask_sse,
|
| + _mm_setzero_si128());
|
|
|
| // Process 4 32bit dst pixels
|
| - __m128i result = SkBlendLCD16_SSE2(srci, dst_pixel,
|
| - mask_pixel, scale);
|
| + __m128i result = SkBlendLCD16_SSE2(src_sse, dst_sse,
|
| + mask_sse, srcA_sse);
|
| _mm_store_si128(d, result);
|
| }
|
|
|
| d++;
|
| - src += 4;
|
| + mask += 4;
|
| width -= 4;
|
| }
|
|
|
| @@ -694,61 +777,67 @@ void SkBlitLCD16Row_SSE2(SkPMColor dst[], const uint16_t src[],
|
| }
|
|
|
| while (width > 0) {
|
| - *dst = SkBlendLCD16(srcA, srcR, srcG, srcB, *dst, *src);
|
| - src++;
|
| + *dst = SkBlendLCD16(srcA, srcR, srcG, srcB, *dst, *mask);
|
| + mask++;
|
| dst++;
|
| width--;
|
| }
|
| }
|
|
|
| -void SkBlitLCD16OpaqueRow_SSE2(SkPMColor dst[], const uint16_t src[],
|
| - SkColor color, int width, SkPMColor opaqueDst) {
|
| +void SkBlitLCD16OpaqueRow_SSE2(SkPMColor dst[], const uint16_t mask[],
|
| + SkColor src, int width, SkPMColor opaqueDst) {
|
| if (width <= 0) {
|
| return;
|
| }
|
|
|
| - int srcR = SkColorGetR(color);
|
| - int srcG = SkColorGetG(color);
|
| - int srcB = SkColorGetB(color);
|
| + int srcR = SkColorGetR(src);
|
| + int srcG = SkColorGetG(src);
|
| + int srcB = SkColorGetB(src);
|
|
|
| if (width >= 4) {
|
| SkASSERT(((size_t)dst & 0x03) == 0);
|
| while (((size_t)dst & 0x0F) != 0) {
|
| - *dst = SkBlendLCD16Opaque(srcR, srcG, srcB, *dst, *src, opaqueDst);
|
| - src++;
|
| + *dst = SkBlendLCD16Opaque(srcR, srcG, srcB, *dst, *mask, opaqueDst);
|
| + mask++;
|
| dst++;
|
| width--;
|
| }
|
|
|
| __m128i *d = reinterpret_cast<__m128i*>(dst);
|
| - __m128i srci = _mm_set1_epi32(SkPackARGB32(0xFF, srcR, srcG, srcB));
|
| - srci = _mm_unpacklo_epi8(srci, _mm_setzero_si128());
|
| + // Set alpha to 0xFF and replicate source four times in SSE register.
|
| + __m128i src_sse = _mm_set1_epi32(SkPackARGB32(0xFF, srcR, srcG, srcB));
|
| + // Set srcA_sse to contain eight copies of srcA, padded with zero.
|
| + // src_sse=(0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
|
| + src_sse = _mm_unpacklo_epi8(src_sse, _mm_setzero_si128());
|
| while (width >= 4) {
|
| - __m128i dst_pixel = _mm_load_si128(d);
|
| - __m128i mask_pixel = _mm_loadl_epi64(
|
| - reinterpret_cast<const __m128i*>(src));
|
| -
|
| - // Check whether mask_pixels are equal to 0 and get the highest bit
|
| - // of each byte of result, if mask pixes are all zero, we will get
|
| + // Load four destination pixels into dst_sse.
|
| + __m128i dst_sse = _mm_load_si128(d);
|
| + // Load four 16-bit masks into lower half of mask_sse.
|
| + __m128i mask_sse = _mm_loadl_epi64(
|
| + reinterpret_cast<const __m128i*>(mask));
|
| +
|
| + // Check whether masks are equal to 0 and get the highest bit
|
| + // of each byte of result, if masks are all zero, we will get
|
| // pack_cmp to 0xFFFF
|
| - int pack_cmp = _mm_movemask_epi8(_mm_cmpeq_epi16(mask_pixel,
|
| + int pack_cmp = _mm_movemask_epi8(_mm_cmpeq_epi16(mask_sse,
|
| _mm_setzero_si128()));
|
|
|
| // if mask pixels are not all zero, we will blend the dst pixels
|
| if (pack_cmp != 0xFFFF) {
|
| // Unpack 4 16bit mask pixels to
|
| - // (p0, 0, p1, 0, p2, 0, p3, 0)
|
| - mask_pixel = _mm_unpacklo_epi16(mask_pixel,
|
| - _mm_setzero_si128());
|
| + // mask_sse = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0,
|
| + // m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0)
|
| + mask_sse = _mm_unpacklo_epi16(mask_sse,
|
| + _mm_setzero_si128());
|
|
|
| // Process 4 32bit dst pixels
|
| - __m128i result = SkBlendLCD16Opaque_SSE2(srci, dst_pixel,
|
| - mask_pixel);
|
| + __m128i result = SkBlendLCD16Opaque_SSE2(src_sse, dst_sse,
|
| + mask_sse);
|
| _mm_store_si128(d, result);
|
| }
|
|
|
| d++;
|
| - src += 4;
|
| + mask += 4;
|
| width -= 4;
|
| }
|
|
|
| @@ -756,8 +845,8 @@ void SkBlitLCD16OpaqueRow_SSE2(SkPMColor dst[], const uint16_t src[],
|
| }
|
|
|
| while (width > 0) {
|
| - *dst = SkBlendLCD16Opaque(srcR, srcG, srcB, *dst, *src, opaqueDst);
|
| - src++;
|
| + *dst = SkBlendLCD16Opaque(srcR, srcG, srcB, *dst, *mask, opaqueDst);
|
| + mask++;
|
| dst++;
|
| width--;
|
| }
|
|
|