Chromium Code Reviews| Index: cc/animation/timing_function.cc |
| diff --git a/cc/animation/timing_function.cc b/cc/animation/timing_function.cc |
| index 769e9f060aa3561b61dfdc6600bf7c45143467a7..27f5c444b06c92a39bf4e09255d514527d9c0b2d 100644 |
| --- a/cc/animation/timing_function.cc |
| +++ b/cc/animation/timing_function.cc |
| @@ -2,84 +2,60 @@ |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| +#include "base/logging.h" |
| #include "cc/animation/timing_function.h" |
| -#include "third_party/skia/include/core/SkMath.h" |
| +namespace cc { |
| -// TODO(danakj) These methods come from SkInterpolator.cpp. When such a method |
| -// is available in the public Skia API, we should switch to using that. |
| -// http://crbug.com/159735 |
| namespace { |
| -// Dot14 has 14 bits for decimal places, and the remainder for whole numbers. |
| -typedef int Dot14; |
| -#define DOT14_ONE (1 << 14) |
| -#define DOT14_HALF (1 << 13) |
| - |
| -static inline Dot14 Dot14Mul(Dot14 a, Dot14 b) { |
| - return (a * b + DOT14_HALF) >> 14; |
| -} |
| - |
| -static inline Dot14 EvalCubic(Dot14 t, Dot14 A, Dot14 B, Dot14 C) { |
| - return Dot14Mul(Dot14Mul(Dot14Mul(C, t) + B, t) + A, t); |
| -} |
| +static const double BEZIER_EPSILON = 1e-7; |
| +static const int MAX_STEPS = 30; |
| -static inline Dot14 PinAndConvert(SkScalar x) { |
| - if (x <= 0) |
| - return 0; |
| - if (x >= SK_Scalar1) |
| - return DOT14_ONE; |
| - return SkScalarToFixed(x) >> 2; |
| +static double eval_bezier(double x1, double x2, double t) { |
| + const double x1_times_3 = 3.0 * x1; |
| + const double x2_times_3 = 3.0 * x2; |
| + const double h3 = x1_times_3; |
| + const double h1 = x1_times_3 - x2_times_3 + 1.0; |
| + const double h2 = x2_times_3 - 6.0 * x1; |
| + return t * (t * (t * h1 + h2) + h3); |
| } |
| -SkScalar SkUnitCubicInterp(SkScalar bx, |
| - SkScalar by, |
| - SkScalar cx, |
| - SkScalar cy, |
| - SkScalar value) { |
| - Dot14 x = PinAndConvert(value); |
| - |
| - if (x == 0) |
| - return 0; |
| - if (x == DOT14_ONE) |
| - return SK_Scalar1; |
| - |
| - Dot14 b = PinAndConvert(bx); |
| - Dot14 c = PinAndConvert(cx); |
| - |
| - // Now compute our coefficients from the control points. |
| - // t -> 3b |
| - // t^2 -> 3c - 6b |
| - // t^3 -> 3b - 3c + 1 |
| - Dot14 A = 3 * b; |
| - Dot14 B = 3 * (c - 2 * b); |
| - Dot14 C = 3 * (b - c) + DOT14_ONE; |
| - |
| - // Now search for a t value given x. |
| - Dot14 t = DOT14_HALF; |
| - Dot14 dt = DOT14_HALF; |
| - for (int i = 0; i < 13; i++) { |
| - dt >>= 1; |
| - Dot14 guess = EvalCubic(t, A, B, C); |
| - if (x < guess) |
| - t -= dt; |
| - else |
| - t += dt; |
| +static double bezier_interp(double x1, |
| + double y1, |
| + double x2, |
| + double y2, |
| + double x) { |
| + DCHECK_GT(1.0, x1); |
| + DCHECK_LT(0.0, x1); |
| + DCHECK_GT(1.0, x2); |
| + DCHECK_LT(0.0, x2); |
| + |
| + // Step 1. Find the t corresponding to the given x. I.e., we want t such that |
| + // eval_bezier(x1, x2, t) = x. There is a unique solution if x1 and x2 lie |
| + // within (0, 1). |
| + // |
| + // We're just going to do bisection for now (for simplicity), but we could |
| + // easily do some newton steps if this turns out to be a bottleneck. |
| + double t = 0.5; |
| + double step = 0.25; |
| + for (int i = 0; i < MAX_STEPS; ++i, step *= 0.5) { |
| + const double error = eval_bezier(x1, x2, t) - x; |
| + if (fabs(error) < BEZIER_EPSILON) |
| + break; |
| + t += error > 0.0 ? -step : step; |
| } |
| - // Now we have t, so compute the coefficient for Y and evaluate. |
| - b = PinAndConvert(by); |
| - c = PinAndConvert(cy); |
| - A = 3 * b; |
| - B = 3 * (c - 2 * b); |
| - C = 3 * (b - c) + DOT14_ONE; |
| - return SkFixedToScalar(EvalCubic(t, A, B, C) << 2); |
| + // We should have terminated the above loop because we got close to x, not |
| + // because we exceeded MAX_STEPS. Do a DCHECK here to confirm. |
| + DCHECK_GT(BEZIER_EPSILON, fabs(eval_bezier(x1, x2, t) - x)); |
| + |
| + // Step 2. Return the interpolated y values at the t we computed above. |
| + return eval_bezier(y1, y2, t); |
| } |
| } // namespace |
| -namespace cc { |
| - |
| TimingFunction::TimingFunction() {} |
| TimingFunction::~TimingFunction() {} |
| @@ -89,10 +65,7 @@ double TimingFunction::Duration() const { |
| } |
| scoped_ptr<CubicBezierTimingFunction> CubicBezierTimingFunction::Create( |
| - double x1, |
| - double y1, |
| - double x2, |
| - double y2) { |
| + double x1, double y1, double x2, double y2) { |
| return make_scoped_ptr(new CubicBezierTimingFunction(x1, y1, x2, y2)); |
| } |
| @@ -100,15 +73,12 @@ CubicBezierTimingFunction::CubicBezierTimingFunction(double x1, |
| double y1, |
| double x2, |
| double y2) |
| - : x1_(SkDoubleToScalar(x1)), |
| - y1_(SkDoubleToScalar(y1)), |
| - x2_(SkDoubleToScalar(x2)), |
| - y2_(SkDoubleToScalar(y2)) {} |
| + : x1_(x1), y1_(y1), x2_(x2), y2_(y2) {} |
| CubicBezierTimingFunction::~CubicBezierTimingFunction() {} |
| float CubicBezierTimingFunction::GetValue(double x) const { |
| - SkScalar value = SkUnitCubicInterp(x1_, y1_, x2_, y2_, x); |
| + SkScalar value = bezier_interp(x1_, y1_, x2_, y2_, x); |
|
ajuma
2013/05/27 18:10:48
bezier_interp returns a double, so we shouldn't ne
|
| return SkScalarToFloat(value); |
| } |