Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(359)

Unified Diff: tools/cc-frame-viewer/third_party/gl-matrix/dist/gl-matrix.js

Issue 15736032: Remove old cc-frame-viewer now that it is upstreamed into trace_viewer (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: Created 7 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: tools/cc-frame-viewer/third_party/gl-matrix/dist/gl-matrix.js
diff --git a/tools/cc-frame-viewer/third_party/gl-matrix/dist/gl-matrix.js b/tools/cc-frame-viewer/third_party/gl-matrix/dist/gl-matrix.js
deleted file mode 100644
index b13d6b6b7c002f08417b4cccda4b289dd670aa7e..0000000000000000000000000000000000000000
--- a/tools/cc-frame-viewer/third_party/gl-matrix/dist/gl-matrix.js
+++ /dev/null
@@ -1,3865 +0,0 @@
-/**
- * @fileoverview gl-matrix - High performance matrix and vector operations
- * @author Brandon Jones
- * @author Colin MacKenzie IV
- * @version 2.1.0
- */
-
-/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
-
-Redistribution and use in source and binary forms, with or without modification,
-are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
-
-
-(function() {
- "use strict";
-
- var shim = {};
- if (typeof(exports) === 'undefined') {
- if(typeof define == 'function' && typeof define.amd == 'object' && define.amd) {
- shim.exports = {};
- define(function() {
- return shim.exports;
- });
- } else {
- // gl-matrix lives in a browser, define its namespaces in global
- shim.exports = window;
- }
- }
- else {
- // gl-matrix lives in commonjs, define its namespaces in exports
- shim.exports = exports;
- }
-
- (function(exports) {
- /* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
-
-Redistribution and use in source and binary forms, with or without modification,
-are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
-
-
-if(!GLMAT_EPSILON) {
- var GLMAT_EPSILON = 0.000001;
-}
-
-if(!GLMAT_ARRAY_TYPE) {
- var GLMAT_ARRAY_TYPE = (typeof Float32Array !== 'undefined') ? Float32Array : Array;
-}
-
-/**
- * @class Common utilities
- * @name glMatrix
- */
-var glMatrix = {};
-
-/**
- * Sets the type of array used when creating new vectors and matricies
- *
- * @param {Type} type Array type, such as Float32Array or Array
- */
-glMatrix.setMatrixArrayType = function(type) {
- GLMAT_ARRAY_TYPE = type;
-}
-
-if(typeof(exports) !== 'undefined') {
- exports.glMatrix = glMatrix;
-}
-;
-/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
-
-Redistribution and use in source and binary forms, with or without modification,
-are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
-
-/**
- * @class 2 Dimensional Vector
- * @name vec2
- */
-
-var vec2 = {};
-
-/**
- * Creates a new, empty vec2
- *
- * @returns {vec2} a new 2D vector
- */
-vec2.create = function() {
- var out = new GLMAT_ARRAY_TYPE(2);
- out[0] = 0;
- out[1] = 0;
- return out;
-};
-
-/**
- * Creates a new vec2 initialized with values from an existing vector
- *
- * @param {vec2} a vector to clone
- * @returns {vec2} a new 2D vector
- */
-vec2.clone = function(a) {
- var out = new GLMAT_ARRAY_TYPE(2);
- out[0] = a[0];
- out[1] = a[1];
- return out;
-};
-
-/**
- * Creates a new vec2 initialized with the given values
- *
- * @param {Number} x X component
- * @param {Number} y Y component
- * @returns {vec2} a new 2D vector
- */
-vec2.fromValues = function(x, y) {
- var out = new GLMAT_ARRAY_TYPE(2);
- out[0] = x;
- out[1] = y;
- return out;
-};
-
-/**
- * Copy the values from one vec2 to another
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the source vector
- * @returns {vec2} out
- */
-vec2.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- return out;
-};
-
-/**
- * Set the components of a vec2 to the given values
- *
- * @param {vec2} out the receiving vector
- * @param {Number} x X component
- * @param {Number} y Y component
- * @returns {vec2} out
- */
-vec2.set = function(out, x, y) {
- out[0] = x;
- out[1] = y;
- return out;
-};
-
-/**
- * Adds two vec2's
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec2} out
- */
-vec2.add = function(out, a, b) {
- out[0] = a[0] + b[0];
- out[1] = a[1] + b[1];
- return out;
-};
-
-/**
- * Subtracts two vec2's
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec2} out
- */
-vec2.subtract = function(out, a, b) {
- out[0] = a[0] - b[0];
- out[1] = a[1] - b[1];
- return out;
-};
-
-/**
- * Alias for {@link vec2.subtract}
- * @function
- */
-vec2.sub = vec2.subtract;
-
-/**
- * Multiplies two vec2's
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec2} out
- */
-vec2.multiply = function(out, a, b) {
- out[0] = a[0] * b[0];
- out[1] = a[1] * b[1];
- return out;
-};
-
-/**
- * Alias for {@link vec2.multiply}
- * @function
- */
-vec2.mul = vec2.multiply;
-
-/**
- * Divides two vec2's
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec2} out
- */
-vec2.divide = function(out, a, b) {
- out[0] = a[0] / b[0];
- out[1] = a[1] / b[1];
- return out;
-};
-
-/**
- * Alias for {@link vec2.divide}
- * @function
- */
-vec2.div = vec2.divide;
-
-/**
- * Returns the minimum of two vec2's
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec2} out
- */
-vec2.min = function(out, a, b) {
- out[0] = Math.min(a[0], b[0]);
- out[1] = Math.min(a[1], b[1]);
- return out;
-};
-
-/**
- * Returns the maximum of two vec2's
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec2} out
- */
-vec2.max = function(out, a, b) {
- out[0] = Math.max(a[0], b[0]);
- out[1] = Math.max(a[1], b[1]);
- return out;
-};
-
-/**
- * Scales a vec2 by a scalar number
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the vector to scale
- * @param {Number} b amount to scale the vector by
- * @returns {vec2} out
- */
-vec2.scale = function(out, a, b) {
- out[0] = a[0] * b;
- out[1] = a[1] * b;
- return out;
-};
-
-/**
- * Calculates the euclidian distance between two vec2's
- *
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {Number} distance between a and b
- */
-vec2.distance = function(a, b) {
- var x = b[0] - a[0],
- y = b[1] - a[1];
- return Math.sqrt(x*x + y*y);
-};
-
-/**
- * Alias for {@link vec2.distance}
- * @function
- */
-vec2.dist = vec2.distance;
-
-/**
- * Calculates the squared euclidian distance between two vec2's
- *
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {Number} squared distance between a and b
- */
-vec2.squaredDistance = function(a, b) {
- var x = b[0] - a[0],
- y = b[1] - a[1];
- return x*x + y*y;
-};
-
-/**
- * Alias for {@link vec2.squaredDistance}
- * @function
- */
-vec2.sqrDist = vec2.squaredDistance;
-
-/**
- * Calculates the length of a vec2
- *
- * @param {vec2} a vector to calculate length of
- * @returns {Number} length of a
- */
-vec2.length = function (a) {
- var x = a[0],
- y = a[1];
- return Math.sqrt(x*x + y*y);
-};
-
-/**
- * Alias for {@link vec2.length}
- * @function
- */
-vec2.len = vec2.length;
-
-/**
- * Calculates the squared length of a vec2
- *
- * @param {vec2} a vector to calculate squared length of
- * @returns {Number} squared length of a
- */
-vec2.squaredLength = function (a) {
- var x = a[0],
- y = a[1];
- return x*x + y*y;
-};
-
-/**
- * Alias for {@link vec2.squaredLength}
- * @function
- */
-vec2.sqrLen = vec2.squaredLength;
-
-/**
- * Negates the components of a vec2
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a vector to negate
- * @returns {vec2} out
- */
-vec2.negate = function(out, a) {
- out[0] = -a[0];
- out[1] = -a[1];
- return out;
-};
-
-/**
- * Normalize a vec2
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a vector to normalize
- * @returns {vec2} out
- */
-vec2.normalize = function(out, a) {
- var x = a[0],
- y = a[1];
- var len = x*x + y*y;
- if (len > 0) {
- //TODO: evaluate use of glm_invsqrt here?
- len = 1 / Math.sqrt(len);
- out[0] = a[0] * len;
- out[1] = a[1] * len;
- }
- return out;
-};
-
-/**
- * Calculates the dot product of two vec2's
- *
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {Number} dot product of a and b
- */
-vec2.dot = function (a, b) {
- return a[0] * b[0] + a[1] * b[1];
-};
-
-/**
- * Computes the cross product of two vec2's
- * Note that the cross product must by definition produce a 3D vector
- *
- * @param {vec3} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec3} out
- */
-vec2.cross = function(out, a, b) {
- var z = a[0] * b[1] - a[1] * b[0];
- out[0] = out[1] = 0;
- out[2] = z;
- return out;
-};
-
-/**
- * Performs a linear interpolation between two vec2's
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @param {Number} t interpolation amount between the two inputs
- * @returns {vec2} out
- */
-vec2.lerp = function (out, a, b, t) {
- var ax = a[0],
- ay = a[1];
- out[0] = ax + t * (b[0] - ax);
- out[1] = ay + t * (b[1] - ay);
- return out;
-};
-
-/**
- * Transforms the vec2 with a mat2
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the vector to transform
- * @param {mat2} m matrix to transform with
- * @returns {vec2} out
- */
-vec2.transformMat2 = function(out, a, m) {
- var x = a[0],
- y = a[1];
- out[0] = m[0] * x + m[2] * y;
- out[1] = m[1] * x + m[3] * y;
- return out;
-};
-
-/**
- * Transforms the vec2 with a mat2d
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the vector to transform
- * @param {mat2d} m matrix to transform with
- * @returns {vec2} out
- */
-vec2.transformMat2d = function(out, a, m) {
- var x = a[0],
- y = a[1];
- out[0] = m[0] * x + m[2] * y + m[4];
- out[1] = m[1] * x + m[3] * y + m[5];
- return out;
-};
-
-/**
- * Transforms the vec2 with a mat3
- * 3rd vector component is implicitly '1'
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the vector to transform
- * @param {mat3} m matrix to transform with
- * @returns {vec2} out
- */
-vec2.transformMat3 = function(out, a, m) {
- var x = a[0],
- y = a[1];
- out[0] = m[0] * x + m[3] * y + m[6];
- out[1] = m[1] * x + m[4] * y + m[7];
- return out;
-};
-
-/**
- * Transforms the vec2 with a mat4
- * 3rd vector component is implicitly '0'
- * 4th vector component is implicitly '1'
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the vector to transform
- * @param {mat4} m matrix to transform with
- * @returns {vec2} out
- */
-vec2.transformMat4 = function(out, a, m) {
- var x = a[0],
- y = a[1];
- out[0] = m[0] * x + m[4] * y + m[12];
- out[1] = m[1] * x + m[5] * y + m[13];
- return out;
-};
-
-/**
- * Perform some operation over an array of vec2s.
- *
- * @param {Array} a the array of vectors to iterate over
- * @param {Number} stride Number of elements between the start of each vec2. If 0 assumes tightly packed
- * @param {Number} offset Number of elements to skip at the beginning of the array
- * @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array
- * @param {Function} fn Function to call for each vector in the array
- * @param {Object} [arg] additional argument to pass to fn
- * @returns {Array} a
- * @function
- */
-vec2.forEach = (function() {
- var vec = vec2.create();
-
- return function(a, stride, offset, count, fn, arg) {
- var i, l;
- if(!stride) {
- stride = 2;
- }
-
- if(!offset) {
- offset = 0;
- }
-
- if(count) {
- l = Math.min((count * stride) + offset, a.length);
- } else {
- l = a.length;
- }
-
- for(i = offset; i < l; i += stride) {
- vec[0] = a[i]; vec[1] = a[i+1];
- fn(vec, vec, arg);
- a[i] = vec[0]; a[i+1] = vec[1];
- }
-
- return a;
- };
-})();
-
-/**
- * Returns a string representation of a vector
- *
- * @param {vec2} vec vector to represent as a string
- * @returns {String} string representation of the vector
- */
-vec2.str = function (a) {
- return 'vec2(' + a[0] + ', ' + a[1] + ')';
-};
-
-if(typeof(exports) !== 'undefined') {
- exports.vec2 = vec2;
-}
-;
-/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
-
-Redistribution and use in source and binary forms, with or without modification,
-are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
-
-/**
- * @class 3 Dimensional Vector
- * @name vec3
- */
-
-var vec3 = {};
-
-/**
- * Creates a new, empty vec3
- *
- * @returns {vec3} a new 3D vector
- */
-vec3.create = function() {
- var out = new GLMAT_ARRAY_TYPE(3);
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- return out;
-};
-
-/**
- * Creates a new vec3 initialized with values from an existing vector
- *
- * @param {vec3} a vector to clone
- * @returns {vec3} a new 3D vector
- */
-vec3.clone = function(a) {
- var out = new GLMAT_ARRAY_TYPE(3);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- return out;
-};
-
-/**
- * Creates a new vec3 initialized with the given values
- *
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @returns {vec3} a new 3D vector
- */
-vec3.fromValues = function(x, y, z) {
- var out = new GLMAT_ARRAY_TYPE(3);
- out[0] = x;
- out[1] = y;
- out[2] = z;
- return out;
-};
-
-/**
- * Copy the values from one vec3 to another
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the source vector
- * @returns {vec3} out
- */
-vec3.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- return out;
-};
-
-/**
- * Set the components of a vec3 to the given values
- *
- * @param {vec3} out the receiving vector
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @returns {vec3} out
- */
-vec3.set = function(out, x, y, z) {
- out[0] = x;
- out[1] = y;
- out[2] = z;
- return out;
-};
-
-/**
- * Adds two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
-vec3.add = function(out, a, b) {
- out[0] = a[0] + b[0];
- out[1] = a[1] + b[1];
- out[2] = a[2] + b[2];
- return out;
-};
-
-/**
- * Subtracts two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
-vec3.subtract = function(out, a, b) {
- out[0] = a[0] - b[0];
- out[1] = a[1] - b[1];
- out[2] = a[2] - b[2];
- return out;
-};
-
-/**
- * Alias for {@link vec3.subtract}
- * @function
- */
-vec3.sub = vec3.subtract;
-
-/**
- * Multiplies two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
-vec3.multiply = function(out, a, b) {
- out[0] = a[0] * b[0];
- out[1] = a[1] * b[1];
- out[2] = a[2] * b[2];
- return out;
-};
-
-/**
- * Alias for {@link vec3.multiply}
- * @function
- */
-vec3.mul = vec3.multiply;
-
-/**
- * Divides two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
-vec3.divide = function(out, a, b) {
- out[0] = a[0] / b[0];
- out[1] = a[1] / b[1];
- out[2] = a[2] / b[2];
- return out;
-};
-
-/**
- * Alias for {@link vec3.divide}
- * @function
- */
-vec3.div = vec3.divide;
-
-/**
- * Returns the minimum of two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
-vec3.min = function(out, a, b) {
- out[0] = Math.min(a[0], b[0]);
- out[1] = Math.min(a[1], b[1]);
- out[2] = Math.min(a[2], b[2]);
- return out;
-};
-
-/**
- * Returns the maximum of two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
-vec3.max = function(out, a, b) {
- out[0] = Math.max(a[0], b[0]);
- out[1] = Math.max(a[1], b[1]);
- out[2] = Math.max(a[2], b[2]);
- return out;
-};
-
-/**
- * Scales a vec3 by a scalar number
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the vector to scale
- * @param {Number} b amount to scale the vector by
- * @returns {vec3} out
- */
-vec3.scale = function(out, a, b) {
- out[0] = a[0] * b;
- out[1] = a[1] * b;
- out[2] = a[2] * b;
- return out;
-};
-
-/**
- * Calculates the euclidian distance between two vec3's
- *
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {Number} distance between a and b
- */
-vec3.distance = function(a, b) {
- var x = b[0] - a[0],
- y = b[1] - a[1],
- z = b[2] - a[2];
- return Math.sqrt(x*x + y*y + z*z);
-};
-
-/**
- * Alias for {@link vec3.distance}
- * @function
- */
-vec3.dist = vec3.distance;
-
-/**
- * Calculates the squared euclidian distance between two vec3's
- *
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {Number} squared distance between a and b
- */
-vec3.squaredDistance = function(a, b) {
- var x = b[0] - a[0],
- y = b[1] - a[1],
- z = b[2] - a[2];
- return x*x + y*y + z*z;
-};
-
-/**
- * Alias for {@link vec3.squaredDistance}
- * @function
- */
-vec3.sqrDist = vec3.squaredDistance;
-
-/**
- * Calculates the length of a vec3
- *
- * @param {vec3} a vector to calculate length of
- * @returns {Number} length of a
- */
-vec3.length = function (a) {
- var x = a[0],
- y = a[1],
- z = a[2];
- return Math.sqrt(x*x + y*y + z*z);
-};
-
-/**
- * Alias for {@link vec3.length}
- * @function
- */
-vec3.len = vec3.length;
-
-/**
- * Calculates the squared length of a vec3
- *
- * @param {vec3} a vector to calculate squared length of
- * @returns {Number} squared length of a
- */
-vec3.squaredLength = function (a) {
- var x = a[0],
- y = a[1],
- z = a[2];
- return x*x + y*y + z*z;
-};
-
-/**
- * Alias for {@link vec3.squaredLength}
- * @function
- */
-vec3.sqrLen = vec3.squaredLength;
-
-/**
- * Negates the components of a vec3
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a vector to negate
- * @returns {vec3} out
- */
-vec3.negate = function(out, a) {
- out[0] = -a[0];
- out[1] = -a[1];
- out[2] = -a[2];
- return out;
-};
-
-/**
- * Normalize a vec3
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a vector to normalize
- * @returns {vec3} out
- */
-vec3.normalize = function(out, a) {
- var x = a[0],
- y = a[1],
- z = a[2];
- var len = x*x + y*y + z*z;
- if (len > 0) {
- //TODO: evaluate use of glm_invsqrt here?
- len = 1 / Math.sqrt(len);
- out[0] = a[0] * len;
- out[1] = a[1] * len;
- out[2] = a[2] * len;
- }
- return out;
-};
-
-/**
- * Calculates the dot product of two vec3's
- *
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {Number} dot product of a and b
- */
-vec3.dot = function (a, b) {
- return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
-};
-
-/**
- * Computes the cross product of two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
-vec3.cross = function(out, a, b) {
- var ax = a[0], ay = a[1], az = a[2],
- bx = b[0], by = b[1], bz = b[2];
-
- out[0] = ay * bz - az * by;
- out[1] = az * bx - ax * bz;
- out[2] = ax * by - ay * bx;
- return out;
-};
-
-/**
- * Performs a linear interpolation between two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @param {Number} t interpolation amount between the two inputs
- * @returns {vec3} out
- */
-vec3.lerp = function (out, a, b, t) {
- var ax = a[0],
- ay = a[1],
- az = a[2];
- out[0] = ax + t * (b[0] - ax);
- out[1] = ay + t * (b[1] - ay);
- out[2] = az + t * (b[2] - az);
- return out;
-};
-
-/**
- * Transforms the vec3 with a mat4.
- * 4th vector component is implicitly '1'
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the vector to transform
- * @param {mat4} m matrix to transform with
- * @returns {vec3} out
- */
-vec3.transformMat4 = function(out, a, m) {
- var x = a[0], y = a[1], z = a[2];
- out[0] = m[0] * x + m[4] * y + m[8] * z + m[12];
- out[1] = m[1] * x + m[5] * y + m[9] * z + m[13];
- out[2] = m[2] * x + m[6] * y + m[10] * z + m[14];
- return out;
-};
-
-/**
- * Transforms the vec3 with a quat
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the vector to transform
- * @param {quat} q quaternion to transform with
- * @returns {vec3} out
- */
-vec3.transformQuat = function(out, a, q) {
- var x = a[0], y = a[1], z = a[2],
- qx = q[0], qy = q[1], qz = q[2], qw = q[3],
-
- // calculate quat * vec
- ix = qw * x + qy * z - qz * y,
- iy = qw * y + qz * x - qx * z,
- iz = qw * z + qx * y - qy * x,
- iw = -qx * x - qy * y - qz * z;
-
- // calculate result * inverse quat
- out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
- out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
- out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
- return out;
-};
-
-/**
- * Perform some operation over an array of vec3s.
- *
- * @param {Array} a the array of vectors to iterate over
- * @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed
- * @param {Number} offset Number of elements to skip at the beginning of the array
- * @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array
- * @param {Function} fn Function to call for each vector in the array
- * @param {Object} [arg] additional argument to pass to fn
- * @returns {Array} a
- * @function
- */
-vec3.forEach = (function() {
- var vec = vec3.create();
-
- return function(a, stride, offset, count, fn, arg) {
- var i, l;
- if(!stride) {
- stride = 3;
- }
-
- if(!offset) {
- offset = 0;
- }
-
- if(count) {
- l = Math.min((count * stride) + offset, a.length);
- } else {
- l = a.length;
- }
-
- for(i = offset; i < l; i += stride) {
- vec[0] = a[i]; vec[1] = a[i+1]; vec[2] = a[i+2];
- fn(vec, vec, arg);
- a[i] = vec[0]; a[i+1] = vec[1]; a[i+2] = vec[2];
- }
-
- return a;
- };
-})();
-
-/**
- * Returns a string representation of a vector
- *
- * @param {vec3} vec vector to represent as a string
- * @returns {String} string representation of the vector
- */
-vec3.str = function (a) {
- return 'vec3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ')';
-};
-
-if(typeof(exports) !== 'undefined') {
- exports.vec3 = vec3;
-}
-;
-/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
-
-Redistribution and use in source and binary forms, with or without modification,
-are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
-
-/**
- * @class 4 Dimensional Vector
- * @name vec4
- */
-
-var vec4 = {};
-
-/**
- * Creates a new, empty vec4
- *
- * @returns {vec4} a new 4D vector
- */
-vec4.create = function() {
- var out = new GLMAT_ARRAY_TYPE(4);
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- return out;
-};
-
-/**
- * Creates a new vec4 initialized with values from an existing vector
- *
- * @param {vec4} a vector to clone
- * @returns {vec4} a new 4D vector
- */
-vec4.clone = function(a) {
- var out = new GLMAT_ARRAY_TYPE(4);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
-};
-
-/**
- * Creates a new vec4 initialized with the given values
- *
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @param {Number} w W component
- * @returns {vec4} a new 4D vector
- */
-vec4.fromValues = function(x, y, z, w) {
- var out = new GLMAT_ARRAY_TYPE(4);
- out[0] = x;
- out[1] = y;
- out[2] = z;
- out[3] = w;
- return out;
-};
-
-/**
- * Copy the values from one vec4 to another
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the source vector
- * @returns {vec4} out
- */
-vec4.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
-};
-
-/**
- * Set the components of a vec4 to the given values
- *
- * @param {vec4} out the receiving vector
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @param {Number} w W component
- * @returns {vec4} out
- */
-vec4.set = function(out, x, y, z, w) {
- out[0] = x;
- out[1] = y;
- out[2] = z;
- out[3] = w;
- return out;
-};
-
-/**
- * Adds two vec4's
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {vec4} out
- */
-vec4.add = function(out, a, b) {
- out[0] = a[0] + b[0];
- out[1] = a[1] + b[1];
- out[2] = a[2] + b[2];
- out[3] = a[3] + b[3];
- return out;
-};
-
-/**
- * Subtracts two vec4's
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {vec4} out
- */
-vec4.subtract = function(out, a, b) {
- out[0] = a[0] - b[0];
- out[1] = a[1] - b[1];
- out[2] = a[2] - b[2];
- out[3] = a[3] - b[3];
- return out;
-};
-
-/**
- * Alias for {@link vec4.subtract}
- * @function
- */
-vec4.sub = vec4.subtract;
-
-/**
- * Multiplies two vec4's
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {vec4} out
- */
-vec4.multiply = function(out, a, b) {
- out[0] = a[0] * b[0];
- out[1] = a[1] * b[1];
- out[2] = a[2] * b[2];
- out[3] = a[3] * b[3];
- return out;
-};
-
-/**
- * Alias for {@link vec4.multiply}
- * @function
- */
-vec4.mul = vec4.multiply;
-
-/**
- * Divides two vec4's
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {vec4} out
- */
-vec4.divide = function(out, a, b) {
- out[0] = a[0] / b[0];
- out[1] = a[1] / b[1];
- out[2] = a[2] / b[2];
- out[3] = a[3] / b[3];
- return out;
-};
-
-/**
- * Alias for {@link vec4.divide}
- * @function
- */
-vec4.div = vec4.divide;
-
-/**
- * Returns the minimum of two vec4's
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {vec4} out
- */
-vec4.min = function(out, a, b) {
- out[0] = Math.min(a[0], b[0]);
- out[1] = Math.min(a[1], b[1]);
- out[2] = Math.min(a[2], b[2]);
- out[3] = Math.min(a[3], b[3]);
- return out;
-};
-
-/**
- * Returns the maximum of two vec4's
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {vec4} out
- */
-vec4.max = function(out, a, b) {
- out[0] = Math.max(a[0], b[0]);
- out[1] = Math.max(a[1], b[1]);
- out[2] = Math.max(a[2], b[2]);
- out[3] = Math.max(a[3], b[3]);
- return out;
-};
-
-/**
- * Scales a vec4 by a scalar number
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the vector to scale
- * @param {Number} b amount to scale the vector by
- * @returns {vec4} out
- */
-vec4.scale = function(out, a, b) {
- out[0] = a[0] * b;
- out[1] = a[1] * b;
- out[2] = a[2] * b;
- out[3] = a[3] * b;
- return out;
-};
-
-/**
- * Calculates the euclidian distance between two vec4's
- *
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {Number} distance between a and b
- */
-vec4.distance = function(a, b) {
- var x = b[0] - a[0],
- y = b[1] - a[1],
- z = b[2] - a[2],
- w = b[3] - a[3];
- return Math.sqrt(x*x + y*y + z*z + w*w);
-};
-
-/**
- * Alias for {@link vec4.distance}
- * @function
- */
-vec4.dist = vec4.distance;
-
-/**
- * Calculates the squared euclidian distance between two vec4's
- *
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {Number} squared distance between a and b
- */
-vec4.squaredDistance = function(a, b) {
- var x = b[0] - a[0],
- y = b[1] - a[1],
- z = b[2] - a[2],
- w = b[3] - a[3];
- return x*x + y*y + z*z + w*w;
-};
-
-/**
- * Alias for {@link vec4.squaredDistance}
- * @function
- */
-vec4.sqrDist = vec4.squaredDistance;
-
-/**
- * Calculates the length of a vec4
- *
- * @param {vec4} a vector to calculate length of
- * @returns {Number} length of a
- */
-vec4.length = function (a) {
- var x = a[0],
- y = a[1],
- z = a[2],
- w = a[3];
- return Math.sqrt(x*x + y*y + z*z + w*w);
-};
-
-/**
- * Alias for {@link vec4.length}
- * @function
- */
-vec4.len = vec4.length;
-
-/**
- * Calculates the squared length of a vec4
- *
- * @param {vec4} a vector to calculate squared length of
- * @returns {Number} squared length of a
- */
-vec4.squaredLength = function (a) {
- var x = a[0],
- y = a[1],
- z = a[2],
- w = a[3];
- return x*x + y*y + z*z + w*w;
-};
-
-/**
- * Alias for {@link vec4.squaredLength}
- * @function
- */
-vec4.sqrLen = vec4.squaredLength;
-
-/**
- * Negates the components of a vec4
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a vector to negate
- * @returns {vec4} out
- */
-vec4.negate = function(out, a) {
- out[0] = -a[0];
- out[1] = -a[1];
- out[2] = -a[2];
- out[3] = -a[3];
- return out;
-};
-
-/**
- * Normalize a vec4
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a vector to normalize
- * @returns {vec4} out
- */
-vec4.normalize = function(out, a) {
- var x = a[0],
- y = a[1],
- z = a[2],
- w = a[3];
- var len = x*x + y*y + z*z + w*w;
- if (len > 0) {
- len = 1 / Math.sqrt(len);
- out[0] = a[0] * len;
- out[1] = a[1] * len;
- out[2] = a[2] * len;
- out[3] = a[3] * len;
- }
- return out;
-};
-
-/**
- * Calculates the dot product of two vec4's
- *
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {Number} dot product of a and b
- */
-vec4.dot = function (a, b) {
- return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
-};
-
-/**
- * Performs a linear interpolation between two vec4's
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @param {Number} t interpolation amount between the two inputs
- * @returns {vec4} out
- */
-vec4.lerp = function (out, a, b, t) {
- var ax = a[0],
- ay = a[1],
- az = a[2],
- aw = a[3];
- out[0] = ax + t * (b[0] - ax);
- out[1] = ay + t * (b[1] - ay);
- out[2] = az + t * (b[2] - az);
- out[3] = aw + t * (b[3] - aw);
- return out;
-};
-
-/**
- * Transforms the vec4 with a mat4.
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the vector to transform
- * @param {mat4} m matrix to transform with
- * @returns {vec4} out
- */
-vec4.transformMat4 = function(out, a, m) {
- var x = a[0], y = a[1], z = a[2], w = a[3];
- out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w;
- out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w;
- out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w;
- out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w;
- return out;
-};
-
-/**
- * Transforms the vec4 with a quat
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the vector to transform
- * @param {quat} q quaternion to transform with
- * @returns {vec4} out
- */
-vec4.transformQuat = function(out, a, q) {
- var x = a[0], y = a[1], z = a[2],
- qx = q[0], qy = q[1], qz = q[2], qw = q[3],
-
- // calculate quat * vec
- ix = qw * x + qy * z - qz * y,
- iy = qw * y + qz * x - qx * z,
- iz = qw * z + qx * y - qy * x,
- iw = -qx * x - qy * y - qz * z;
-
- // calculate result * inverse quat
- out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
- out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
- out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
- return out;
-};
-
-/**
- * Perform some operation over an array of vec4s.
- *
- * @param {Array} a the array of vectors to iterate over
- * @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed
- * @param {Number} offset Number of elements to skip at the beginning of the array
- * @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array
- * @param {Function} fn Function to call for each vector in the array
- * @param {Object} [arg] additional argument to pass to fn
- * @returns {Array} a
- * @function
- */
-vec4.forEach = (function() {
- var vec = vec4.create();
-
- return function(a, stride, offset, count, fn, arg) {
- var i, l;
- if(!stride) {
- stride = 4;
- }
-
- if(!offset) {
- offset = 0;
- }
-
- if(count) {
- l = Math.min((count * stride) + offset, a.length);
- } else {
- l = a.length;
- }
-
- for(i = offset; i < l; i += stride) {
- vec[0] = a[i]; vec[1] = a[i+1]; vec[2] = a[i+2]; vec[3] = a[i+3];
- fn(vec, vec, arg);
- a[i] = vec[0]; a[i+1] = vec[1]; a[i+2] = vec[2]; a[i+3] = vec[3];
- }
-
- return a;
- };
-})();
-
-/**
- * Returns a string representation of a vector
- *
- * @param {vec4} vec vector to represent as a string
- * @returns {String} string representation of the vector
- */
-vec4.str = function (a) {
- return 'vec4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
-};
-
-if(typeof(exports) !== 'undefined') {
- exports.vec4 = vec4;
-}
-;
-/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
-
-Redistribution and use in source and binary forms, with or without modification,
-are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
-
-/**
- * @class 2x2 Matrix
- * @name mat2
- */
-
-var mat2 = {};
-
-/**
- * Creates a new identity mat2
- *
- * @returns {mat2} a new 2x2 matrix
- */
-mat2.create = function() {
- var out = new GLMAT_ARRAY_TYPE(4);
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- return out;
-};
-
-/**
- * Creates a new mat2 initialized with values from an existing matrix
- *
- * @param {mat2} a matrix to clone
- * @returns {mat2} a new 2x2 matrix
- */
-mat2.clone = function(a) {
- var out = new GLMAT_ARRAY_TYPE(4);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
-};
-
-/**
- * Copy the values from one mat2 to another
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the source matrix
- * @returns {mat2} out
- */
-mat2.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
-};
-
-/**
- * Set a mat2 to the identity matrix
- *
- * @param {mat2} out the receiving matrix
- * @returns {mat2} out
- */
-mat2.identity = function(out) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- return out;
-};
-
-/**
- * Transpose the values of a mat2
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the source matrix
- * @returns {mat2} out
- */
-mat2.transpose = function(out, a) {
- // If we are transposing ourselves we can skip a few steps but have to cache some values
- if (out === a) {
- var a1 = a[1];
- out[1] = a[2];
- out[2] = a1;
- } else {
- out[0] = a[0];
- out[1] = a[2];
- out[2] = a[1];
- out[3] = a[3];
- }
-
- return out;
-};
-
-/**
- * Inverts a mat2
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the source matrix
- * @returns {mat2} out
- */
-mat2.invert = function(out, a) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
-
- // Calculate the determinant
- det = a0 * a3 - a2 * a1;
-
- if (!det) {
- return null;
- }
- det = 1.0 / det;
-
- out[0] = a3 * det;
- out[1] = -a1 * det;
- out[2] = -a2 * det;
- out[3] = a0 * det;
-
- return out;
-};
-
-/**
- * Calculates the adjugate of a mat2
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the source matrix
- * @returns {mat2} out
- */
-mat2.adjoint = function(out, a) {
- // Caching this value is nessecary if out == a
- var a0 = a[0];
- out[0] = a[3];
- out[1] = -a[1];
- out[2] = -a[2];
- out[3] = a0;
-
- return out;
-};
-
-/**
- * Calculates the determinant of a mat2
- *
- * @param {mat2} a the source matrix
- * @returns {Number} determinant of a
- */
-mat2.determinant = function (a) {
- return a[0] * a[3] - a[2] * a[1];
-};
-
-/**
- * Multiplies two mat2's
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the first operand
- * @param {mat2} b the second operand
- * @returns {mat2} out
- */
-mat2.multiply = function (out, a, b) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
- var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
- out[0] = a0 * b0 + a1 * b2;
- out[1] = a0 * b1 + a1 * b3;
- out[2] = a2 * b0 + a3 * b2;
- out[3] = a2 * b1 + a3 * b3;
- return out;
-};
-
-/**
- * Alias for {@link mat2.multiply}
- * @function
- */
-mat2.mul = mat2.multiply;
-
-/**
- * Rotates a mat2 by the given angle
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat2} out
- */
-mat2.rotate = function (out, a, rad) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
- s = Math.sin(rad),
- c = Math.cos(rad);
- out[0] = a0 * c + a1 * s;
- out[1] = a0 * -s + a1 * c;
- out[2] = a2 * c + a3 * s;
- out[3] = a2 * -s + a3 * c;
- return out;
-};
-
-/**
- * Scales the mat2 by the dimensions in the given vec2
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the matrix to rotate
- * @param {vec2} v the vec2 to scale the matrix by
- * @returns {mat2} out
- **/
-mat2.scale = function(out, a, v) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
- v0 = v[0], v1 = v[1];
- out[0] = a0 * v0;
- out[1] = a1 * v1;
- out[2] = a2 * v0;
- out[3] = a3 * v1;
- return out;
-};
-
-/**
- * Returns a string representation of a mat2
- *
- * @param {mat2} mat matrix to represent as a string
- * @returns {String} string representation of the matrix
- */
-mat2.str = function (a) {
- return 'mat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
-};
-
-if(typeof(exports) !== 'undefined') {
- exports.mat2 = mat2;
-}
-;
-/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
-
-Redistribution and use in source and binary forms, with or without modification,
-are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
-
-/**
- * @class 2x3 Matrix
- * @name mat2d
- *
- * @description
- * A mat2d contains six elements defined as:
- * <pre>
- * [a, b,
- * c, d,
- * tx,ty]
- * </pre>
- * This is a short form for the 3x3 matrix:
- * <pre>
- * [a, b, 0
- * c, d, 0
- * tx,ty,1]
- * </pre>
- * The last column is ignored so the array is shorter and operations are faster.
- */
-
-var mat2d = {};
-
-/**
- * Creates a new identity mat2d
- *
- * @returns {mat2d} a new 2x3 matrix
- */
-mat2d.create = function() {
- var out = new GLMAT_ARRAY_TYPE(6);
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- out[4] = 0;
- out[5] = 0;
- return out;
-};
-
-/**
- * Creates a new mat2d initialized with values from an existing matrix
- *
- * @param {mat2d} a matrix to clone
- * @returns {mat2d} a new 2x3 matrix
- */
-mat2d.clone = function(a) {
- var out = new GLMAT_ARRAY_TYPE(6);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- return out;
-};
-
-/**
- * Copy the values from one mat2d to another
- *
- * @param {mat2d} out the receiving matrix
- * @param {mat2d} a the source matrix
- * @returns {mat2d} out
- */
-mat2d.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- return out;
-};
-
-/**
- * Set a mat2d to the identity matrix
- *
- * @param {mat2d} out the receiving matrix
- * @returns {mat2d} out
- */
-mat2d.identity = function(out) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- out[4] = 0;
- out[5] = 0;
- return out;
-};
-
-/**
- * Inverts a mat2d
- *
- * @param {mat2d} out the receiving matrix
- * @param {mat2d} a the source matrix
- * @returns {mat2d} out
- */
-mat2d.invert = function(out, a) {
- var aa = a[0], ab = a[1], ac = a[2], ad = a[3],
- atx = a[4], aty = a[5];
-
- var det = aa * ad - ab * ac;
- if(!det){
- return null;
- }
- det = 1.0 / det;
-
- out[0] = ad * det;
- out[1] = -ab * det;
- out[2] = -ac * det;
- out[3] = aa * det;
- out[4] = (ac * aty - ad * atx) * det;
- out[5] = (ab * atx - aa * aty) * det;
- return out;
-};
-
-/**
- * Calculates the determinant of a mat2d
- *
- * @param {mat2d} a the source matrix
- * @returns {Number} determinant of a
- */
-mat2d.determinant = function (a) {
- return a[0] * a[3] - a[1] * a[2];
-};
-
-/**
- * Multiplies two mat2d's
- *
- * @param {mat2d} out the receiving matrix
- * @param {mat2d} a the first operand
- * @param {mat2d} b the second operand
- * @returns {mat2d} out
- */
-mat2d.multiply = function (out, a, b) {
- var aa = a[0], ab = a[1], ac = a[2], ad = a[3],
- atx = a[4], aty = a[5],
- ba = b[0], bb = b[1], bc = b[2], bd = b[3],
- btx = b[4], bty = b[5];
-
- out[0] = aa*ba + ab*bc;
- out[1] = aa*bb + ab*bd;
- out[2] = ac*ba + ad*bc;
- out[3] = ac*bb + ad*bd;
- out[4] = ba*atx + bc*aty + btx;
- out[5] = bb*atx + bd*aty + bty;
- return out;
-};
-
-/**
- * Alias for {@link mat2d.multiply}
- * @function
- */
-mat2d.mul = mat2d.multiply;
-
-
-/**
- * Rotates a mat2d by the given angle
- *
- * @param {mat2d} out the receiving matrix
- * @param {mat2d} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat2d} out
- */
-mat2d.rotate = function (out, a, rad) {
- var aa = a[0],
- ab = a[1],
- ac = a[2],
- ad = a[3],
- atx = a[4],
- aty = a[5],
- st = Math.sin(rad),
- ct = Math.cos(rad);
-
- out[0] = aa*ct + ab*st;
- out[1] = -aa*st + ab*ct;
- out[2] = ac*ct + ad*st;
- out[3] = -ac*st + ct*ad;
- out[4] = ct*atx + st*aty;
- out[5] = ct*aty - st*atx;
- return out;
-};
-
-/**
- * Scales the mat2d by the dimensions in the given vec2
- *
- * @param {mat2d} out the receiving matrix
- * @param {mat2d} a the matrix to translate
- * @param {mat2d} v the vec2 to scale the matrix by
- * @returns {mat2d} out
- **/
-mat2d.scale = function(out, a, v) {
- var vx = v[0], vy = v[1];
- out[0] = a[0] * vx;
- out[1] = a[1] * vy;
- out[2] = a[2] * vx;
- out[3] = a[3] * vy;
- out[4] = a[4] * vx;
- out[5] = a[5] * vy;
- return out;
-};
-
-/**
- * Translates the mat2d by the dimensions in the given vec2
- *
- * @param {mat2d} out the receiving matrix
- * @param {mat2d} a the matrix to translate
- * @param {mat2d} v the vec2 to translate the matrix by
- * @returns {mat2d} out
- **/
-mat2d.translate = function(out, a, v) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4] + v[0];
- out[5] = a[5] + v[1];
- return out;
-};
-
-/**
- * Returns a string representation of a mat2d
- *
- * @param {mat2d} a matrix to represent as a string
- * @returns {String} string representation of the matrix
- */
-mat2d.str = function (a) {
- return 'mat2d(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' +
- a[3] + ', ' + a[4] + ', ' + a[5] + ')';
-};
-
-if(typeof(exports) !== 'undefined') {
- exports.mat2d = mat2d;
-}
-;
-/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
-
-Redistribution and use in source and binary forms, with or without modification,
-are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
-
-/**
- * @class 3x3 Matrix
- * @name mat3
- */
-
-var mat3 = {};
-
-/**
- * Creates a new identity mat3
- *
- * @returns {mat3} a new 3x3 matrix
- */
-mat3.create = function() {
- var out = new GLMAT_ARRAY_TYPE(9);
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 1;
- out[5] = 0;
- out[6] = 0;
- out[7] = 0;
- out[8] = 1;
- return out;
-};
-
-/**
- * Copies the upper-left 3x3 values into the given mat3.
- *
- * @param {mat3} out the receiving 3x3 matrix
- * @param {mat4} a the source 4x4 matrix
- * @returns {mat3} out
- */
-mat3.fromMat4 = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[4];
- out[4] = a[5];
- out[5] = a[6];
- out[6] = a[8];
- out[7] = a[9];
- out[8] = a[10];
- return out;
-};
-
-/**
- * Creates a new mat3 initialized with values from an existing matrix
- *
- * @param {mat3} a matrix to clone
- * @returns {mat3} a new 3x3 matrix
- */
-mat3.clone = function(a) {
- var out = new GLMAT_ARRAY_TYPE(9);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- return out;
-};
-
-/**
- * Copy the values from one mat3 to another
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the source matrix
- * @returns {mat3} out
- */
-mat3.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- return out;
-};
-
-/**
- * Set a mat3 to the identity matrix
- *
- * @param {mat3} out the receiving matrix
- * @returns {mat3} out
- */
-mat3.identity = function(out) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 1;
- out[5] = 0;
- out[6] = 0;
- out[7] = 0;
- out[8] = 1;
- return out;
-};
-
-/**
- * Transpose the values of a mat3
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the source matrix
- * @returns {mat3} out
- */
-mat3.transpose = function(out, a) {
- // If we are transposing ourselves we can skip a few steps but have to cache some values
- if (out === a) {
- var a01 = a[1], a02 = a[2], a12 = a[5];
- out[1] = a[3];
- out[2] = a[6];
- out[3] = a01;
- out[5] = a[7];
- out[6] = a02;
- out[7] = a12;
- } else {
- out[0] = a[0];
- out[1] = a[3];
- out[2] = a[6];
- out[3] = a[1];
- out[4] = a[4];
- out[5] = a[7];
- out[6] = a[2];
- out[7] = a[5];
- out[8] = a[8];
- }
-
- return out;
-};
-
-/**
- * Inverts a mat3
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the source matrix
- * @returns {mat3} out
- */
-mat3.invert = function(out, a) {
- var a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8],
-
- b01 = a22 * a11 - a12 * a21,
- b11 = -a22 * a10 + a12 * a20,
- b21 = a21 * a10 - a11 * a20,
-
- // Calculate the determinant
- det = a00 * b01 + a01 * b11 + a02 * b21;
-
- if (!det) {
- return null;
- }
- det = 1.0 / det;
-
- out[0] = b01 * det;
- out[1] = (-a22 * a01 + a02 * a21) * det;
- out[2] = (a12 * a01 - a02 * a11) * det;
- out[3] = b11 * det;
- out[4] = (a22 * a00 - a02 * a20) * det;
- out[5] = (-a12 * a00 + a02 * a10) * det;
- out[6] = b21 * det;
- out[7] = (-a21 * a00 + a01 * a20) * det;
- out[8] = (a11 * a00 - a01 * a10) * det;
- return out;
-};
-
-/**
- * Calculates the adjugate of a mat3
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the source matrix
- * @returns {mat3} out
- */
-mat3.adjoint = function(out, a) {
- var a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8];
-
- out[0] = (a11 * a22 - a12 * a21);
- out[1] = (a02 * a21 - a01 * a22);
- out[2] = (a01 * a12 - a02 * a11);
- out[3] = (a12 * a20 - a10 * a22);
- out[4] = (a00 * a22 - a02 * a20);
- out[5] = (a02 * a10 - a00 * a12);
- out[6] = (a10 * a21 - a11 * a20);
- out[7] = (a01 * a20 - a00 * a21);
- out[8] = (a00 * a11 - a01 * a10);
- return out;
-};
-
-/**
- * Calculates the determinant of a mat3
- *
- * @param {mat3} a the source matrix
- * @returns {Number} determinant of a
- */
-mat3.determinant = function (a) {
- var a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8];
-
- return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);
-};
-
-/**
- * Multiplies two mat3's
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the first operand
- * @param {mat3} b the second operand
- * @returns {mat3} out
- */
-mat3.multiply = function (out, a, b) {
- var a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8],
-
- b00 = b[0], b01 = b[1], b02 = b[2],
- b10 = b[3], b11 = b[4], b12 = b[5],
- b20 = b[6], b21 = b[7], b22 = b[8];
-
- out[0] = b00 * a00 + b01 * a10 + b02 * a20;
- out[1] = b00 * a01 + b01 * a11 + b02 * a21;
- out[2] = b00 * a02 + b01 * a12 + b02 * a22;
-
- out[3] = b10 * a00 + b11 * a10 + b12 * a20;
- out[4] = b10 * a01 + b11 * a11 + b12 * a21;
- out[5] = b10 * a02 + b11 * a12 + b12 * a22;
-
- out[6] = b20 * a00 + b21 * a10 + b22 * a20;
- out[7] = b20 * a01 + b21 * a11 + b22 * a21;
- out[8] = b20 * a02 + b21 * a12 + b22 * a22;
- return out;
-};
-
-/**
- * Alias for {@link mat3.multiply}
- * @function
- */
-mat3.mul = mat3.multiply;
-
-/**
- * Translate a mat3 by the given vector
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the matrix to translate
- * @param {vec2} v vector to translate by
- * @returns {mat3} out
- */
-mat3.translate = function(out, a, v) {
- var a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8],
- x = v[0], y = v[1];
-
- out[0] = a00;
- out[1] = a01;
- out[2] = a02;
-
- out[3] = a10;
- out[4] = a11;
- out[5] = a12;
-
- out[6] = x * a00 + y * a10 + a20;
- out[7] = x * a01 + y * a11 + a21;
- out[8] = x * a02 + y * a12 + a22;
- return out;
-};
-
-/**
- * Rotates a mat3 by the given angle
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat3} out
- */
-mat3.rotate = function (out, a, rad) {
- var a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8],
-
- s = Math.sin(rad),
- c = Math.cos(rad);
-
- out[0] = c * a00 + s * a10;
- out[1] = c * a01 + s * a11;
- out[2] = c * a02 + s * a12;
-
- out[3] = c * a10 - s * a00;
- out[4] = c * a11 - s * a01;
- out[5] = c * a12 - s * a02;
-
- out[6] = a20;
- out[7] = a21;
- out[8] = a22;
- return out;
-};
-
-/**
- * Scales the mat3 by the dimensions in the given vec2
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the matrix to rotate
- * @param {vec2} v the vec2 to scale the matrix by
- * @returns {mat3} out
- **/
-mat3.scale = function(out, a, v) {
- var x = v[0], y = v[2];
-
- out[0] = x * a[0];
- out[1] = x * a[1];
- out[2] = x * a[2];
-
- out[3] = y * a[3];
- out[4] = y * a[4];
- out[5] = y * a[5];
-
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- return out;
-};
-
-/**
- * Copies the values from a mat2d into a mat3
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the matrix to rotate
- * @param {vec2} v the vec2 to scale the matrix by
- * @returns {mat3} out
- **/
-mat3.fromMat2d = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = 0;
-
- out[3] = a[2];
- out[4] = a[3];
- out[5] = 0;
-
- out[6] = a[4];
- out[7] = a[5];
- out[8] = 1;
- return out;
-};
-
-/**
-* Calculates a 3x3 matrix from the given quaternion
-*
-* @param {mat3} out mat3 receiving operation result
-* @param {quat} q Quaternion to create matrix from
-*
-* @returns {mat3} out
-*/
-mat3.fromQuat = function (out, q) {
- var x = q[0], y = q[1], z = q[2], w = q[3],
- x2 = x + x,
- y2 = y + y,
- z2 = z + z,
-
- xx = x * x2,
- xy = x * y2,
- xz = x * z2,
- yy = y * y2,
- yz = y * z2,
- zz = z * z2,
- wx = w * x2,
- wy = w * y2,
- wz = w * z2;
-
- out[0] = 1 - (yy + zz);
- out[1] = xy + wz;
- out[2] = xz - wy;
-
- out[3] = xy - wz;
- out[4] = 1 - (xx + zz);
- out[5] = yz + wx;
-
- out[6] = xz + wy;
- out[7] = yz - wx;
- out[8] = 1 - (xx + yy);
-
- return out;
-};
-
-/**
- * Returns a string representation of a mat3
- *
- * @param {mat3} mat matrix to represent as a string
- * @returns {String} string representation of the matrix
- */
-mat3.str = function (a) {
- return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' +
- a[3] + ', ' + a[4] + ', ' + a[5] + ', ' +
- a[6] + ', ' + a[7] + ', ' + a[8] + ')';
-};
-
-if(typeof(exports) !== 'undefined') {
- exports.mat3 = mat3;
-}
-;
-/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
-
-Redistribution and use in source and binary forms, with or without modification,
-are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
-
-/**
- * @class 4x4 Matrix
- * @name mat4
- */
-
-var mat4 = {};
-
-/**
- * Creates a new identity mat4
- *
- * @returns {mat4} a new 4x4 matrix
- */
-mat4.create = function() {
- var out = new GLMAT_ARRAY_TYPE(16);
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = 1;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 1;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
-};
-
-/**
- * Creates a new mat4 initialized with values from an existing matrix
- *
- * @param {mat4} a matrix to clone
- * @returns {mat4} a new 4x4 matrix
- */
-mat4.clone = function(a) {
- var out = new GLMAT_ARRAY_TYPE(16);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- out[9] = a[9];
- out[10] = a[10];
- out[11] = a[11];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- return out;
-};
-
-/**
- * Copy the values from one mat4 to another
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the source matrix
- * @returns {mat4} out
- */
-mat4.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- out[9] = a[9];
- out[10] = a[10];
- out[11] = a[11];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- return out;
-};
-
-/**
- * Set a mat4 to the identity matrix
- *
- * @param {mat4} out the receiving matrix
- * @returns {mat4} out
- */
-mat4.identity = function(out) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = 1;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 1;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
-};
-
-/**
- * Transpose the values of a mat4
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the source matrix
- * @returns {mat4} out
- */
-mat4.transpose = function(out, a) {
- // If we are transposing ourselves we can skip a few steps but have to cache some values
- if (out === a) {
- var a01 = a[1], a02 = a[2], a03 = a[3],
- a12 = a[6], a13 = a[7],
- a23 = a[11];
-
- out[1] = a[4];
- out[2] = a[8];
- out[3] = a[12];
- out[4] = a01;
- out[6] = a[9];
- out[7] = a[13];
- out[8] = a02;
- out[9] = a12;
- out[11] = a[14];
- out[12] = a03;
- out[13] = a13;
- out[14] = a23;
- } else {
- out[0] = a[0];
- out[1] = a[4];
- out[2] = a[8];
- out[3] = a[12];
- out[4] = a[1];
- out[5] = a[5];
- out[6] = a[9];
- out[7] = a[13];
- out[8] = a[2];
- out[9] = a[6];
- out[10] = a[10];
- out[11] = a[14];
- out[12] = a[3];
- out[13] = a[7];
- out[14] = a[11];
- out[15] = a[15];
- }
-
- return out;
-};
-
-/**
- * Inverts a mat4
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the source matrix
- * @returns {mat4} out
- */
-mat4.invert = function(out, a) {
- var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
-
- b00 = a00 * a11 - a01 * a10,
- b01 = a00 * a12 - a02 * a10,
- b02 = a00 * a13 - a03 * a10,
- b03 = a01 * a12 - a02 * a11,
- b04 = a01 * a13 - a03 * a11,
- b05 = a02 * a13 - a03 * a12,
- b06 = a20 * a31 - a21 * a30,
- b07 = a20 * a32 - a22 * a30,
- b08 = a20 * a33 - a23 * a30,
- b09 = a21 * a32 - a22 * a31,
- b10 = a21 * a33 - a23 * a31,
- b11 = a22 * a33 - a23 * a32,
-
- // Calculate the determinant
- det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
-
- if (!det) {
- return null;
- }
- det = 1.0 / det;
-
- out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
- out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
- out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
- out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
- out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
- out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
- out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
- out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
- out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
- out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
- out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
- out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
- out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
- out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
- out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
- out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;
-
- return out;
-};
-
-/**
- * Calculates the adjugate of a mat4
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the source matrix
- * @returns {mat4} out
- */
-mat4.adjoint = function(out, a) {
- var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
-
- out[0] = (a11 * (a22 * a33 - a23 * a32) - a21 * (a12 * a33 - a13 * a32) + a31 * (a12 * a23 - a13 * a22));
- out[1] = -(a01 * (a22 * a33 - a23 * a32) - a21 * (a02 * a33 - a03 * a32) + a31 * (a02 * a23 - a03 * a22));
- out[2] = (a01 * (a12 * a33 - a13 * a32) - a11 * (a02 * a33 - a03 * a32) + a31 * (a02 * a13 - a03 * a12));
- out[3] = -(a01 * (a12 * a23 - a13 * a22) - a11 * (a02 * a23 - a03 * a22) + a21 * (a02 * a13 - a03 * a12));
- out[4] = -(a10 * (a22 * a33 - a23 * a32) - a20 * (a12 * a33 - a13 * a32) + a30 * (a12 * a23 - a13 * a22));
- out[5] = (a00 * (a22 * a33 - a23 * a32) - a20 * (a02 * a33 - a03 * a32) + a30 * (a02 * a23 - a03 * a22));
- out[6] = -(a00 * (a12 * a33 - a13 * a32) - a10 * (a02 * a33 - a03 * a32) + a30 * (a02 * a13 - a03 * a12));
- out[7] = (a00 * (a12 * a23 - a13 * a22) - a10 * (a02 * a23 - a03 * a22) + a20 * (a02 * a13 - a03 * a12));
- out[8] = (a10 * (a21 * a33 - a23 * a31) - a20 * (a11 * a33 - a13 * a31) + a30 * (a11 * a23 - a13 * a21));
- out[9] = -(a00 * (a21 * a33 - a23 * a31) - a20 * (a01 * a33 - a03 * a31) + a30 * (a01 * a23 - a03 * a21));
- out[10] = (a00 * (a11 * a33 - a13 * a31) - a10 * (a01 * a33 - a03 * a31) + a30 * (a01 * a13 - a03 * a11));
- out[11] = -(a00 * (a11 * a23 - a13 * a21) - a10 * (a01 * a23 - a03 * a21) + a20 * (a01 * a13 - a03 * a11));
- out[12] = -(a10 * (a21 * a32 - a22 * a31) - a20 * (a11 * a32 - a12 * a31) + a30 * (a11 * a22 - a12 * a21));
- out[13] = (a00 * (a21 * a32 - a22 * a31) - a20 * (a01 * a32 - a02 * a31) + a30 * (a01 * a22 - a02 * a21));
- out[14] = -(a00 * (a11 * a32 - a12 * a31) - a10 * (a01 * a32 - a02 * a31) + a30 * (a01 * a12 - a02 * a11));
- out[15] = (a00 * (a11 * a22 - a12 * a21) - a10 * (a01 * a22 - a02 * a21) + a20 * (a01 * a12 - a02 * a11));
- return out;
-};
-
-/**
- * Calculates the determinant of a mat4
- *
- * @param {mat4} a the source matrix
- * @returns {Number} determinant of a
- */
-mat4.determinant = function (a) {
- var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
-
- b00 = a00 * a11 - a01 * a10,
- b01 = a00 * a12 - a02 * a10,
- b02 = a00 * a13 - a03 * a10,
- b03 = a01 * a12 - a02 * a11,
- b04 = a01 * a13 - a03 * a11,
- b05 = a02 * a13 - a03 * a12,
- b06 = a20 * a31 - a21 * a30,
- b07 = a20 * a32 - a22 * a30,
- b08 = a20 * a33 - a23 * a30,
- b09 = a21 * a32 - a22 * a31,
- b10 = a21 * a33 - a23 * a31,
- b11 = a22 * a33 - a23 * a32;
-
- // Calculate the determinant
- return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
-};
-
-/**
- * Multiplies two mat4's
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the first operand
- * @param {mat4} b the second operand
- * @returns {mat4} out
- */
-mat4.multiply = function (out, a, b) {
- var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
-
- // Cache only the current line of the second matrix
- var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
- out[0] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
- out[1] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
- out[2] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
- out[3] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
-
- b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7];
- out[4] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
- out[5] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
- out[6] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
- out[7] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
-
- b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11];
- out[8] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
- out[9] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
- out[10] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
- out[11] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
-
- b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15];
- out[12] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
- out[13] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
- out[14] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
- out[15] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
- return out;
-};
-
-/**
- * Alias for {@link mat4.multiply}
- * @function
- */
-mat4.mul = mat4.multiply;
-
-/**
- * Translate a mat4 by the given vector
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to translate
- * @param {vec3} v vector to translate by
- * @returns {mat4} out
- */
-mat4.translate = function (out, a, v) {
- var x = v[0], y = v[1], z = v[2],
- a00, a01, a02, a03,
- a10, a11, a12, a13,
- a20, a21, a22, a23;
-
- if (a === out) {
- out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
- out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
- out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
- out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
- } else {
- a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
- a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
- a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
-
- out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03;
- out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13;
- out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23;
-
- out[12] = a00 * x + a10 * y + a20 * z + a[12];
- out[13] = a01 * x + a11 * y + a21 * z + a[13];
- out[14] = a02 * x + a12 * y + a22 * z + a[14];
- out[15] = a03 * x + a13 * y + a23 * z + a[15];
- }
-
- return out;
-};
-
-/**
- * Scales the mat4 by the dimensions in the given vec3
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to scale
- * @param {vec3} v the vec3 to scale the matrix by
- * @returns {mat4} out
- **/
-mat4.scale = function(out, a, v) {
- var x = v[0], y = v[1], z = v[2];
-
- out[0] = a[0] * x;
- out[1] = a[1] * x;
- out[2] = a[2] * x;
- out[3] = a[3] * x;
- out[4] = a[4] * y;
- out[5] = a[5] * y;
- out[6] = a[6] * y;
- out[7] = a[7] * y;
- out[8] = a[8] * z;
- out[9] = a[9] * z;
- out[10] = a[10] * z;
- out[11] = a[11] * z;
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- return out;
-};
-
-/**
- * Rotates a mat4 by the given angle
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @param {vec3} axis the axis to rotate around
- * @returns {mat4} out
- */
-mat4.rotate = function (out, a, rad, axis) {
- var x = axis[0], y = axis[1], z = axis[2],
- len = Math.sqrt(x * x + y * y + z * z),
- s, c, t,
- a00, a01, a02, a03,
- a10, a11, a12, a13,
- a20, a21, a22, a23,
- b00, b01, b02,
- b10, b11, b12,
- b20, b21, b22;
-
- if (Math.abs(len) < GLMAT_EPSILON) { return null; }
-
- len = 1 / len;
- x *= len;
- y *= len;
- z *= len;
-
- s = Math.sin(rad);
- c = Math.cos(rad);
- t = 1 - c;
-
- a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
- a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
- a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
-
- // Construct the elements of the rotation matrix
- b00 = x * x * t + c; b01 = y * x * t + z * s; b02 = z * x * t - y * s;
- b10 = x * y * t - z * s; b11 = y * y * t + c; b12 = z * y * t + x * s;
- b20 = x * z * t + y * s; b21 = y * z * t - x * s; b22 = z * z * t + c;
-
- // Perform rotation-specific matrix multiplication
- out[0] = a00 * b00 + a10 * b01 + a20 * b02;
- out[1] = a01 * b00 + a11 * b01 + a21 * b02;
- out[2] = a02 * b00 + a12 * b01 + a22 * b02;
- out[3] = a03 * b00 + a13 * b01 + a23 * b02;
- out[4] = a00 * b10 + a10 * b11 + a20 * b12;
- out[5] = a01 * b10 + a11 * b11 + a21 * b12;
- out[6] = a02 * b10 + a12 * b11 + a22 * b12;
- out[7] = a03 * b10 + a13 * b11 + a23 * b12;
- out[8] = a00 * b20 + a10 * b21 + a20 * b22;
- out[9] = a01 * b20 + a11 * b21 + a21 * b22;
- out[10] = a02 * b20 + a12 * b21 + a22 * b22;
- out[11] = a03 * b20 + a13 * b21 + a23 * b22;
-
- if (a !== out) { // If the source and destination differ, copy the unchanged last row
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- }
- return out;
-};
-
-/**
- * Rotates a matrix by the given angle around the X axis
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat4} out
- */
-mat4.rotateX = function (out, a, rad) {
- var s = Math.sin(rad),
- c = Math.cos(rad),
- a10 = a[4],
- a11 = a[5],
- a12 = a[6],
- a13 = a[7],
- a20 = a[8],
- a21 = a[9],
- a22 = a[10],
- a23 = a[11];
-
- if (a !== out) { // If the source and destination differ, copy the unchanged rows
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- }
-
- // Perform axis-specific matrix multiplication
- out[4] = a10 * c + a20 * s;
- out[5] = a11 * c + a21 * s;
- out[6] = a12 * c + a22 * s;
- out[7] = a13 * c + a23 * s;
- out[8] = a20 * c - a10 * s;
- out[9] = a21 * c - a11 * s;
- out[10] = a22 * c - a12 * s;
- out[11] = a23 * c - a13 * s;
- return out;
-};
-
-/**
- * Rotates a matrix by the given angle around the Y axis
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat4} out
- */
-mat4.rotateY = function (out, a, rad) {
- var s = Math.sin(rad),
- c = Math.cos(rad),
- a00 = a[0],
- a01 = a[1],
- a02 = a[2],
- a03 = a[3],
- a20 = a[8],
- a21 = a[9],
- a22 = a[10],
- a23 = a[11];
-
- if (a !== out) { // If the source and destination differ, copy the unchanged rows
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- }
-
- // Perform axis-specific matrix multiplication
- out[0] = a00 * c - a20 * s;
- out[1] = a01 * c - a21 * s;
- out[2] = a02 * c - a22 * s;
- out[3] = a03 * c - a23 * s;
- out[8] = a00 * s + a20 * c;
- out[9] = a01 * s + a21 * c;
- out[10] = a02 * s + a22 * c;
- out[11] = a03 * s + a23 * c;
- return out;
-};
-
-/**
- * Rotates a matrix by the given angle around the Z axis
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat4} out
- */
-mat4.rotateZ = function (out, a, rad) {
- var s = Math.sin(rad),
- c = Math.cos(rad),
- a00 = a[0],
- a01 = a[1],
- a02 = a[2],
- a03 = a[3],
- a10 = a[4],
- a11 = a[5],
- a12 = a[6],
- a13 = a[7];
-
- if (a !== out) { // If the source and destination differ, copy the unchanged last row
- out[8] = a[8];
- out[9] = a[9];
- out[10] = a[10];
- out[11] = a[11];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- }
-
- // Perform axis-specific matrix multiplication
- out[0] = a00 * c + a10 * s;
- out[1] = a01 * c + a11 * s;
- out[2] = a02 * c + a12 * s;
- out[3] = a03 * c + a13 * s;
- out[4] = a10 * c - a00 * s;
- out[5] = a11 * c - a01 * s;
- out[6] = a12 * c - a02 * s;
- out[7] = a13 * c - a03 * s;
- return out;
-};
-
-/**
- * Creates a matrix from a quaternion rotation and vector translation
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.translate(dest, vec);
- * var quatMat = mat4.create();
- * quat4.toMat4(quat, quatMat);
- * mat4.multiply(dest, quatMat);
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {quat4} q Rotation quaternion
- * @param {vec3} v Translation vector
- * @returns {mat4} out
- */
-mat4.fromRotationTranslation = function (out, q, v) {
- // Quaternion math
- var x = q[0], y = q[1], z = q[2], w = q[3],
- x2 = x + x,
- y2 = y + y,
- z2 = z + z,
-
- xx = x * x2,
- xy = x * y2,
- xz = x * z2,
- yy = y * y2,
- yz = y * z2,
- zz = z * z2,
- wx = w * x2,
- wy = w * y2,
- wz = w * z2;
-
- out[0] = 1 - (yy + zz);
- out[1] = xy + wz;
- out[2] = xz - wy;
- out[3] = 0;
- out[4] = xy - wz;
- out[5] = 1 - (xx + zz);
- out[6] = yz + wx;
- out[7] = 0;
- out[8] = xz + wy;
- out[9] = yz - wx;
- out[10] = 1 - (xx + yy);
- out[11] = 0;
- out[12] = v[0];
- out[13] = v[1];
- out[14] = v[2];
- out[15] = 1;
-
- return out;
-};
-
-/**
-* Calculates a 4x4 matrix from the given quaternion
-*
-* @param {mat4} out mat4 receiving operation result
-* @param {quat} q Quaternion to create matrix from
-*
-* @returns {mat4} out
-*/
-mat4.fromQuat = function (out, q) {
- var x = q[0], y = q[1], z = q[2], w = q[3],
- x2 = x + x,
- y2 = y + y,
- z2 = z + z,
-
- xx = x * x2,
- xy = x * y2,
- xz = x * z2,
- yy = y * y2,
- yz = y * z2,
- zz = z * z2,
- wx = w * x2,
- wy = w * y2,
- wz = w * z2;
-
- out[0] = 1 - (yy + zz);
- out[1] = xy + wz;
- out[2] = xz - wy;
- out[3] = 0;
-
- out[4] = xy - wz;
- out[5] = 1 - (xx + zz);
- out[6] = yz + wx;
- out[7] = 0;
-
- out[8] = xz + wy;
- out[9] = yz - wx;
- out[10] = 1 - (xx + yy);
- out[11] = 0;
-
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
-
- return out;
-};
-
-/**
- * Generates a frustum matrix with the given bounds
- *
- * @param {mat4} out mat4 frustum matrix will be written into
- * @param {Number} left Left bound of the frustum
- * @param {Number} right Right bound of the frustum
- * @param {Number} bottom Bottom bound of the frustum
- * @param {Number} top Top bound of the frustum
- * @param {Number} near Near bound of the frustum
- * @param {Number} far Far bound of the frustum
- * @returns {mat4} out
- */
-mat4.frustum = function (out, left, right, bottom, top, near, far) {
- var rl = 1 / (right - left),
- tb = 1 / (top - bottom),
- nf = 1 / (near - far);
- out[0] = (near * 2) * rl;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = (near * 2) * tb;
- out[6] = 0;
- out[7] = 0;
- out[8] = (right + left) * rl;
- out[9] = (top + bottom) * tb;
- out[10] = (far + near) * nf;
- out[11] = -1;
- out[12] = 0;
- out[13] = 0;
- out[14] = (far * near * 2) * nf;
- out[15] = 0;
- return out;
-};
-
-/**
- * Generates a perspective projection matrix with the given bounds
- *
- * @param {mat4} out mat4 frustum matrix will be written into
- * @param {number} fovy Vertical field of view in radians
- * @param {number} aspect Aspect ratio. typically viewport width/height
- * @param {number} near Near bound of the frustum
- * @param {number} far Far bound of the frustum
- * @returns {mat4} out
- */
-mat4.perspective = function (out, fovy, aspect, near, far) {
- var f = 1.0 / Math.tan(fovy / 2),
- nf = 1 / (near - far);
- out[0] = f / aspect;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = f;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = (far + near) * nf;
- out[11] = -1;
- out[12] = 0;
- out[13] = 0;
- out[14] = (2 * far * near) * nf;
- out[15] = 0;
- return out;
-};
-
-/**
- * Generates a orthogonal projection matrix with the given bounds
- *
- * @param {mat4} out mat4 frustum matrix will be written into
- * @param {number} left Left bound of the frustum
- * @param {number} right Right bound of the frustum
- * @param {number} bottom Bottom bound of the frustum
- * @param {number} top Top bound of the frustum
- * @param {number} near Near bound of the frustum
- * @param {number} far Far bound of the frustum
- * @returns {mat4} out
- */
-mat4.ortho = function (out, left, right, bottom, top, near, far) {
- var lr = 1 / (left - right),
- bt = 1 / (bottom - top),
- nf = 1 / (near - far);
- out[0] = -2 * lr;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = -2 * bt;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 2 * nf;
- out[11] = 0;
- out[12] = (left + right) * lr;
- out[13] = (top + bottom) * bt;
- out[14] = (far + near) * nf;
- out[15] = 1;
- return out;
-};
-
-/**
- * Generates a look-at matrix with the given eye position, focal point, and up axis
- *
- * @param {mat4} out mat4 frustum matrix will be written into
- * @param {vec3} eye Position of the viewer
- * @param {vec3} center Point the viewer is looking at
- * @param {vec3} up vec3 pointing up
- * @returns {mat4} out
- */
-mat4.lookAt = function (out, eye, center, up) {
- var x0, x1, x2, y0, y1, y2, z0, z1, z2, len,
- eyex = eye[0],
- eyey = eye[1],
- eyez = eye[2],
- upx = up[0],
- upy = up[1],
- upz = up[2],
- centerx = center[0],
- centery = center[1],
- centerz = center[2];
-
- if (Math.abs(eyex - centerx) < GLMAT_EPSILON &&
- Math.abs(eyey - centery) < GLMAT_EPSILON &&
- Math.abs(eyez - centerz) < GLMAT_EPSILON) {
- return mat4.identity(out);
- }
-
- z0 = eyex - centerx;
- z1 = eyey - centery;
- z2 = eyez - centerz;
-
- len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);
- z0 *= len;
- z1 *= len;
- z2 *= len;
-
- x0 = upy * z2 - upz * z1;
- x1 = upz * z0 - upx * z2;
- x2 = upx * z1 - upy * z0;
- len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);
- if (!len) {
- x0 = 0;
- x1 = 0;
- x2 = 0;
- } else {
- len = 1 / len;
- x0 *= len;
- x1 *= len;
- x2 *= len;
- }
-
- y0 = z1 * x2 - z2 * x1;
- y1 = z2 * x0 - z0 * x2;
- y2 = z0 * x1 - z1 * x0;
-
- len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);
- if (!len) {
- y0 = 0;
- y1 = 0;
- y2 = 0;
- } else {
- len = 1 / len;
- y0 *= len;
- y1 *= len;
- y2 *= len;
- }
-
- out[0] = x0;
- out[1] = y0;
- out[2] = z0;
- out[3] = 0;
- out[4] = x1;
- out[5] = y1;
- out[6] = z1;
- out[7] = 0;
- out[8] = x2;
- out[9] = y2;
- out[10] = z2;
- out[11] = 0;
- out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);
- out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);
- out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);
- out[15] = 1;
-
- return out;
-};
-
-/**
- * Returns a string representation of a mat4
- *
- * @param {mat4} mat matrix to represent as a string
- * @returns {String} string representation of the matrix
- */
-mat4.str = function (a) {
- return 'mat4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' +
- a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' +
- a[8] + ', ' + a[9] + ', ' + a[10] + ', ' + a[11] + ', ' +
- a[12] + ', ' + a[13] + ', ' + a[14] + ', ' + a[15] + ')';
-};
-
-if(typeof(exports) !== 'undefined') {
- exports.mat4 = mat4;
-}
-;
-/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
-
-Redistribution and use in source and binary forms, with or without modification,
-are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
-
-/**
- * @class Quaternion
- * @name quat
- */
-
-var quat = {};
-
-/**
- * Creates a new identity quat
- *
- * @returns {quat} a new quaternion
- */
-quat.create = function() {
- var out = new GLMAT_ARRAY_TYPE(4);
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- return out;
-};
-
-/**
- * Creates a new quat initialized with values from an existing quaternion
- *
- * @param {quat} a quaternion to clone
- * @returns {quat} a new quaternion
- * @function
- */
-quat.clone = vec4.clone;
-
-/**
- * Creates a new quat initialized with the given values
- *
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @param {Number} w W component
- * @returns {quat} a new quaternion
- * @function
- */
-quat.fromValues = vec4.fromValues;
-
-/**
- * Copy the values from one quat to another
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the source quaternion
- * @returns {quat} out
- * @function
- */
-quat.copy = vec4.copy;
-
-/**
- * Set the components of a quat to the given values
- *
- * @param {quat} out the receiving quaternion
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @param {Number} w W component
- * @returns {quat} out
- * @function
- */
-quat.set = vec4.set;
-
-/**
- * Set a quat to the identity quaternion
- *
- * @param {quat} out the receiving quaternion
- * @returns {quat} out
- */
-quat.identity = function(out) {
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- return out;
-};
-
-/**
- * Sets a quat from the given angle and rotation axis,
- * then returns it.
- *
- * @param {quat} out the receiving quaternion
- * @param {vec3} axis the axis around which to rotate
- * @param {Number} rad the angle in radians
- * @returns {quat} out
- **/
-quat.setAxisAngle = function(out, axis, rad) {
- rad = rad * 0.5;
- var s = Math.sin(rad);
- out[0] = s * axis[0];
- out[1] = s * axis[1];
- out[2] = s * axis[2];
- out[3] = Math.cos(rad);
- return out;
-};
-
-/**
- * Adds two quat's
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @returns {quat} out
- * @function
- */
-quat.add = vec4.add;
-
-/**
- * Multiplies two quat's
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @returns {quat} out
- */
-quat.multiply = function(out, a, b) {
- var ax = a[0], ay = a[1], az = a[2], aw = a[3],
- bx = b[0], by = b[1], bz = b[2], bw = b[3];
-
- out[0] = ax * bw + aw * bx + ay * bz - az * by;
- out[1] = ay * bw + aw * by + az * bx - ax * bz;
- out[2] = az * bw + aw * bz + ax * by - ay * bx;
- out[3] = aw * bw - ax * bx - ay * by - az * bz;
- return out;
-};
-
-/**
- * Alias for {@link quat.multiply}
- * @function
- */
-quat.mul = quat.multiply;
-
-/**
- * Scales a quat by a scalar number
- *
- * @param {quat} out the receiving vector
- * @param {quat} a the vector to scale
- * @param {Number} b amount to scale the vector by
- * @returns {quat} out
- * @function
- */
-quat.scale = vec4.scale;
-
-/**
- * Rotates a quaternion by the given angle around the X axis
- *
- * @param {quat} out quat receiving operation result
- * @param {quat} a quat to rotate
- * @param {number} rad angle (in radians) to rotate
- * @returns {quat} out
- */
-quat.rotateX = function (out, a, rad) {
- rad *= 0.5;
-
- var ax = a[0], ay = a[1], az = a[2], aw = a[3],
- bx = Math.sin(rad), bw = Math.cos(rad);
-
- out[0] = ax * bw + aw * bx;
- out[1] = ay * bw + az * bx;
- out[2] = az * bw - ay * bx;
- out[3] = aw * bw - ax * bx;
- return out;
-};
-
-/**
- * Rotates a quaternion by the given angle around the Y axis
- *
- * @param {quat} out quat receiving operation result
- * @param {quat} a quat to rotate
- * @param {number} rad angle (in radians) to rotate
- * @returns {quat} out
- */
-quat.rotateY = function (out, a, rad) {
- rad *= 0.5;
-
- var ax = a[0], ay = a[1], az = a[2], aw = a[3],
- by = Math.sin(rad), bw = Math.cos(rad);
-
- out[0] = ax * bw - az * by;
- out[1] = ay * bw + aw * by;
- out[2] = az * bw + ax * by;
- out[3] = aw * bw - ay * by;
- return out;
-};
-
-/**
- * Rotates a quaternion by the given angle around the Z axis
- *
- * @param {quat} out quat receiving operation result
- * @param {quat} a quat to rotate
- * @param {number} rad angle (in radians) to rotate
- * @returns {quat} out
- */
-quat.rotateZ = function (out, a, rad) {
- rad *= 0.5;
-
- var ax = a[0], ay = a[1], az = a[2], aw = a[3],
- bz = Math.sin(rad), bw = Math.cos(rad);
-
- out[0] = ax * bw + ay * bz;
- out[1] = ay * bw - ax * bz;
- out[2] = az * bw + aw * bz;
- out[3] = aw * bw - az * bz;
- return out;
-};
-
-/**
- * Calculates the W component of a quat from the X, Y, and Z components.
- * Assumes that quaternion is 1 unit in length.
- * Any existing W component will be ignored.
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a quat to calculate W component of
- * @returns {quat} out
- */
-quat.calculateW = function (out, a) {
- var x = a[0], y = a[1], z = a[2];
-
- out[0] = x;
- out[1] = y;
- out[2] = z;
- out[3] = -Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));
- return out;
-};
-
-/**
- * Calculates the dot product of two quat's
- *
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @returns {Number} dot product of a and b
- * @function
- */
-quat.dot = vec4.dot;
-
-/**
- * Performs a linear interpolation between two quat's
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @param {Number} t interpolation amount between the two inputs
- * @returns {quat} out
- * @function
- */
-quat.lerp = vec4.lerp;
-
-/**
- * Performs a spherical linear interpolation between two quat
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @param {Number} t interpolation amount between the two inputs
- * @returns {quat} out
- */
-quat.slerp = function (out, a, b, t) {
- var ax = a[0], ay = a[1], az = a[2], aw = a[3],
- bx = b[0], by = b[1], bz = b[2], bw = b[3];
-
- var cosHalfTheta = ax * bx + ay * by + az * bz + aw * bw,
- halfTheta,
- sinHalfTheta,
- ratioA,
- ratioB;
-
- if (Math.abs(cosHalfTheta) >= 1.0) {
- if (out !== a) {
- out[0] = ax;
- out[1] = ay;
- out[2] = az;
- out[3] = aw;
- }
- return out;
- }
-
- halfTheta = Math.acos(cosHalfTheta);
- sinHalfTheta = Math.sqrt(1.0 - cosHalfTheta * cosHalfTheta);
-
- if (Math.abs(sinHalfTheta) < 0.001) {
- out[0] = (ax * 0.5 + bx * 0.5);
- out[1] = (ay * 0.5 + by * 0.5);
- out[2] = (az * 0.5 + bz * 0.5);
- out[3] = (aw * 0.5 + bw * 0.5);
- return out;
- }
-
- ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta;
- ratioB = Math.sin(t * halfTheta) / sinHalfTheta;
-
- out[0] = (ax * ratioA + bx * ratioB);
- out[1] = (ay * ratioA + by * ratioB);
- out[2] = (az * ratioA + bz * ratioB);
- out[3] = (aw * ratioA + bw * ratioB);
-
- return out;
-};
-
-/**
- * Calculates the inverse of a quat
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a quat to calculate inverse of
- * @returns {quat} out
- */
-quat.invert = function(out, a) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
- dot = a0*a0 + a1*a1 + a2*a2 + a3*a3,
- invDot = dot ? 1.0/dot : 0;
-
- // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0
-
- out[0] = -a0*invDot;
- out[1] = -a1*invDot;
- out[2] = -a2*invDot;
- out[3] = a3*invDot;
- return out;
-};
-
-/**
- * Calculates the conjugate of a quat
- * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result.
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a quat to calculate conjugate of
- * @returns {quat} out
- */
-quat.conjugate = function (out, a) {
- out[0] = -a[0];
- out[1] = -a[1];
- out[2] = -a[2];
- out[3] = a[3];
- return out;
-};
-
-/**
- * Calculates the length of a quat
- *
- * @param {quat} a vector to calculate length of
- * @returns {Number} length of a
- * @function
- */
-quat.length = vec4.length;
-
-/**
- * Alias for {@link quat.length}
- * @function
- */
-quat.len = quat.length;
-
-/**
- * Calculates the squared length of a quat
- *
- * @param {quat} a vector to calculate squared length of
- * @returns {Number} squared length of a
- * @function
- */
-quat.squaredLength = vec4.squaredLength;
-
-/**
- * Alias for {@link quat.squaredLength}
- * @function
- */
-quat.sqrLen = quat.squaredLength;
-
-/**
- * Normalize a quat
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a quaternion to normalize
- * @returns {quat} out
- * @function
- */
-quat.normalize = vec4.normalize;
-
-/**
- * Creates a quaternion from the given 3x3 rotation matrix.
- *
- * @param {quat} out the receiving quaternion
- * @param {mat3} m rotation matrix
- * @returns {quat} out
- * @function
- */
-quat.fromMat3 = (function() {
- var s_iNext = [1,2,0];
- return function(out, m) {
- // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
- // article "Quaternion Calculus and Fast Animation".
- var fTrace = m[0] + m[4] + m[8];
- var fRoot;
-
- if ( fTrace > 0.0 ) {
- // |w| > 1/2, may as well choose w > 1/2
- fRoot = Math.sqrt(fTrace + 1.0); // 2w
- out[3] = 0.5 * fRoot;
- fRoot = 0.5/fRoot; // 1/(4w)
- out[0] = (m[7]-m[5])*fRoot;
- out[1] = (m[2]-m[6])*fRoot;
- out[2] = (m[3]-m[1])*fRoot;
- } else {
- // |w| <= 1/2
- var i = 0;
- if ( m[4] > m[0] )
- i = 1;
- if ( m[8] > m[i*3+i] )
- i = 2;
- var j = s_iNext[i];
- var k = s_iNext[j];
-
- fRoot = Math.sqrt(m[i*3+i]-m[j*3+j]-m[k*3+k] + 1.0);
- out[i] = 0.5 * fRoot;
- fRoot = 0.5 / fRoot;
- out[3] = (m[k*3+j] - m[j*3+k]) * fRoot;
- out[j] = (m[j*3+i] + m[i*3+j]) * fRoot;
- out[k] = (m[k*3+i] + m[i*3+k]) * fRoot;
- }
-
- return out;
- };
-})();
-
-/**
- * Returns a string representation of a quatenion
- *
- * @param {quat} vec vector to represent as a string
- * @returns {String} string representation of the vector
- */
-quat.str = function (a) {
- return 'quat(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
-};
-
-if(typeof(exports) !== 'undefined') {
- exports.quat = quat;
-}
-;
-
-
-
-
-
-
-
-
-
-
-
-
-
- })(shim.exports);
-})();
« no previous file with comments | « tools/cc-frame-viewer/third_party/gl-matrix/VERSION ('k') | tools/cc-frame-viewer/third_party/gl-matrix/dist/gl-matrix-min.js » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698