Index: net/third_party/nss/ssl/ssl3con.c |
=================================================================== |
--- net/third_party/nss/ssl/ssl3con.c (revision 202696) |
+++ net/third_party/nss/ssl/ssl3con.c (working copy) |
@@ -15,6 +15,7 @@ |
#include "keyhi.h" |
#include "secder.h" |
#include "secitem.h" |
+#include "sechash.h" |
#include "sslimpl.h" |
#include "sslproto.h" |
@@ -31,6 +32,15 @@ |
#include "blapi.h" |
#endif |
+/* This is a bodge to allow this code to be compiled against older NSS headers |
+ * that don't contain the TLS 1.2 changes. */ |
+#ifndef CKM_NSS_TLS_PRF_GENERAL_SHA256 |
+#define CKM_NSS_TLS_PRF_GENERAL_SHA256 (CKM_NSS + 21) |
+#define CKM_NSS_TLS_MASTER_KEY_DERIVE_SHA256 (CKM_NSS + 22) |
+#define CKM_NSS_TLS_KEY_AND_MAC_DERIVE_SHA256 (CKM_NSS + 23) |
+#define CKM_NSS_TLS_MASTER_KEY_DERIVE_DH_SHA256 (CKM_NSS + 24) |
+#endif |
+ |
#include <stdio.h> |
#ifdef NSS_ENABLE_ZLIB |
#include "zlib.h" |
@@ -64,6 +74,7 @@ |
const unsigned char *b, |
unsigned int l); |
static SECStatus ssl3_FlushHandshakeMessages(sslSocket *ss, PRInt32 flags); |
+static int ssl3_OIDToTLSHashAlgorithm(SECOidTag oid); |
static SECStatus Null_Cipher(void *ctx, unsigned char *output, int *outputLen, |
int maxOutputLen, const unsigned char *input, |
@@ -811,32 +822,36 @@ |
SECItem hashItem; |
buf->data = NULL; |
- signatureLen = PK11_SignatureLen(key); |
- if (signatureLen <= 0) { |
- PORT_SetError(SEC_ERROR_INVALID_KEY); |
- goto done; |
- } |
- buf->len = (unsigned)signatureLen; |
- buf->data = (unsigned char *)PORT_Alloc(signatureLen); |
- if (!buf->data) |
- goto done; /* error code was set. */ |
- |
switch (key->keyType) { |
case rsaKey: |
- hashItem.data = hash->md5; |
- hashItem.len = sizeof(SSL3Hashes); |
+ hashItem.data = hash->u.raw; |
+ hashItem.len = hash->len; |
break; |
case dsaKey: |
doDerEncode = isTLS; |
- hashItem.data = hash->sha; |
- hashItem.len = sizeof(hash->sha); |
+ /* SEC_OID_UNKNOWN is used to specify the MD5/SHA1 concatenated hash. |
+ * In that case, we use just the SHA1 part. */ |
+ if (hash->hashAlg == SEC_OID_UNKNOWN) { |
+ hashItem.data = hash->u.s.sha; |
+ hashItem.len = sizeof(hash->u.s.sha); |
+ } else { |
+ hashItem.data = hash->u.raw; |
+ hashItem.len = hash->len; |
+ } |
break; |
#ifdef NSS_ENABLE_ECC |
case ecKey: |
doDerEncode = PR_TRUE; |
- hashItem.data = hash->sha; |
- hashItem.len = sizeof(hash->sha); |
+ /* SEC_OID_UNKNOWN is used to specify the MD5/SHA1 concatenated hash. |
+ * In that case, we use just the SHA1 part. */ |
+ if (hash->hashAlg == SEC_OID_UNKNOWN) { |
+ hashItem.data = hash->u.s.sha; |
+ hashItem.len = sizeof(hash->u.s.sha); |
+ } else { |
+ hashItem.data = hash->u.raw; |
+ hashItem.len = hash->len; |
+ } |
break; |
#endif /* NSS_ENABLE_ECC */ |
default: |
@@ -845,7 +860,22 @@ |
} |
PRINT_BUF(60, (NULL, "hash(es) to be signed", hashItem.data, hashItem.len)); |
- rv = PK11_Sign(key, buf, &hashItem); |
+ if (hash->hashAlg == SEC_OID_UNKNOWN) { |
+ signatureLen = PK11_SignatureLen(key); |
+ if (signatureLen <= 0) { |
+ PORT_SetError(SEC_ERROR_INVALID_KEY); |
+ goto done; |
+ } |
+ |
+ buf->len = (unsigned)signatureLen; |
+ buf->data = (unsigned char *)PORT_Alloc(signatureLen); |
+ if (!buf->data) |
+ goto done; /* error code was set. */ |
+ |
+ rv = PK11_Sign(key, buf, &hashItem); |
+ } else { |
+ rv = SGN_Digest(key, hash->hashAlg, buf, &hashItem); |
+ } |
if (rv != SECSuccess) { |
ssl_MapLowLevelError(SSL_ERROR_SIGN_HASHES_FAILURE); |
} else if (doDerEncode) { |
@@ -879,9 +909,8 @@ |
SECItem * signature = NULL; |
SECStatus rv; |
SECItem hashItem; |
-#ifdef NSS_ENABLE_ECC |
- unsigned int len; |
-#endif /* NSS_ENABLE_ECC */ |
+ SECOidTag encAlg; |
+ SECOidTag hashAlg; |
PRINT_BUF(60, (NULL, "check signed hashes", |
@@ -893,14 +922,24 @@ |
return SECFailure; |
} |
+ hashAlg = hash->hashAlg; |
switch (key->keyType) { |
case rsaKey: |
- hashItem.data = hash->md5; |
- hashItem.len = sizeof(SSL3Hashes); |
+ encAlg = SEC_OID_PKCS1_RSA_ENCRYPTION; |
+ hashItem.data = hash->u.raw; |
+ hashItem.len = hash->len; |
break; |
case dsaKey: |
- hashItem.data = hash->sha; |
- hashItem.len = sizeof(hash->sha); |
+ encAlg = SEC_OID_ANSIX9_DSA_SIGNATURE; |
+ /* SEC_OID_UNKNOWN is used to specify the MD5/SHA1 concatenated hash. |
+ * In that case, we use just the SHA1 part. */ |
+ if (hash->hashAlg == SEC_OID_UNKNOWN) { |
+ hashItem.data = hash->u.s.sha; |
+ hashItem.len = sizeof(hash->u.s.sha); |
+ } else { |
+ hashItem.data = hash->u.raw; |
+ hashItem.len = hash->len; |
+ } |
/* Allow DER encoded DSA signatures in SSL 3.0 */ |
if (isTLS || buf->len != SECKEY_SignatureLen(key)) { |
signature = DSAU_DecodeDerSig(buf); |
@@ -914,25 +953,21 @@ |
#ifdef NSS_ENABLE_ECC |
case ecKey: |
- hashItem.data = hash->sha; |
- hashItem.len = sizeof(hash->sha); |
- /* |
- * ECDSA signatures always encode the integers r and s |
- * using ASN (unlike DSA where ASN encoding is used |
- * with TLS but not with SSL3) |
+ encAlg = SEC_OID_ANSIX962_EC_PUBLIC_KEY; |
+ /* SEC_OID_UNKNOWN is used to specify the MD5/SHA1 concatenated hash. |
+ * In that case, we use just the SHA1 part. |
+ * ECDSA signatures always encode the integers r and s using ASN.1 |
+ * (unlike DSA where ASN.1 encoding is used with TLS but not with |
+ * SSL3). So we can use VFY_VerifyDigestDirect for ECDSA. |
*/ |
- len = SECKEY_SignatureLen(key); |
- if (len == 0) { |
- SECKEY_DestroyPublicKey(key); |
- PORT_SetError(SEC_ERROR_UNSUPPORTED_ELLIPTIC_CURVE); |
- return SECFailure; |
+ if (hash->hashAlg == SEC_OID_UNKNOWN) { |
+ hashAlg = SEC_OID_SHA1; |
+ hashItem.data = hash->u.s.sha; |
+ hashItem.len = sizeof(hash->u.s.sha); |
+ } else { |
+ hashItem.data = hash->u.raw; |
+ hashItem.len = hash->len; |
} |
- signature = DSAU_DecodeDerSigToLen(buf, len); |
- if (!signature) { |
- PORT_SetError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE); |
- return SECFailure; |
- } |
- buf = signature; |
break; |
#endif /* NSS_ENABLE_ECC */ |
@@ -945,7 +980,17 @@ |
PRINT_BUF(60, (NULL, "hash(es) to be verified", |
hashItem.data, hashItem.len)); |
- rv = PK11_Verify(key, buf, &hashItem, pwArg); |
+ if (hashAlg == SEC_OID_UNKNOWN || key->keyType == dsaKey) { |
+ /* VFY_VerifyDigestDirect requires DSA signatures to be DER-encoded. |
+ * DSA signatures are DER-encoded in TLS but not in SSL3 and the code |
+ * above always removes the DER encoding of DSA signatures when |
+ * present. Thus DSA signatures are always verified with PK11_Verify. |
+ */ |
+ rv = PK11_Verify(key, buf, &hashItem, pwArg); |
+ } else { |
+ rv = VFY_VerifyDigestDirect(&hashItem, key, buf, encAlg, hashAlg, |
+ pwArg); |
+ } |
SECKEY_DestroyPublicKey(key); |
if (signature) { |
SECITEM_FreeItem(signature, PR_TRUE); |
@@ -961,33 +1006,69 @@ |
/* Called from ssl3_ComputeExportRSAKeyHash |
* ssl3_ComputeDHKeyHash |
* which are called from ssl3_HandleServerKeyExchange. |
+ * |
+ * hashAlg: either the OID for a hash algorithm or SEC_OID_UNKNOWN to specify |
+ * the pre-1.2, MD5/SHA1 combination hash. |
*/ |
SECStatus |
-ssl3_ComputeCommonKeyHash(PRUint8 * hashBuf, unsigned int bufLen, |
- SSL3Hashes *hashes, PRBool bypassPKCS11) |
+ssl3_ComputeCommonKeyHash(SECOidTag hashAlg, |
+ PRUint8 * hashBuf, unsigned int bufLen, |
+ SSL3Hashes *hashes, PRBool bypassPKCS11) |
{ |
SECStatus rv = SECSuccess; |
#ifndef NO_PKCS11_BYPASS |
if (bypassPKCS11) { |
- MD5_HashBuf (hashes->md5, hashBuf, bufLen); |
- SHA1_HashBuf(hashes->sha, hashBuf, bufLen); |
+ if (hashAlg == SEC_OID_UNKNOWN) { |
+ MD5_HashBuf (hashes->u.s.md5, hashBuf, bufLen); |
+ SHA1_HashBuf(hashes->u.s.sha, hashBuf, bufLen); |
+ hashes->len = MD5_LENGTH + SHA1_LENGTH; |
+ } else if (hashAlg == SEC_OID_SHA1) { |
+ SHA1_HashBuf(hashes->u.raw, hashBuf, bufLen); |
+ hashes->len = SHA1_LENGTH; |
+ } else if (hashAlg == SEC_OID_SHA256) { |
+ SHA256_HashBuf(hashes->u.raw, hashBuf, bufLen); |
+ hashes->len = SHA256_LENGTH; |
+ } else if (hashAlg == SEC_OID_SHA384) { |
+ SHA384_HashBuf(hashes->u.raw, hashBuf, bufLen); |
+ hashes->len = SHA384_LENGTH; |
+ } else { |
+ PORT_SetError(SSL_ERROR_UNSUPPORTED_HASH_ALGORITHM); |
+ return SECFailure; |
+ } |
} else |
#endif |
{ |
- rv = PK11_HashBuf(SEC_OID_MD5, hashes->md5, hashBuf, bufLen); |
- if (rv != SECSuccess) { |
- ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); |
- rv = SECFailure; |
- goto done; |
- } |
+ if (hashAlg == SEC_OID_UNKNOWN) { |
+ rv = PK11_HashBuf(SEC_OID_MD5, hashes->u.s.md5, hashBuf, bufLen); |
+ if (rv != SECSuccess) { |
+ ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); |
+ rv = SECFailure; |
+ goto done; |
+ } |
- rv = PK11_HashBuf(SEC_OID_SHA1, hashes->sha, hashBuf, bufLen); |
- if (rv != SECSuccess) { |
- ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); |
- rv = SECFailure; |
+ rv = PK11_HashBuf(SEC_OID_SHA1, hashes->u.s.sha, hashBuf, bufLen); |
+ if (rv != SECSuccess) { |
+ ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); |
+ rv = SECFailure; |
+ } |
+ hashes->len = MD5_LENGTH + SHA1_LENGTH; |
+ } else { |
+ hashes->len = HASH_ResultLenByOidTag(hashAlg); |
+ if (hashes->len > sizeof(hashes->u.raw)) { |
+ ssl_MapLowLevelError(SSL_ERROR_UNSUPPORTED_HASH_ALGORITHM); |
+ rv = SECFailure; |
+ goto done; |
+ } |
+ rv = PK11_HashBuf(hashAlg, hashes->u.raw, hashBuf, bufLen); |
+ if (rv != SECSuccess) { |
+ ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE); |
+ rv = SECFailure; |
+ } |
} |
} |
+ hashes->hashAlg = hashAlg; |
+ |
done: |
return rv; |
} |
@@ -997,7 +1078,8 @@ |
** ssl3_HandleServerKeyExchange. |
*/ |
static SECStatus |
-ssl3_ComputeExportRSAKeyHash(SECItem modulus, SECItem publicExponent, |
+ssl3_ComputeExportRSAKeyHash(SECOidTag hashAlg, |
+ SECItem modulus, SECItem publicExponent, |
SSL3Random *client_rand, SSL3Random *server_rand, |
SSL3Hashes *hashes, PRBool bypassPKCS11) |
{ |
@@ -1033,11 +1115,19 @@ |
pBuf += publicExponent.len; |
PORT_Assert((unsigned int)(pBuf - hashBuf) == bufLen); |
- rv = ssl3_ComputeCommonKeyHash(hashBuf, bufLen, hashes, bypassPKCS11); |
+ rv = ssl3_ComputeCommonKeyHash(hashAlg, hashBuf, bufLen, hashes, |
+ bypassPKCS11); |
PRINT_BUF(95, (NULL, "RSAkey hash: ", hashBuf, bufLen)); |
- PRINT_BUF(95, (NULL, "RSAkey hash: MD5 result", hashes->md5, MD5_LENGTH)); |
- PRINT_BUF(95, (NULL, "RSAkey hash: SHA1 result", hashes->sha, SHA1_LENGTH)); |
+ if (hashAlg == SEC_OID_UNKNOWN) { |
+ PRINT_BUF(95, (NULL, "RSAkey hash: MD5 result", |
+ hashes->u.s.md5, MD5_LENGTH)); |
+ PRINT_BUF(95, (NULL, "RSAkey hash: SHA1 result", |
+ hashes->u.s.sha, SHA1_LENGTH)); |
+ } else { |
+ PRINT_BUF(95, (NULL, "RSAkey hash: result", |
+ hashes->u.raw, hashes->len)); |
+ } |
if (hashBuf != buf && hashBuf != NULL) |
PORT_Free(hashBuf); |
@@ -1047,9 +1137,10 @@ |
/* Caller must set hiLevel error code. */ |
/* Called from ssl3_HandleServerKeyExchange. */ |
static SECStatus |
-ssl3_ComputeDHKeyHash(SECItem dh_p, SECItem dh_g, SECItem dh_Ys, |
- SSL3Random *client_rand, SSL3Random *server_rand, |
- SSL3Hashes *hashes, PRBool bypassPKCS11) |
+ssl3_ComputeDHKeyHash(SECOidTag hashAlg, |
+ SECItem dh_p, SECItem dh_g, SECItem dh_Ys, |
+ SSL3Random *client_rand, SSL3Random *server_rand, |
+ SSL3Hashes *hashes, PRBool bypassPKCS11) |
{ |
PRUint8 * hashBuf; |
PRUint8 * pBuf; |
@@ -1088,11 +1179,19 @@ |
pBuf += dh_Ys.len; |
PORT_Assert((unsigned int)(pBuf - hashBuf) == bufLen); |
- rv = ssl3_ComputeCommonKeyHash(hashBuf, bufLen, hashes, bypassPKCS11); |
+ rv = ssl3_ComputeCommonKeyHash(hashAlg, hashBuf, bufLen, hashes, |
+ bypassPKCS11); |
PRINT_BUF(95, (NULL, "DHkey hash: ", hashBuf, bufLen)); |
- PRINT_BUF(95, (NULL, "DHkey hash: MD5 result", hashes->md5, MD5_LENGTH)); |
- PRINT_BUF(95, (NULL, "DHkey hash: SHA1 result", hashes->sha, SHA1_LENGTH)); |
+ if (hashAlg == SEC_OID_UNKNOWN) { |
+ PRINT_BUF(95, (NULL, "DHkey hash: MD5 result", |
+ hashes->u.s.md5, MD5_LENGTH)); |
+ PRINT_BUF(95, (NULL, "DHkey hash: SHA1 result", |
+ hashes->u.s.sha, SHA1_LENGTH)); |
+ } else { |
+ PRINT_BUF(95, (NULL, "DHkey hash: result", |
+ hashes->u.raw, hashes->len)); |
+ } |
if (hashBuf != buf && hashBuf != NULL) |
PORT_Free(hashBuf); |
@@ -3190,6 +3289,8 @@ |
unsigned char * sr = (unsigned char *)&ss->ssl3.hs.server_random; |
PRBool isTLS = (PRBool)(kea_def->tls_keygen || |
(pwSpec->version > SSL_LIBRARY_VERSION_3_0)); |
+ PRBool isTLS12= |
+ (PRBool)(isTLS && pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2); |
/* |
* Whenever isDH is true, we need to use CKM_TLS_MASTER_KEY_DERIVE_DH |
* which, unlike CKM_TLS_MASTER_KEY_DERIVE, converts arbitrary size |
@@ -3208,7 +3309,12 @@ |
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); |
PORT_Assert( ss->opt.noLocks || ssl_HaveSpecWriteLock(ss)); |
PORT_Assert(ss->ssl3.prSpec == ss->ssl3.pwSpec); |
- if (isTLS) { |
+ if (isTLS12) { |
+ if(isDH) master_derive = CKM_NSS_TLS_MASTER_KEY_DERIVE_DH_SHA256; |
+ else master_derive = CKM_NSS_TLS_MASTER_KEY_DERIVE_SHA256; |
+ key_derive = CKM_NSS_TLS_KEY_AND_MAC_DERIVE_SHA256; |
+ keyFlags = CKF_SIGN | CKF_VERIFY; |
+ } else if (isTLS) { |
if(isDH) master_derive = CKM_TLS_MASTER_KEY_DERIVE_DH; |
else master_derive = CKM_TLS_MASTER_KEY_DERIVE; |
key_derive = CKM_TLS_KEY_AND_MAC_DERIVE; |
@@ -3366,6 +3472,8 @@ |
unsigned char * sr = (unsigned char *)&ss->ssl3.hs.server_random; |
PRBool isTLS = (PRBool)(kea_def->tls_keygen || |
(pwSpec->version > SSL_LIBRARY_VERSION_3_0)); |
+ PRBool isTLS12= |
+ (PRBool)(isTLS && pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2); |
/* following variables used in PKCS11 path */ |
const ssl3BulkCipherDef *cipher_def = pwSpec->cipher_def; |
PK11SlotInfo * slot = NULL; |
@@ -3423,7 +3531,9 @@ |
params.data = (unsigned char *)&key_material_params; |
params.len = sizeof(key_material_params); |
- if (isTLS) { |
+ if (isTLS12) { |
+ key_derive = CKM_NSS_TLS_KEY_AND_MAC_DERIVE_SHA256; |
+ } else if (isTLS) { |
key_derive = CKM_TLS_KEY_AND_MAC_DERIVE; |
} else { |
key_derive = CKM_SSL3_KEY_AND_MAC_DERIVE; |
@@ -3480,19 +3590,63 @@ |
return SECFailure; |
} |
+/* ssl3_InitTLS12HandshakeHash creates a handshake hash context for TLS 1.2, |
+ * if needed, and hashes in any buffered messages in ss->ssl3.hs.messages. */ |
+static SECStatus |
+ssl3_InitTLS12HandshakeHash(sslSocket *ss) |
+{ |
+ if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_2 && |
+ ss->ssl3.hs.tls12_handshake_hash == NULL) { |
+ /* If we ever support ciphersuites where the PRF hash isn't SHA-256 |
+ * then this will need to be updated. */ |
+ ss->ssl3.hs.tls12_handshake_hash = |
+ PK11_CreateDigestContext(SEC_OID_SHA256); |
+ if (!ss->ssl3.hs.tls12_handshake_hash || |
+ PK11_DigestBegin(ss->ssl3.hs.tls12_handshake_hash) != SECSuccess) { |
+ ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE); |
+ return SECFailure; |
+ } |
+ } |
+ |
+ if (ss->ssl3.hs.tls12_handshake_hash && ss->ssl3.hs.messages.len > 0) { |
+ if (PK11_DigestOp(ss->ssl3.hs.tls12_handshake_hash, |
+ ss->ssl3.hs.messages.buf, |
+ ss->ssl3.hs.messages.len) != SECSuccess) { |
+ ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE); |
+ return SECFailure; |
+ } |
+ } |
+ |
+ if (ss->ssl3.hs.messages.buf && !ss->opt.bypassPKCS11) { |
+ PORT_Free(ss->ssl3.hs.messages.buf); |
+ ss->ssl3.hs.messages.buf = NULL; |
+ ss->ssl3.hs.messages.len = 0; |
+ ss->ssl3.hs.messages.space = 0; |
+ } |
+ |
+ return SECSuccess; |
+} |
+ |
static SECStatus |
ssl3_RestartHandshakeHashes(sslSocket *ss) |
{ |
SECStatus rv = SECSuccess; |
+ ss->ssl3.hs.messages.len = 0; |
#ifndef NO_PKCS11_BYPASS |
if (ss->opt.bypassPKCS11) { |
- ss->ssl3.hs.messages.len = 0; |
MD5_Begin((MD5Context *)ss->ssl3.hs.md5_cx); |
SHA1_Begin((SHA1Context *)ss->ssl3.hs.sha_cx); |
} else |
#endif |
{ |
+ if (ss->ssl3.hs.tls12_handshake_hash) { |
+ rv = PK11_DigestBegin(ss->ssl3.hs.tls12_handshake_hash); |
+ if (rv != SECSuccess) { |
+ ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE); |
+ return rv; |
+ } |
+ } |
rv = PK11_DigestBegin(ss->ssl3.hs.md5); |
if (rv != SECSuccess) { |
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); |
@@ -3519,25 +3673,21 @@ |
* that the master secret will wind up in ... |
*/ |
SSL_TRC(30,("%d: SSL3[%d]: start handshake hashes", SSL_GETPID(), ss->fd)); |
-#ifndef NO_PKCS11_BYPASS |
- if (ss->opt.bypassPKCS11) { |
- PORT_Assert(!ss->ssl3.hs.messages.buf && !ss->ssl3.hs.messages.space); |
- ss->ssl3.hs.messages.buf = NULL; |
- ss->ssl3.hs.messages.space = 0; |
- } else |
-#endif |
- { |
- ss->ssl3.hs.md5 = md5 = PK11_CreateDigestContext(SEC_OID_MD5); |
- ss->ssl3.hs.sha = sha = PK11_CreateDigestContext(SEC_OID_SHA1); |
- if (md5 == NULL) { |
- ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); |
- goto loser; |
- } |
- if (sha == NULL) { |
- ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); |
- goto loser; |
- } |
+ PORT_Assert(!ss->ssl3.hs.messages.buf && !ss->ssl3.hs.messages.space); |
+ ss->ssl3.hs.messages.buf = NULL; |
+ ss->ssl3.hs.messages.space = 0; |
+ |
+ ss->ssl3.hs.md5 = md5 = PK11_CreateDigestContext(SEC_OID_MD5); |
+ ss->ssl3.hs.sha = sha = PK11_CreateDigestContext(SEC_OID_SHA1); |
+ ss->ssl3.hs.tls12_handshake_hash = NULL; |
+ if (md5 == NULL) { |
+ ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); |
+ goto loser; |
} |
+ if (sha == NULL) { |
+ ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); |
+ goto loser; |
+ } |
if (SECSuccess == ssl3_RestartHandshakeHashes(ss)) { |
return SECSuccess; |
} |
@@ -3574,6 +3724,17 @@ |
PRINT_BUF(90, (NULL, "MD5 & SHA handshake hash input:", b, l)); |
+ if ((ss->version == 0 || ss->version >= SSL_LIBRARY_VERSION_TLS_1_2) && |
+ !ss->opt.bypassPKCS11 && |
+ ss->ssl3.hs.tls12_handshake_hash == NULL) { |
+ /* For TLS 1.2 connections we need to buffer the handshake messages |
+ * until we have established which PRF hash function to use. */ |
+ rv = sslBuffer_Append(&ss->ssl3.hs.messages, b, l); |
+ if (rv != SECSuccess) { |
+ return rv; |
+ } |
+ } |
+ |
#ifndef NO_PKCS11_BYPASS |
if (ss->opt.bypassPKCS11) { |
MD5_Update((MD5Context *)ss->ssl3.hs.md5_cx, b, l); |
@@ -3584,16 +3745,24 @@ |
return rv; |
} |
#endif |
- rv = PK11_DigestOp(ss->ssl3.hs.md5, b, l); |
- if (rv != SECSuccess) { |
- ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); |
- return rv; |
+ if (ss->ssl3.hs.tls12_handshake_hash) { |
+ rv = PK11_DigestOp(ss->ssl3.hs.tls12_handshake_hash, b, l); |
+ if (rv != SECSuccess) { |
+ ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE); |
+ return rv; |
+ } |
+ } else { |
+ rv = PK11_DigestOp(ss->ssl3.hs.md5, b, l); |
+ if (rv != SECSuccess) { |
+ ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); |
+ return rv; |
+ } |
+ rv = PK11_DigestOp(ss->ssl3.hs.sha, b, l); |
+ if (rv != SECSuccess) { |
+ ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); |
+ return rv; |
+ } |
} |
- rv = PK11_DigestOp(ss->ssl3.hs.sha, b, l); |
- if (rv != SECSuccess) { |
- ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); |
- return rv; |
- } |
return rv; |
} |
@@ -3744,6 +3913,25 @@ |
return rv; /* error code set by AppendHandshake, if applicable. */ |
} |
+/* ssl3_AppendSignatureAndHashAlgorithm appends the serialisation of |
+ * |sigAndHash| to the current handshake message. */ |
+SECStatus |
+ssl3_AppendSignatureAndHashAlgorithm( |
+ sslSocket *ss, const SSL3SignatureAndHashAlgorithm* sigAndHash) |
+{ |
+ unsigned char serialized[2]; |
+ |
+ serialized[0] = ssl3_OIDToTLSHashAlgorithm(sigAndHash->hashAlg); |
+ if (serialized[0] == 0) { |
+ PORT_SetError(SSL_ERROR_UNSUPPORTED_HASH_ALGORITHM); |
+ return SECFailure; |
+ } |
+ |
+ serialized[1] = sigAndHash->sigAlg; |
+ |
+ return ssl3_AppendHandshake(ss, serialized, sizeof(serialized)); |
+} |
+ |
/************************************************************************** |
* Consume Handshake functions. |
* |
@@ -3850,6 +4038,147 @@ |
return SECSuccess; |
} |
+/* tlsHashOIDMap contains the mapping between TLS hash identifiers and the |
+ * SECOidTag used internally by NSS. */ |
+static const struct { |
+ int tlsHash; |
+ SECOidTag oid; |
+} tlsHashOIDMap[] = { |
+ { tls_hash_md5, SEC_OID_MD5 }, |
+ { tls_hash_sha1, SEC_OID_SHA1 }, |
+ { tls_hash_sha224, SEC_OID_SHA224 }, |
+ { tls_hash_sha256, SEC_OID_SHA256 }, |
+ { tls_hash_sha384, SEC_OID_SHA384 }, |
+ { tls_hash_sha512, SEC_OID_SHA512 } |
+}; |
+ |
+/* ssl3_TLSHashAlgorithmToOID converts a TLS hash identifier into an OID value. |
+ * If the hash is not recognised, SEC_OID_UNKNOWN is returned. |
+ * |
+ * See https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1 */ |
+SECOidTag |
+ssl3_TLSHashAlgorithmToOID(int hashFunc) |
+{ |
+ unsigned int i; |
+ |
+ for (i = 0; i < PR_ARRAY_SIZE(tlsHashOIDMap); i++) { |
+ if (hashFunc == tlsHashOIDMap[i].tlsHash) { |
+ return tlsHashOIDMap[i].oid; |
+ } |
+ } |
+ return SEC_OID_UNKNOWN; |
+} |
+ |
+/* ssl3_OIDToTLSHashAlgorithm converts an OID to a TLS hash algorithm |
+ * identifier. If the hash is not recognised, zero is returned. |
+ * |
+ * See https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1 */ |
+static int |
+ssl3_OIDToTLSHashAlgorithm(SECOidTag oid) |
+{ |
+ unsigned int i; |
+ |
+ for (i = 0; i < PR_ARRAY_SIZE(tlsHashOIDMap); i++) { |
+ if (oid == tlsHashOIDMap[i].oid) { |
+ return tlsHashOIDMap[i].tlsHash; |
+ } |
+ } |
+ return 0; |
+} |
+ |
+/* ssl3_TLSSignatureAlgorithmForKeyType returns the TLS 1.2 signature algorithm |
+ * identifier for a given KeyType. */ |
+static SECStatus |
+ssl3_TLSSignatureAlgorithmForKeyType(KeyType keyType, |
+ TLSSignatureAlgorithm *out) |
+{ |
+ switch (keyType) { |
+ case rsaKey: |
+ *out = tls_sig_rsa; |
+ return SECSuccess; |
+ case dsaKey: |
+ *out = tls_sig_dsa; |
+ return SECSuccess; |
+ case ecKey: |
+ *out = tls_sig_ecdsa; |
+ return SECSuccess; |
+ default: |
+ PORT_SetError(SEC_ERROR_INVALID_KEY); |
+ return SECFailure; |
+ } |
+} |
+ |
+/* ssl3_TLSSignatureAlgorithmForCertificate returns the TLS 1.2 signature |
+ * algorithm identifier for the given certificate. */ |
+static SECStatus |
+ssl3_TLSSignatureAlgorithmForCertificate(CERTCertificate *cert, |
+ TLSSignatureAlgorithm *out) |
+{ |
+ SECKEYPublicKey *key; |
+ KeyType keyType; |
+ |
+ key = CERT_ExtractPublicKey(cert); |
+ if (key == NULL) { |
+ ssl_MapLowLevelError(SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE); |
+ return SECFailure; |
+ } |
+ |
+ keyType = key->keyType; |
+ SECKEY_DestroyPublicKey(key); |
+ return ssl3_TLSSignatureAlgorithmForKeyType(keyType, out); |
+} |
+ |
+/* ssl3_CheckSignatureAndHashAlgorithmConsistency checks that the signature |
+ * algorithm identifier in |sigAndHash| is consistent with the public key in |
+ * |cert|. If so, SECSuccess is returned. Otherwise, PORT_SetError is called |
+ * and SECFailure is returned. */ |
+SECStatus |
+ssl3_CheckSignatureAndHashAlgorithmConsistency( |
+ const SSL3SignatureAndHashAlgorithm *sigAndHash, CERTCertificate* cert) |
+{ |
+ SECStatus rv; |
+ TLSSignatureAlgorithm sigAlg; |
+ |
+ rv = ssl3_TLSSignatureAlgorithmForCertificate(cert, &sigAlg); |
+ if (rv != SECSuccess) { |
+ return rv; |
+ } |
+ if (sigAlg != sigAndHash->sigAlg) { |
+ PORT_SetError(SSL_ERROR_INCORRECT_SIGNATURE_ALGORITHM); |
+ return SECFailure; |
+ } |
+ return SECSuccess; |
+} |
+ |
+/* ssl3_ConsumeSignatureAndHashAlgorithm reads a SignatureAndHashAlgorithm |
+ * structure from |b| and puts the resulting value into |out|. |b| and |length| |
+ * are updated accordingly. |
+ * |
+ * See https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1 */ |
+SECStatus |
+ssl3_ConsumeSignatureAndHashAlgorithm(sslSocket *ss, |
+ SSL3Opaque **b, |
+ PRUint32 *length, |
+ SSL3SignatureAndHashAlgorithm *out) |
+{ |
+ unsigned char bytes[2]; |
+ SECStatus rv; |
+ |
+ rv = ssl3_ConsumeHandshake(ss, bytes, sizeof(bytes), b, length); |
+ if (rv != SECSuccess) { |
+ return rv; |
+ } |
+ |
+ out->hashAlg = ssl3_TLSHashAlgorithmToOID(bytes[0]); |
+ if (out->hashAlg == SEC_OID_UNKNOWN) { |
+ PORT_SetError(SSL_ERROR_UNSUPPORTED_HASH_ALGORITHM); |
+ return SECFailure; |
+ } |
+ |
+ out->sigAlg = bytes[1]; |
+ return SECSuccess; |
+} |
+ |
/************************************************************************** |
* end of Consume Handshake functions. |
**************************************************************************/ |
@@ -3876,6 +4205,7 @@ |
SSL3Opaque sha_inner[MAX_MAC_LENGTH]; |
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); |
+ hashes->hashAlg = SEC_OID_UNKNOWN; |
#ifndef NO_PKCS11_BYPASS |
if (ss->opt.bypassPKCS11) { |
@@ -3939,9 +4269,9 @@ |
MD5_Update(md5cx, mac_pad_2, mac_defs[mac_md5].pad_size); |
MD5_Update(md5cx, md5_inner, MD5_LENGTH); |
} |
- MD5_End(md5cx, hashes->md5, &outLength, MD5_LENGTH); |
+ MD5_End(md5cx, hashes->u.s.md5, &outLength, MD5_LENGTH); |
- PRINT_BUF(60, (NULL, "MD5 outer: result", hashes->md5, MD5_LENGTH)); |
+ PRINT_BUF(60, (NULL, "MD5 outer: result", hashes->u.s.md5, MD5_LENGTH)); |
if (!isTLS) { |
PRINT_BUF(95, (NULL, "SHA outer: MAC Pad 2", mac_pad_2, |
@@ -3953,16 +4283,58 @@ |
SHA1_Update(shacx, mac_pad_2, mac_defs[mac_sha].pad_size); |
SHA1_Update(shacx, sha_inner, SHA1_LENGTH); |
} |
- SHA1_End(shacx, hashes->sha, &outLength, SHA1_LENGTH); |
+ SHA1_End(shacx, hashes->u.s.sha, &outLength, SHA1_LENGTH); |
- PRINT_BUF(60, (NULL, "SHA outer: result", hashes->sha, SHA1_LENGTH)); |
+ PRINT_BUF(60, (NULL, "SHA outer: result", hashes->u.s.sha, SHA1_LENGTH)); |
+ hashes->len = MD5_LENGTH + SHA1_LENGTH; |
rv = SECSuccess; |
#undef md5cx |
#undef shacx |
} else |
#endif |
- { |
+ if (ss->ssl3.hs.tls12_handshake_hash) { |
+ PK11Context *h; |
+ unsigned int stateLen; |
+ unsigned char stackBuf[1024]; |
+ unsigned char *stateBuf = NULL; |
+ |
+ if (!spec->master_secret) { |
+ PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HANDSHAKE); |
+ return SECFailure; |
+ } |
+ |
+ h = ss->ssl3.hs.tls12_handshake_hash; |
+ stateBuf = PK11_SaveContextAlloc(h, stackBuf, |
+ sizeof(stackBuf), &stateLen); |
+ if (stateBuf == NULL) { |
+ ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE); |
+ goto tls12_loser; |
+ } |
+ rv |= PK11_DigestFinal(h, hashes->u.raw, &hashes->len, |
+ sizeof(hashes->u.raw)); |
+ if (rv != SECSuccess) { |
+ ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE); |
+ rv = SECFailure; |
+ goto tls12_loser; |
+ } |
+ /* If we ever support ciphersuites where the PRF hash isn't SHA-256 |
+ * then this will need to be updated. */ |
+ hashes->hashAlg = SEC_OID_SHA256; |
+ rv = SECSuccess; |
+ |
+tls12_loser: |
+ if (stateBuf) { |
+ if (PK11_RestoreContext(ss->ssl3.hs.tls12_handshake_hash, stateBuf, |
+ stateLen) != SECSuccess) { |
+ ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE); |
+ rv = SECFailure; |
+ } |
+ if (stateBuf != stackBuf) { |
+ PORT_ZFree(stateBuf, stateLen); |
+ } |
+ } |
+ } else { |
/* compute hases with PKCS11 */ |
PK11Context * md5; |
PK11Context * sha = NULL; |
@@ -4051,7 +4423,7 @@ |
rv |= PK11_DigestOp(md5, mac_pad_2, mac_defs[mac_md5].pad_size); |
rv |= PK11_DigestOp(md5, md5_inner, MD5_LENGTH); |
} |
- rv |= PK11_DigestFinal(md5, hashes->md5, &outLength, MD5_LENGTH); |
+ rv |= PK11_DigestFinal(md5, hashes->u.s.md5, &outLength, MD5_LENGTH); |
PORT_Assert(rv != SECSuccess || outLength == MD5_LENGTH); |
if (rv != SECSuccess) { |
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE); |
@@ -4059,7 +4431,7 @@ |
goto loser; |
} |
- PRINT_BUF(60, (NULL, "MD5 outer: result", hashes->md5, MD5_LENGTH)); |
+ PRINT_BUF(60, (NULL, "MD5 outer: result", hashes->u.s.md5, MD5_LENGTH)); |
if (!isTLS) { |
PRINT_BUF(95, (NULL, "SHA outer: MAC Pad 2", mac_pad_2, |
@@ -4071,7 +4443,7 @@ |
rv |= PK11_DigestOp(sha, mac_pad_2, mac_defs[mac_sha].pad_size); |
rv |= PK11_DigestOp(sha, sha_inner, SHA1_LENGTH); |
} |
- rv |= PK11_DigestFinal(sha, hashes->sha, &outLength, SHA1_LENGTH); |
+ rv |= PK11_DigestFinal(sha, hashes->u.s.sha, &outLength, SHA1_LENGTH); |
PORT_Assert(rv != SECSuccess || outLength == SHA1_LENGTH); |
if (rv != SECSuccess) { |
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE); |
@@ -4079,8 +4451,9 @@ |
goto loser; |
} |
- PRINT_BUF(60, (NULL, "SHA outer: result", hashes->sha, SHA1_LENGTH)); |
+ PRINT_BUF(60, (NULL, "SHA outer: result", hashes->u.s.sha, SHA1_LENGTH)); |
+ hashes->len = MD5_LENGTH + SHA1_LENGTH; |
rv = SECSuccess; |
loser: |
@@ -5343,8 +5716,12 @@ |
{ |
SECStatus rv = SECFailure; |
PRBool isTLS; |
+ PRBool isTLS12; |
SECItem buf = {siBuffer, NULL, 0}; |
SSL3Hashes hashes; |
+ KeyType keyType; |
+ unsigned int len; |
+ SSL3SignatureAndHashAlgorithm sigAndHash; |
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); |
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); |
@@ -5360,16 +5737,18 @@ |
} |
isTLS = (PRBool)(ss->ssl3.pwSpec->version > SSL_LIBRARY_VERSION_3_0); |
+ isTLS12 = (PRBool)(ss->ssl3.pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2); |
if (ss->ssl3.platformClientKey) { |
#ifdef NSS_PLATFORM_CLIENT_AUTH |
+ keyType = CERT_GetCertKeyType( |
+ &ss->ssl3.clientCertificate->subjectPublicKeyInfo); |
rv = ssl3_PlatformSignHashes( |
- &hashes, ss->ssl3.platformClientKey, &buf, isTLS, |
- CERT_GetCertKeyType( |
- &ss->ssl3.clientCertificate->subjectPublicKeyInfo)); |
+ &hashes, ss->ssl3.platformClientKey, &buf, isTLS, keyType); |
ssl_FreePlatformKey(ss->ssl3.platformClientKey); |
ss->ssl3.platformClientKey = (PlatformKey)NULL; |
#endif /* NSS_PLATFORM_CLIENT_AUTH */ |
} else { |
+ keyType = ss->ssl3.clientPrivateKey->keyType; |
rv = ssl3_SignHashes(&hashes, ss->ssl3.clientPrivateKey, &buf, isTLS); |
if (rv == SECSuccess) { |
PK11SlotInfo * slot; |
@@ -5393,10 +5772,30 @@ |
goto done; /* err code was set by ssl3_SignHashes */ |
} |
- rv = ssl3_AppendHandshakeHeader(ss, certificate_verify, buf.len + 2); |
+ len = buf.len + 2 + (isTLS12 ? 2 : 0); |
+ |
+ rv = ssl3_AppendHandshakeHeader(ss, certificate_verify, len); |
if (rv != SECSuccess) { |
goto done; /* error code set by AppendHandshake */ |
} |
+ if (isTLS12) { |
+ rv = ssl3_TLSSignatureAlgorithmForKeyType(keyType, |
+ &sigAndHash.sigAlg); |
+ if (rv != SECSuccess) { |
+ goto done; |
+ } |
+ /* We always sign using the handshake hash function. It's possible that |
+ * a server could support SHA-256 as the handshake hash but not as a |
+ * signature hash. In that case we wouldn't be able to do client |
+ * certificates with it. The alternative is to buffer all handshake |
+ * messages. */ |
+ sigAndHash.hashAlg = hashes.hashAlg; |
+ |
+ rv = ssl3_AppendSignatureAndHashAlgorithm(ss, &sigAndHash); |
+ if (rv != SECSuccess) { |
+ goto done; /* err set by AppendHandshake. */ |
+ } |
+ } |
rv = ssl3_AppendHandshakeVariable(ss, buf.data, buf.len, 2); |
if (rv != SECSuccess) { |
goto done; /* error code set by AppendHandshake */ |
@@ -5504,6 +5903,13 @@ |
} |
isTLS = (ss->version > SSL_LIBRARY_VERSION_3_0); |
+ rv = ssl3_InitTLS12HandshakeHash(ss); |
+ if (rv != SECSuccess) { |
+ desc = internal_error; |
+ errCode = PORT_GetError(); |
+ goto alert_loser; |
+ } |
+ |
rv = ssl3_ConsumeHandshake( |
ss, &ss->ssl3.hs.server_random, SSL3_RANDOM_LENGTH, &b, &length); |
if (rv != SECSuccess) { |
@@ -5834,13 +6240,16 @@ |
{ |
PRArenaPool * arena = NULL; |
SECKEYPublicKey *peerKey = NULL; |
- PRBool isTLS; |
+ PRBool isTLS, isTLS12; |
SECStatus rv; |
int errCode = SSL_ERROR_RX_MALFORMED_SERVER_KEY_EXCH; |
SSL3AlertDescription desc = illegal_parameter; |
SSL3Hashes hashes; |
SECItem signature = {siBuffer, NULL, 0}; |
+ SSL3SignatureAndHashAlgorithm sigAndHash; |
+ sigAndHash.hashAlg = SEC_OID_UNKNOWN; |
+ |
SSL_TRC(3, ("%d: SSL3[%d]: handle server_key_exchange handshake", |
SSL_GETPID(), ss->fd)); |
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); |
@@ -5859,6 +6268,7 @@ |
} |
isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0); |
+ isTLS12 = (PRBool)(ss->ssl3.prSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2); |
switch (ss->ssl3.hs.kea_def->exchKeyType) { |
@@ -5874,6 +6284,18 @@ |
if (rv != SECSuccess) { |
goto loser; /* malformed. */ |
} |
+ if (isTLS12) { |
+ rv = ssl3_ConsumeSignatureAndHashAlgorithm(ss, &b, &length, |
+ &sigAndHash); |
+ if (rv != SECSuccess) { |
+ goto loser; /* malformed or unsupported. */ |
+ } |
+ rv = ssl3_CheckSignatureAndHashAlgorithmConsistency( |
+ &sigAndHash, ss->sec.peerCert); |
+ if (rv != SECSuccess) { |
+ goto loser; |
+ } |
+ } |
rv = ssl3_ConsumeHandshakeVariable(ss, &signature, 2, &b, &length); |
if (rv != SECSuccess) { |
goto loser; /* malformed. */ |
@@ -5891,7 +6313,7 @@ |
/* |
* check to make sure the hash is signed by right guy |
*/ |
- rv = ssl3_ComputeExportRSAKeyHash(modulus, exponent, |
+ rv = ssl3_ComputeExportRSAKeyHash(sigAndHash.hashAlg, modulus, exponent, |
&ss->ssl3.hs.client_random, |
&ss->ssl3.hs.server_random, |
&hashes, ss->opt.bypassPKCS11); |
@@ -5964,6 +6386,18 @@ |
} |
if (dh_Ys.len > dh_p.len || !ssl3_BigIntGreaterThanOne(&dh_Ys)) |
goto alert_loser; |
+ if (isTLS12) { |
+ rv = ssl3_ConsumeSignatureAndHashAlgorithm(ss, &b, &length, |
+ &sigAndHash); |
+ if (rv != SECSuccess) { |
+ goto loser; /* malformed or unsupported. */ |
+ } |
+ rv = ssl3_CheckSignatureAndHashAlgorithmConsistency( |
+ &sigAndHash, ss->sec.peerCert); |
+ if (rv != SECSuccess) { |
+ goto loser; |
+ } |
+ } |
rv = ssl3_ConsumeHandshakeVariable(ss, &signature, 2, &b, &length); |
if (rv != SECSuccess) { |
goto loser; /* malformed. */ |
@@ -5985,7 +6419,7 @@ |
/* |
* check to make sure the hash is signed by right guy |
*/ |
- rv = ssl3_ComputeDHKeyHash(dh_p, dh_g, dh_Ys, |
+ rv = ssl3_ComputeDHKeyHash(sigAndHash.hashAlg, dh_p, dh_g, dh_Ys, |
&ss->ssl3.hs.client_random, |
&ss->ssl3.hs.server_random, |
&hashes, ss->opt.bypassPKCS11); |
@@ -6862,6 +7296,13 @@ |
goto alert_loser; |
} |
+ rv = ssl3_InitTLS12HandshakeHash(ss); |
+ if (rv != SECSuccess) { |
+ desc = internal_error; |
+ errCode = PORT_GetError(); |
+ goto alert_loser; |
+ } |
+ |
/* grab the client random data. */ |
rv = ssl3_ConsumeHandshake( |
ss, &ss->ssl3.hs.client_random, SSL3_RANDOM_LENGTH, &b, &length); |
@@ -7604,6 +8045,13 @@ |
goto alert_loser; |
} |
+ rv = ssl3_InitTLS12HandshakeHash(ss); |
+ if (rv != SECSuccess) { |
+ desc = internal_error; |
+ errCode = PORT_GetError(); |
+ goto alert_loser; |
+ } |
+ |
/* if we get a non-zero SID, just ignore it. */ |
if (length != |
SSL_HL_CLIENT_HELLO_HBYTES + suite_length + sid_length + rand_length) { |
@@ -7851,7 +8299,86 @@ |
return SECSuccess; |
} |
+/* ssl3_PickSignatureHashAlgorithm selects a hash algorithm to use when signing |
+ * elements of the handshake. (The negotiated cipher suite determines the |
+ * signature algorithm.) Prior to TLS 1.2, the MD5/SHA1 combination is always |
+ * used. With TLS 1.2, a client may advertise its support for signature and |
+ * hash combinations. */ |
+static SECStatus |
+ssl3_PickSignatureHashAlgorithm(sslSocket *ss, |
+ SSL3SignatureAndHashAlgorithm* out) |
+{ |
+ TLSSignatureAlgorithm sigAlg; |
+ unsigned int i, j; |
+ /* hashPreference expresses our preferences for hash algorithms, most |
+ * preferable first. */ |
+ static const PRUint8 hashPreference[] = { |
+ tls_hash_sha256, |
+ tls_hash_sha384, |
+ tls_hash_sha512, |
+ tls_hash_sha1, |
+ }; |
+ switch (ss->ssl3.hs.kea_def->kea) { |
+ case kea_rsa: |
+ case kea_rsa_export: |
+ case kea_rsa_export_1024: |
+ case kea_dh_rsa: |
+ case kea_dh_rsa_export: |
+ case kea_dhe_rsa: |
+ case kea_dhe_rsa_export: |
+ case kea_rsa_fips: |
+ case kea_ecdh_rsa: |
+ case kea_ecdhe_rsa: |
+ sigAlg = tls_sig_rsa; |
+ break; |
+ case kea_dh_dss: |
+ case kea_dh_dss_export: |
+ case kea_dhe_dss: |
+ case kea_dhe_dss_export: |
+ sigAlg = tls_sig_dsa; |
+ break; |
+ case kea_ecdh_ecdsa: |
+ case kea_ecdhe_ecdsa: |
+ sigAlg = tls_sig_ecdsa; |
+ break; |
+ default: |
+ PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG); |
+ return SECFailure; |
+ } |
+ out->sigAlg = sigAlg; |
+ |
+ if (ss->version <= SSL_LIBRARY_VERSION_TLS_1_1) { |
+ /* SEC_OID_UNKNOWN means the MD5/SHA1 combo hash used in TLS 1.1 and |
+ * prior. */ |
+ out->hashAlg = SEC_OID_UNKNOWN; |
+ return SECSuccess; |
+ } |
+ |
+ if (ss->ssl3.hs.numClientSigAndHash == 0) { |
+ /* If the client didn't provide any signature_algorithms extension then |
+ * we can assume that they support SHA-1: |
+ * https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1 */ |
+ out->hashAlg = SEC_OID_SHA1; |
+ return SECSuccess; |
+ } |
+ |
+ for (i = 0; i < PR_ARRAY_SIZE(hashPreference); i++) { |
+ for (j = 0; j < ss->ssl3.hs.numClientSigAndHash; j++) { |
+ const SSL3SignatureAndHashAlgorithm* sh = |
+ &ss->ssl3.hs.clientSigAndHash[j]; |
+ if (sh->sigAlg == sigAlg && sh->hashAlg == hashPreference[i]) { |
+ out->hashAlg = sh->hashAlg; |
+ return SECSuccess; |
+ } |
+ } |
+ } |
+ |
+ PORT_SetError(SSL_ERROR_UNSUPPORTED_HASH_ALGORITHM); |
+ return SECFailure; |
+} |
+ |
+ |
static SECStatus |
ssl3_SendServerKeyExchange(sslSocket *ss) |
{ |
@@ -7862,6 +8389,7 @@ |
SECItem signed_hash = {siBuffer, NULL, 0}; |
SSL3Hashes hashes; |
SECKEYPublicKey * sdPub; /* public key for step-down */ |
+ SSL3SignatureAndHashAlgorithm sigAndHash; |
SSL_TRC(3, ("%d: SSL3[%d]: send server_key_exchange handshake", |
SSL_GETPID(), ss->fd)); |
@@ -7869,6 +8397,10 @@ |
PORT_Assert( ss->opt.noLocks || ssl_HaveXmitBufLock(ss)); |
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); |
+ if (ssl3_PickSignatureHashAlgorithm(ss, &sigAndHash) != SECSuccess) { |
+ return SECFailure; |
+ } |
+ |
switch (kea_def->exchKeyType) { |
case kt_rsa: |
/* Perform SSL Step-Down here. */ |
@@ -7878,7 +8410,8 @@ |
PORT_SetError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE); |
return SECFailure; |
} |
- rv = ssl3_ComputeExportRSAKeyHash(sdPub->u.rsa.modulus, |
+ rv = ssl3_ComputeExportRSAKeyHash(sigAndHash.hashAlg, |
+ sdPub->u.rsa.modulus, |
sdPub->u.rsa.publicExponent, |
&ss->ssl3.hs.client_random, |
&ss->ssl3.hs.server_random, |
@@ -7921,6 +8454,13 @@ |
goto loser; /* err set by AppendHandshake. */ |
} |
+ if (ss->ssl3.pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2) { |
+ rv = ssl3_AppendSignatureAndHashAlgorithm(ss, &sigAndHash); |
+ if (rv != SECSuccess) { |
+ goto loser; /* err set by AppendHandshake. */ |
+ } |
+ } |
+ |
rv = ssl3_AppendHandshakeVariable(ss, signed_hash.data, |
signed_hash.len, 2); |
if (rv != SECSuccess) { |
@@ -7931,7 +8471,7 @@ |
#ifdef NSS_ENABLE_ECC |
case kt_ecdh: { |
- rv = ssl3_SendECDHServerKeyExchange(ss); |
+ rv = ssl3_SendECDHServerKeyExchange(ss, &sigAndHash); |
return rv; |
} |
#endif /* NSS_ENABLE_ECC */ |
@@ -8045,26 +8585,51 @@ |
SECStatus rv; |
int errCode = SSL_ERROR_RX_MALFORMED_CERT_VERIFY; |
SSL3AlertDescription desc = handshake_failure; |
- PRBool isTLS; |
+ PRBool isTLS, isTLS12; |
+ SSL3SignatureAndHashAlgorithm sigAndHash; |
SSL_TRC(3, ("%d: SSL3[%d]: handle certificate_verify handshake", |
SSL_GETPID(), ss->fd)); |
PORT_Assert( ss->opt.noLocks || ssl_HaveRecvBufLock(ss) ); |
PORT_Assert( ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss) ); |
+ isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0); |
+ isTLS12 = (PRBool)(ss->ssl3.prSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2); |
+ |
if (ss->ssl3.hs.ws != wait_cert_verify || ss->sec.peerCert == NULL) { |
desc = unexpected_message; |
errCode = SSL_ERROR_RX_UNEXPECTED_CERT_VERIFY; |
goto alert_loser; |
} |
+ if (isTLS12) { |
+ rv = ssl3_ConsumeSignatureAndHashAlgorithm(ss, &b, &length, |
+ &sigAndHash); |
+ if (rv != SECSuccess) { |
+ goto loser; /* malformed or unsupported. */ |
+ } |
+ rv = ssl3_CheckSignatureAndHashAlgorithmConsistency( |
+ &sigAndHash, ss->sec.peerCert); |
+ if (rv != SECSuccess) { |
+ errCode = PORT_GetError(); |
+ desc = decrypt_error; |
+ goto alert_loser; |
+ } |
+ |
+ /* We only support CertificateVerify messages that use the handshake |
+ * hash. */ |
+ if (sigAndHash.hashAlg != hashes->hashAlg) { |
+ errCode = SSL_ERROR_UNSUPPORTED_HASH_ALGORITHM; |
+ desc = decrypt_error; |
+ goto alert_loser; |
+ } |
+ } |
+ |
rv = ssl3_ConsumeHandshakeVariable(ss, &signed_hash, 2, &b, &length); |
if (rv != SECSuccess) { |
goto loser; /* malformed. */ |
} |
- isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0); |
- |
/* XXX verify that the key & kea match */ |
rv = ssl3_VerifySignedHashes(hashes, ss->sec.peerCert, &signed_hash, |
isTLS, ss->pkcs11PinArg); |
@@ -9163,7 +9728,7 @@ |
static SECStatus |
ssl3_ComputeTLSFinished(ssl3CipherSpec *spec, |
PRBool isServer, |
- const SSL3Finished * hashes, |
+ const SSL3Hashes * hashes, |
TLSFinished * tlsFinished) |
{ |
const char * label; |
@@ -9173,8 +9738,8 @@ |
label = isServer ? "server finished" : "client finished"; |
len = 15; |
- rv = ssl3_TLSPRFWithMasterSecret(spec, label, len, hashes->md5, |
- sizeof *hashes, tlsFinished->verify_data, |
+ rv = ssl3_TLSPRFWithMasterSecret(spec, label, len, hashes->u.raw, |
+ hashes->len, tlsFinished->verify_data, |
sizeof tlsFinished->verify_data); |
return rv; |
@@ -9192,12 +9757,16 @@ |
SECStatus rv = SECSuccess; |
if (spec->master_secret && !spec->bypassCiphers) { |
- SECItem param = {siBuffer, NULL, 0}; |
- PK11Context *prf_context = |
- PK11_CreateContextBySymKey(CKM_TLS_PRF_GENERAL, CKA_SIGN, |
- spec->master_secret, ¶m); |
+ SECItem param = {siBuffer, NULL, 0}; |
+ CK_MECHANISM_TYPE mech = CKM_TLS_PRF_GENERAL; |
+ PK11Context *prf_context; |
unsigned int retLen; |
+ if (spec->version >= SSL_LIBRARY_VERSION_TLS_1_2) { |
+ mech = CKM_NSS_TLS_PRF_GENERAL_SHA256; |
+ } |
+ prf_context = PK11_CreateContextBySymKey(mech, CKA_SIGN, |
+ spec->master_secret, ¶m); |
if (!prf_context) |
return SECFailure; |
@@ -9409,9 +9978,10 @@ |
pub_bytes = spki->data + sizeof(P256_SPKI_PREFIX); |
memcpy(signed_data, CHANNEL_ID_MAGIC, sizeof(CHANNEL_ID_MAGIC)); |
- memcpy(signed_data + sizeof(CHANNEL_ID_MAGIC), &hashes, sizeof(hashes)); |
+ memcpy(signed_data + sizeof(CHANNEL_ID_MAGIC), hashes.u.raw, hashes.len); |
- rv = PK11_HashBuf(SEC_OID_SHA256, digest, signed_data, sizeof(signed_data)); |
+ rv = PK11_HashBuf(SEC_OID_SHA256, digest, signed_data, |
+ sizeof(CHANNEL_ID_MAGIC) + hashes.len); |
if (rv != SECSuccess) |
goto loser; |
@@ -9496,7 +10066,7 @@ |
PRBool isServer = ss->sec.isServer; |
SECStatus rv; |
SSL3Sender sender = isServer ? sender_server : sender_client; |
- SSL3Finished hashes; |
+ SSL3Hashes hashes; |
TLSFinished tlsFinished; |
SSL_TRC(3, ("%d: SSL3[%d]: send finished handshake", SSL_GETPID(), ss->fd)); |
@@ -9530,14 +10100,15 @@ |
goto fail; /* err set by AppendHandshake. */ |
} else { |
if (isServer) |
- ss->ssl3.hs.finishedMsgs.sFinished[1] = hashes; |
+ ss->ssl3.hs.finishedMsgs.sFinished[1] = hashes.u.s; |
else |
- ss->ssl3.hs.finishedMsgs.sFinished[0] = hashes; |
- ss->ssl3.hs.finishedBytes = sizeof hashes; |
- rv = ssl3_AppendHandshakeHeader(ss, finished, sizeof hashes); |
+ ss->ssl3.hs.finishedMsgs.sFinished[0] = hashes.u.s; |
+ PORT_Assert(hashes.len == sizeof hashes.u.s); |
+ ss->ssl3.hs.finishedBytes = sizeof hashes.u.s; |
+ rv = ssl3_AppendHandshakeHeader(ss, finished, sizeof hashes.u.s); |
if (rv != SECSuccess) |
goto fail; /* err set by AppendHandshake. */ |
- rv = ssl3_AppendHandshake(ss, &hashes, sizeof hashes); |
+ rv = ssl3_AppendHandshake(ss, &hashes.u.s, sizeof hashes.u.s); |
if (rv != SECSuccess) |
goto fail; /* err set by AppendHandshake. */ |
} |
@@ -9686,18 +10257,19 @@ |
return SECFailure; |
} |
} else { |
- if (length != sizeof(SSL3Hashes)) { |
+ if (length != sizeof(SSL3Finished)) { |
(void)ssl3_IllegalParameter(ss); |
PORT_SetError(SSL_ERROR_RX_MALFORMED_FINISHED); |
return SECFailure; |
} |
if (!isServer) |
- ss->ssl3.hs.finishedMsgs.sFinished[1] = *hashes; |
+ ss->ssl3.hs.finishedMsgs.sFinished[1] = hashes->u.s; |
else |
- ss->ssl3.hs.finishedMsgs.sFinished[0] = *hashes; |
- ss->ssl3.hs.finishedBytes = sizeof *hashes; |
- if (0 != NSS_SecureMemcmp(hashes, b, length)) { |
+ ss->ssl3.hs.finishedMsgs.sFinished[0] = hashes->u.s; |
+ PORT_Assert(hashes->len == sizeof hashes->u.s); |
+ ss->ssl3.hs.finishedBytes = sizeof hashes->u.s; |
+ if (0 != NSS_SecureMemcmp(&hashes->u.s, b, length)) { |
(void)ssl3_HandshakeFailure(ss); |
PORT_SetError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE); |
return SECFailure; |
@@ -11286,6 +11858,12 @@ |
if (ss->ssl3.hs.sha) { |
PK11_DestroyContext(ss->ssl3.hs.sha,PR_TRUE); |
} |
+ if (ss->ssl3.hs.tls12_handshake_hash) { |
+ PK11_DestroyContext(ss->ssl3.hs.tls12_handshake_hash,PR_TRUE); |
+ } |
+ if (ss->ssl3.hs.clientSigAndHash) { |
+ PORT_Free(ss->ssl3.hs.clientSigAndHash); |
+ } |
if (ss->ssl3.hs.messages.buf) { |
PORT_Free(ss->ssl3.hs.messages.buf); |
ss->ssl3.hs.messages.buf = NULL; |