OLD | NEW |
---|---|
1 //===- subzero/src/IceTargetLoweringMIPS32.cpp - MIPS32 lowering ----------===// | 1 //===- subzero/src/IceTargetLoweringMIPS32.cpp - MIPS32 lowering ----------===// |
2 // | 2 // |
3 // The Subzero Code Generator | 3 // The Subzero Code Generator |
4 // | 4 // |
5 // This file is distributed under the University of Illinois Open Source | 5 // This file is distributed under the University of Illinois Open Source |
6 // License. See LICENSE.TXT for details. | 6 // License. See LICENSE.TXT for details. |
7 // | 7 // |
8 //===----------------------------------------------------------------------===// | 8 //===----------------------------------------------------------------------===// |
9 /// | 9 /// |
10 /// \file | 10 /// \file |
11 /// This file implements the TargetLoweringMIPS32 class, which consists almost | 11 /// This file implements the TargetLoweringMIPS32 class, which consists almost |
12 /// entirely of the lowering sequence for each high-level instruction. | 12 /// entirely of the lowering sequence for each high-level instruction. |
13 /// | 13 /// |
14 //===----------------------------------------------------------------------===// | 14 //===----------------------------------------------------------------------===// |
15 | 15 |
16 #include "IceTargetLoweringMIPS32.h" | 16 #include "IceTargetLoweringMIPS32.h" |
17 | 17 |
18 #include "IceCfg.h" | 18 #include "IceCfg.h" |
19 #include "IceCfgNode.h" | 19 #include "IceCfgNode.h" |
20 #include "IceClFlags.h" | 20 #include "IceClFlags.h" |
21 #include "IceDefs.h" | 21 #include "IceDefs.h" |
22 #include "IceELFObjectWriter.h" | 22 #include "IceELFObjectWriter.h" |
23 #include "IceGlobalInits.h" | 23 #include "IceGlobalInits.h" |
24 #include "IceInstMIPS32.h" | 24 #include "IceInstMIPS32.h" |
25 #include "IceLiveness.h" | 25 #include "IceLiveness.h" |
26 #include "IceOperand.h" | 26 #include "IceOperand.h" |
27 #include "IcePhiLoweringImpl.h" | |
27 #include "IceRegistersMIPS32.h" | 28 #include "IceRegistersMIPS32.h" |
28 #include "IceTargetLoweringMIPS32.def" | 29 #include "IceTargetLoweringMIPS32.def" |
29 #include "IceUtils.h" | 30 #include "IceUtils.h" |
30 #include "llvm/Support/MathExtras.h" | 31 #include "llvm/Support/MathExtras.h" |
31 | 32 |
32 namespace Ice { | 33 namespace Ice { |
33 | 34 |
35 using llvm::isInt; | |
36 | |
37 namespace { | |
38 | |
39 // The maximum number of arguments to pass in GPR registers. | |
40 constexpr uint32_t MIPS32_MAX_GPR_ARG = 4; | |
41 | |
42 } // end of anonymous namespace | |
43 | |
34 TargetMIPS32::TargetMIPS32(Cfg *Func) : TargetLowering(Func) { | 44 TargetMIPS32::TargetMIPS32(Cfg *Func) : TargetLowering(Func) { |
35 // TODO: Don't initialize IntegerRegisters and friends every time. Instead, | 45 // TODO: Don't initialize IntegerRegisters and friends every time. Instead, |
36 // initialize in some sort of static initializer for the class. | 46 // initialize in some sort of static initializer for the class. |
47 | |
37 llvm::SmallBitVector IntegerRegisters(RegMIPS32::Reg_NUM); | 48 llvm::SmallBitVector IntegerRegisters(RegMIPS32::Reg_NUM); |
38 llvm::SmallBitVector FloatRegisters(RegMIPS32::Reg_NUM); | 49 llvm::SmallBitVector I64PairRegisters(RegMIPS32::Reg_NUM); |
50 llvm::SmallBitVector Float32Registers(RegMIPS32::Reg_NUM); | |
51 llvm::SmallBitVector Float64Registers(RegMIPS32::Reg_NUM); | |
39 llvm::SmallBitVector VectorRegisters(RegMIPS32::Reg_NUM); | 52 llvm::SmallBitVector VectorRegisters(RegMIPS32::Reg_NUM); |
40 llvm::SmallBitVector InvalidRegisters(RegMIPS32::Reg_NUM); | 53 llvm::SmallBitVector InvalidRegisters(RegMIPS32::Reg_NUM); |
41 ScratchRegs.resize(RegMIPS32::Reg_NUM); | 54 ScratchRegs.resize(RegMIPS32::Reg_NUM); |
42 #define X(val, encode, name, scratch, preserved, stackptr, frameptr, isInt, \ | 55 #define X(val, encode, name, scratch, preserved, stackptr, frameptr, isInt, \ |
43 isFP) \ | 56 isI64Pair, isFP32, isFP64, isVec128, alias_init) \ |
44 IntegerRegisters[RegMIPS32::val] = isInt; \ | 57 IntegerRegisters[RegMIPS32::val] = isInt; \ |
45 FloatRegisters[RegMIPS32::val] = isFP; \ | 58 I64PairRegisters[RegMIPS32::val] = isI64Pair; \ |
46 VectorRegisters[RegMIPS32::val] = isFP; \ | 59 Float32Registers[RegMIPS32::val] = isFP32; \ |
60 Float64Registers[RegMIPS32::val] = isFP64; \ | |
61 VectorRegisters[RegMIPS32::val] = isVec128; \ | |
47 RegisterAliases[RegMIPS32::val].resize(RegMIPS32::Reg_NUM); \ | 62 RegisterAliases[RegMIPS32::val].resize(RegMIPS32::Reg_NUM); \ |
48 RegisterAliases[RegMIPS32::val].set(RegMIPS32::val); \ | 63 for (SizeT RegAlias : alias_init) { \ |
64 assert(!RegisterAliases[RegMIPS32::val][RegAlias] && \ | |
65 "Duplicate alias for " #val); \ | |
66 RegisterAliases[RegMIPS32::val].set(RegAlias); \ | |
67 } \ | |
68 RegisterAliases[RegMIPS32::val].resize(RegMIPS32::Reg_NUM); \ | |
69 assert(RegisterAliases[RegMIPS32::val][RegMIPS32::val]); \ | |
49 ScratchRegs[RegMIPS32::val] = scratch; | 70 ScratchRegs[RegMIPS32::val] = scratch; |
50 REGMIPS32_TABLE; | 71 REGMIPS32_TABLE; |
51 #undef X | 72 #undef X |
52 TypeToRegisterSet[IceType_void] = InvalidRegisters; | 73 TypeToRegisterSet[IceType_void] = InvalidRegisters; |
53 TypeToRegisterSet[IceType_i1] = IntegerRegisters; | 74 TypeToRegisterSet[IceType_i1] = IntegerRegisters; |
54 TypeToRegisterSet[IceType_i8] = IntegerRegisters; | 75 TypeToRegisterSet[IceType_i8] = IntegerRegisters; |
55 TypeToRegisterSet[IceType_i16] = IntegerRegisters; | 76 TypeToRegisterSet[IceType_i16] = IntegerRegisters; |
56 TypeToRegisterSet[IceType_i32] = IntegerRegisters; | 77 TypeToRegisterSet[IceType_i32] = IntegerRegisters; |
57 TypeToRegisterSet[IceType_i64] = IntegerRegisters; | 78 TypeToRegisterSet[IceType_i64] = IntegerRegisters; |
58 TypeToRegisterSet[IceType_f32] = FloatRegisters; | 79 TypeToRegisterSet[IceType_f32] = Float32Registers; |
59 TypeToRegisterSet[IceType_f64] = FloatRegisters; | 80 TypeToRegisterSet[IceType_f64] = Float64Registers; |
60 TypeToRegisterSet[IceType_v4i1] = VectorRegisters; | 81 TypeToRegisterSet[IceType_v4i1] = VectorRegisters; |
61 TypeToRegisterSet[IceType_v8i1] = VectorRegisters; | 82 TypeToRegisterSet[IceType_v8i1] = VectorRegisters; |
62 TypeToRegisterSet[IceType_v16i1] = VectorRegisters; | 83 TypeToRegisterSet[IceType_v16i1] = VectorRegisters; |
63 TypeToRegisterSet[IceType_v16i8] = VectorRegisters; | 84 TypeToRegisterSet[IceType_v16i8] = VectorRegisters; |
64 TypeToRegisterSet[IceType_v8i16] = VectorRegisters; | 85 TypeToRegisterSet[IceType_v8i16] = VectorRegisters; |
65 TypeToRegisterSet[IceType_v4i32] = VectorRegisters; | 86 TypeToRegisterSet[IceType_v4i32] = VectorRegisters; |
66 TypeToRegisterSet[IceType_v4f32] = VectorRegisters; | 87 TypeToRegisterSet[IceType_v4f32] = VectorRegisters; |
67 } | 88 } |
68 | 89 |
69 void TargetMIPS32::translateO2() { | 90 void TargetMIPS32::translateO2() { |
(...skipping 136 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
206 (void)NextNode; | 227 (void)NextNode; |
207 UnimplementedError(Func->getContext()->getFlags()); | 228 UnimplementedError(Func->getContext()->getFlags()); |
208 return false; | 229 return false; |
209 } | 230 } |
210 | 231 |
211 IceString TargetMIPS32::getRegName(SizeT RegNum, Type Ty) const { | 232 IceString TargetMIPS32::getRegName(SizeT RegNum, Type Ty) const { |
212 assert(RegNum < RegMIPS32::Reg_NUM); | 233 assert(RegNum < RegMIPS32::Reg_NUM); |
213 (void)Ty; | 234 (void)Ty; |
214 static const char *RegNames[] = { | 235 static const char *RegNames[] = { |
215 #define X(val, encode, name, scratch, preserved, stackptr, frameptr, isInt, \ | 236 #define X(val, encode, name, scratch, preserved, stackptr, frameptr, isInt, \ |
216 isFP) \ | 237 isI64Pair, isFP32, isFP64, isVec128, alias_init) \ |
217 name, | 238 name, |
218 REGMIPS32_TABLE | 239 REGMIPS32_TABLE |
219 #undef X | 240 #undef X |
220 }; | 241 }; |
221 return RegNames[RegNum]; | 242 return RegNames[RegNum]; |
222 } | 243 } |
223 | 244 |
224 Variable *TargetMIPS32::getPhysicalRegister(SizeT RegNum, Type Ty) { | 245 Variable *TargetMIPS32::getPhysicalRegister(SizeT RegNum, Type Ty) { |
225 if (Ty == IceType_void) | 246 if (Ty == IceType_void) |
226 Ty = IceType_i32; | 247 Ty = IceType_i32; |
(...skipping 14 matching lines...) Expand all Loading... | |
241 } | 262 } |
242 return Reg; | 263 return Reg; |
243 } | 264 } |
244 | 265 |
245 void TargetMIPS32::emitJumpTable(const Cfg *Func, | 266 void TargetMIPS32::emitJumpTable(const Cfg *Func, |
246 const InstJumpTable *JumpTable) const { | 267 const InstJumpTable *JumpTable) const { |
247 (void)JumpTable; | 268 (void)JumpTable; |
248 UnimplementedError(Func->getContext()->getFlags()); | 269 UnimplementedError(Func->getContext()->getFlags()); |
249 } | 270 } |
250 | 271 |
272 /// Provide a trivial wrapper to legalize() for this common usage. | |
273 Variable *TargetMIPS32::legalizeToReg(Operand *From, int32_t RegNum) { | |
274 return llvm::cast<Variable>(legalize(From, Legal_Reg, RegNum)); | |
275 } | |
276 | |
277 /// Legalize undef values to concrete values. | |
278 Operand *TargetMIPS32::legalizeUndef(Operand *From, int32_t RegNum) { | |
279 (void)RegNum; | |
280 Type Ty = From->getType(); | |
281 if (llvm::isa<ConstantUndef>(From)) { | |
282 // Lower undefs to zero. Another option is to lower undefs to an | |
283 // uninitialized register; however, using an uninitialized register | |
284 // results in less predictable code. | |
285 // | |
286 // If in the future the implementation is changed to lower undef | |
287 // values to uninitialized registers, a FakeDef will be needed: | |
288 // Context.insert(InstFakeDef::create(Func, Reg)); | |
289 // This is in order to ensure that the live range of Reg is not | |
290 // overestimated. If the constant being lowered is a 64 bit value, | |
291 // then the result should be split and the lo and hi components will | |
292 // need to go in uninitialized registers. | |
293 if (isVectorType(Ty)) | |
294 UnimplementedError(Func->getContext()->getFlags()); | |
295 return Ctx->getConstantZero(Ty); | |
296 } | |
297 return From; | |
298 } | |
299 | |
300 Variable *TargetMIPS32::makeReg(Type Type, int32_t RegNum) { | |
301 // There aren't any 64-bit integer registers for Mips32. | |
302 assert(Type != IceType_i64); | |
303 Variable *Reg = Func->makeVariable(Type); | |
304 if (RegNum == Variable::NoRegister) | |
305 Reg->setMustHaveReg(); | |
306 else | |
307 Reg->setRegNum(RegNum); | |
308 return Reg; | |
309 } | |
310 | |
251 void TargetMIPS32::emitVariable(const Variable *Var) const { | 311 void TargetMIPS32::emitVariable(const Variable *Var) const { |
252 if (!BuildDefs::dump()) | 312 if (!BuildDefs::dump()) |
253 return; | 313 return; |
254 Ostream &Str = Ctx->getStrEmit(); | 314 Ostream &Str = Ctx->getStrEmit(); |
255 (void)Var; | 315 const Type FrameSPTy = IceType_i32; |
256 (void)Str; | 316 if (Var->hasReg()) { |
317 Str << '$' << getRegName(Var->getRegNum(), Var->getType()); | |
318 return; | |
319 } else { | |
320 int32_t Offset = Var->getStackOffset(); | |
321 Str << Offset; | |
322 Str << "(" << getRegName(getFrameOrStackReg(), FrameSPTy); | |
323 Str << ")"; | |
324 } | |
257 UnimplementedError(Func->getContext()->getFlags()); | 325 UnimplementedError(Func->getContext()->getFlags()); |
258 } | 326 } |
259 | 327 |
260 void TargetMIPS32::lowerArguments() { | 328 void TargetMIPS32::lowerArguments() { |
261 VarList &Args = Func->getArgs(); | 329 VarList &Args = Func->getArgs(); |
262 if (Args.size() > 0) | 330 // We are only handling integer registers for now. The Mips o32 ABI is |
263 UnimplementedError(Func->getContext()->getFlags()); | 331 // somewhat complex but will be implemented in its totality through follow |
332 // on patches. | |
333 // | |
334 unsigned NumGPRRegsUsed = 0; | |
335 // For each register argument, replace Arg in the argument list with the | |
336 // home register. Then generate an instruction in the prolog to copy the | |
337 // home register to the assigned location of Arg. | |
338 Context.init(Func->getEntryNode()); | |
339 Context.setInsertPoint(Context.getCur()); | |
340 for (SizeT I = 0, E = Args.size(); I < E; ++I) { | |
341 Variable *Arg = Args[I]; | |
342 Type Ty = Arg->getType(); | |
343 // TODO(rkotler): handle float/vector types. | |
344 if (isVectorType(Ty)) { | |
345 UnimplementedError(Func->getContext()->getFlags()); | |
346 continue; | |
347 } | |
348 if (isFloatingType(Ty)) { | |
349 UnimplementedError(Func->getContext()->getFlags()); | |
350 continue; | |
351 } | |
352 if (Ty == IceType_i64) { | |
353 if (NumGPRRegsUsed >= MIPS32_MAX_GPR_ARG) | |
354 continue; | |
355 int32_t RegLo = RegMIPS32::Reg_A0 + NumGPRRegsUsed; | |
356 int32_t RegHi = RegLo + 1; | |
357 ++NumGPRRegsUsed; | |
358 // Always start i64 registers at an even register, so this may end | |
359 // up padding away a register. | |
360 if (RegLo % 2 != 0) { | |
361 ++RegLo; | |
362 ++NumGPRRegsUsed; | |
363 } | |
364 // If this leaves us without room to consume another register, | |
365 // leave any previously speculatively consumed registers as consumed. | |
366 if (NumGPRRegsUsed >= MIPS32_MAX_GPR_ARG) | |
367 continue; | |
368 // RegHi = RegMIPS32::Reg_A0 + NumGPRRegsUsed; | |
369 ++NumGPRRegsUsed; | |
370 Variable *RegisterArg = Func->makeVariable(Ty); | |
371 auto *RegisterArg64On32 = llvm::cast<Variable64On32>(RegisterArg); | |
372 if (BuildDefs::dump()) | |
373 RegisterArg64On32->setName(Func, "home_reg:" + Arg->getName(Func)); | |
374 RegisterArg64On32->initHiLo(Func); | |
375 RegisterArg64On32->setIsArg(); | |
376 RegisterArg64On32->getLo()->setRegNum(RegLo); | |
377 RegisterArg64On32->getHi()->setRegNum(RegHi); | |
378 Arg->setIsArg(false); | |
379 Args[I] = RegisterArg64On32; | |
380 Context.insert(InstAssign::create(Func, Arg, RegisterArg)); | |
381 continue; | |
382 } else { | |
383 assert(Ty == IceType_i32); | |
384 if (NumGPRRegsUsed >= MIPS32_MAX_GPR_ARG) | |
385 continue; | |
386 int32_t RegNum = RegMIPS32::Reg_A0 + NumGPRRegsUsed; | |
387 ++NumGPRRegsUsed; | |
388 Variable *RegisterArg = Func->makeVariable(Ty); | |
389 if (BuildDefs::dump()) { | |
390 RegisterArg->setName(Func, "home_reg:" + Arg->getName(Func)); | |
391 } | |
392 RegisterArg->setRegNum(RegNum); | |
393 RegisterArg->setIsArg(); | |
394 Arg->setIsArg(false); | |
395 Args[I] = RegisterArg; | |
396 Context.insert(InstAssign::create(Func, Arg, RegisterArg)); | |
397 } | |
398 } | |
264 } | 399 } |
265 | 400 |
266 Type TargetMIPS32::stackSlotType() { return IceType_i32; } | 401 Type TargetMIPS32::stackSlotType() { return IceType_i32; } |
267 | 402 |
268 void TargetMIPS32::addProlog(CfgNode *Node) { | 403 void TargetMIPS32::addProlog(CfgNode *Node) { |
269 (void)Node; | 404 (void)Node; |
405 return; | |
270 UnimplementedError(Func->getContext()->getFlags()); | 406 UnimplementedError(Func->getContext()->getFlags()); |
271 } | 407 } |
272 | 408 |
273 void TargetMIPS32::addEpilog(CfgNode *Node) { | 409 void TargetMIPS32::addEpilog(CfgNode *Node) { |
274 (void)Node; | 410 (void)Node; |
275 UnimplementedError(Func->getContext()->getFlags()); | 411 return; |
412 UnimplementedError(Func->getContext()->getFlags()); | |
413 } | |
414 | |
415 Operand *TargetMIPS32::loOperand(Operand *Operand) { | |
416 assert(Operand->getType() == IceType_i64); | |
417 if (auto *Var64On32 = llvm::dyn_cast<Variable64On32>(Operand)) | |
418 return Var64On32->getLo(); | |
419 if (auto *Const = llvm::dyn_cast<ConstantInteger64>(Operand)) { | |
420 return Ctx->getConstantInt32(static_cast<uint32_t>(Const->getValue())); | |
421 } | |
422 if (auto *Mem = llvm::dyn_cast<OperandMIPS32Mem>(Operand)) { | |
423 // Conservatively disallow memory operands with side-effects (pre/post | |
424 // increment) in case of duplication. | |
425 assert(Mem->getAddrMode() == OperandMIPS32Mem::Offset); | |
426 return OperandMIPS32Mem::create(Func, IceType_i32, Mem->getBase(), | |
427 Mem->getOffset(), Mem->getAddrMode()); | |
428 } | |
429 llvm_unreachable("Unsupported operand type"); | |
430 return nullptr; | |
431 } | |
432 | |
433 Operand *TargetMIPS32::hiOperand(Operand *Operand) { | |
434 assert(Operand->getType() == IceType_i64); | |
435 if (Operand->getType() != IceType_i64) | |
436 return Operand; | |
437 if (auto *Var64On32 = llvm::dyn_cast<Variable64On32>(Operand)) | |
438 return Var64On32->getHi(); | |
439 if (auto *Const = llvm::dyn_cast<ConstantInteger64>(Operand)) { | |
440 return Ctx->getConstantInt32( | |
441 static_cast<uint32_t>(Const->getValue() >> 32)); | |
442 } | |
443 if (auto *Mem = llvm::dyn_cast<OperandMIPS32Mem>(Operand)) { | |
444 // Conservatively disallow memory operands with side-effects | |
445 // in case of duplication. | |
446 assert(Mem->getAddrMode() == OperandMIPS32Mem::Offset); | |
447 const Type SplitType = IceType_i32; | |
448 Variable *Base = Mem->getBase(); | |
449 ConstantInteger32 *Offset = Mem->getOffset(); | |
450 assert(!Utils::WouldOverflowAdd(Offset->getValue(), 4)); | |
451 int32_t NextOffsetVal = Offset->getValue() + 4; | |
452 constexpr bool SignExt = false; | |
453 if (!OperandMIPS32Mem::canHoldOffset(SplitType, SignExt, NextOffsetVal)) { | |
454 // We have to make a temp variable and add 4 to either Base or Offset. | |
455 // If we add 4 to Offset, this will convert a non-RegReg addressing | |
456 // mode into a RegReg addressing mode. Since NaCl sandboxing disallows | |
457 // RegReg addressing modes, prefer adding to base and replacing instead. | |
458 // Thus we leave the old offset alone. | |
459 Constant *Four = Ctx->getConstantInt32(4); | |
460 Variable *NewBase = Func->makeVariable(Base->getType()); | |
461 lowerArithmetic(InstArithmetic::create(Func, InstArithmetic::Add, NewBase, | |
462 Base, Four)); | |
463 Base = NewBase; | |
464 } else { | |
465 Offset = | |
466 llvm::cast<ConstantInteger32>(Ctx->getConstantInt32(NextOffsetVal)); | |
467 } | |
468 return OperandMIPS32Mem::create(Func, SplitType, Base, Offset, | |
469 Mem->getAddrMode()); | |
470 } | |
471 llvm_unreachable("Unsupported operand type"); | |
472 return nullptr; | |
276 } | 473 } |
277 | 474 |
278 llvm::SmallBitVector TargetMIPS32::getRegisterSet(RegSetMask Include, | 475 llvm::SmallBitVector TargetMIPS32::getRegisterSet(RegSetMask Include, |
279 RegSetMask Exclude) const { | 476 RegSetMask Exclude) const { |
280 llvm::SmallBitVector Registers(RegMIPS32::Reg_NUM); | 477 llvm::SmallBitVector Registers(RegMIPS32::Reg_NUM); |
281 | 478 |
282 #define X(val, encode, name, scratch, preserved, stackptr, frameptr, isInt, \ | 479 #define X(val, encode, name, scratch, preserved, stackptr, frameptr, isInt, \ |
283 isFP) \ | 480 isI64Pair, isFP32, isFP64, isVec128, alias_init) \ |
284 if (scratch && (Include & RegSet_CallerSave)) \ | 481 if (scratch && (Include & RegSet_CallerSave)) \ |
285 Registers[RegMIPS32::val] = true; \ | 482 Registers[RegMIPS32::val] = true; \ |
286 if (preserved && (Include & RegSet_CalleeSave)) \ | 483 if (preserved && (Include & RegSet_CalleeSave)) \ |
287 Registers[RegMIPS32::val] = true; \ | 484 Registers[RegMIPS32::val] = true; \ |
288 if (stackptr && (Include & RegSet_StackPointer)) \ | 485 if (stackptr && (Include & RegSet_StackPointer)) \ |
289 Registers[RegMIPS32::val] = true; \ | 486 Registers[RegMIPS32::val] = true; \ |
290 if (frameptr && (Include & RegSet_FramePointer)) \ | 487 if (frameptr && (Include & RegSet_FramePointer)) \ |
291 Registers[RegMIPS32::val] = true; \ | 488 Registers[RegMIPS32::val] = true; \ |
292 if (scratch && (Exclude & RegSet_CallerSave)) \ | 489 if (scratch && (Exclude & RegSet_CallerSave)) \ |
293 Registers[RegMIPS32::val] = false; \ | 490 Registers[RegMIPS32::val] = false; \ |
(...skipping 17 matching lines...) Expand all Loading... | |
311 // operations implemented below assume that the stack is aligned before the | 508 // operations implemented below assume that the stack is aligned before the |
312 // alloca. All the alloca code ensures that the stack alignment is preserved | 509 // alloca. All the alloca code ensures that the stack alignment is preserved |
313 // after the alloca. The stack alignment restriction can be relaxed in some | 510 // after the alloca. The stack alignment restriction can be relaxed in some |
314 // cases. | 511 // cases. |
315 NeedsStackAlignment = true; | 512 NeedsStackAlignment = true; |
316 (void)Inst; | 513 (void)Inst; |
317 UnimplementedError(Func->getContext()->getFlags()); | 514 UnimplementedError(Func->getContext()->getFlags()); |
318 } | 515 } |
319 | 516 |
320 void TargetMIPS32::lowerArithmetic(const InstArithmetic *Inst) { | 517 void TargetMIPS32::lowerArithmetic(const InstArithmetic *Inst) { |
321 switch (Inst->getOp()) { | 518 Variable *Dest = Inst->getDest(); |
322 case InstArithmetic::_num: | 519 Operand *Src0 = legalizeUndef(Inst->getSrc(0)); |
520 Operand *Src1 = legalizeUndef(Inst->getSrc(1)); | |
521 (void)Src0; | |
522 (void)Src1; | |
523 if (Dest->getType() == IceType_i64) { | |
323 UnimplementedError(Func->getContext()->getFlags()); | 524 UnimplementedError(Func->getContext()->getFlags()); |
324 break; | 525 } else if (isVectorType(Dest->getType())) { |
325 case InstArithmetic::Add: | |
326 UnimplementedError(Func->getContext()->getFlags()); | 526 UnimplementedError(Func->getContext()->getFlags()); |
327 break; | 527 } else { // Dest->getType() is non-i64 scalar |
328 case InstArithmetic::And: | 528 switch (Inst->getOp()) { |
329 UnimplementedError(Func->getContext()->getFlags()); | 529 case InstArithmetic::_num: |
330 break; | 530 UnimplementedError(Func->getContext()->getFlags()); |
331 case InstArithmetic::Or: | 531 break; |
332 UnimplementedError(Func->getContext()->getFlags()); | 532 case InstArithmetic::Add: |
333 break; | 533 UnimplementedError(Func->getContext()->getFlags()); |
334 case InstArithmetic::Xor: | 534 // Variable *T = makeReg(Dest->getType()); |
335 UnimplementedError(Func->getContext()->getFlags()); | 535 // _add(T, Src0, Src1); |
336 break; | 536 // _mov(Dest, T); |
337 case InstArithmetic::Sub: | 537 return; |
338 UnimplementedError(Func->getContext()->getFlags()); | 538 case InstArithmetic::And: |
339 break; | 539 UnimplementedError(Func->getContext()->getFlags()); |
340 case InstArithmetic::Mul: | 540 break; |
341 UnimplementedError(Func->getContext()->getFlags()); | 541 case InstArithmetic::Or: |
342 break; | 542 UnimplementedError(Func->getContext()->getFlags()); |
343 case InstArithmetic::Shl: | 543 break; |
344 UnimplementedError(Func->getContext()->getFlags()); | 544 case InstArithmetic::Xor: |
345 break; | 545 UnimplementedError(Func->getContext()->getFlags()); |
346 case InstArithmetic::Lshr: | 546 break; |
347 UnimplementedError(Func->getContext()->getFlags()); | 547 case InstArithmetic::Sub: |
348 break; | 548 UnimplementedError(Func->getContext()->getFlags()); |
349 case InstArithmetic::Ashr: | 549 break; |
350 UnimplementedError(Func->getContext()->getFlags()); | 550 case InstArithmetic::Mul: |
351 break; | 551 UnimplementedError(Func->getContext()->getFlags()); |
352 case InstArithmetic::Udiv: | 552 break; |
353 UnimplementedError(Func->getContext()->getFlags()); | 553 case InstArithmetic::Shl: |
354 break; | 554 UnimplementedError(Func->getContext()->getFlags()); |
355 case InstArithmetic::Sdiv: | 555 break; |
356 UnimplementedError(Func->getContext()->getFlags()); | 556 case InstArithmetic::Lshr: |
357 break; | 557 UnimplementedError(Func->getContext()->getFlags()); |
358 case InstArithmetic::Urem: | 558 break; |
359 UnimplementedError(Func->getContext()->getFlags()); | 559 case InstArithmetic::Ashr: |
360 break; | 560 UnimplementedError(Func->getContext()->getFlags()); |
361 case InstArithmetic::Srem: | 561 break; |
362 UnimplementedError(Func->getContext()->getFlags()); | 562 case InstArithmetic::Udiv: |
363 break; | 563 UnimplementedError(Func->getContext()->getFlags()); |
364 case InstArithmetic::Fadd: | 564 break; |
365 UnimplementedError(Func->getContext()->getFlags()); | 565 case InstArithmetic::Sdiv: |
366 break; | 566 UnimplementedError(Func->getContext()->getFlags()); |
367 case InstArithmetic::Fsub: | 567 break; |
368 UnimplementedError(Func->getContext()->getFlags()); | 568 case InstArithmetic::Urem: |
369 break; | 569 UnimplementedError(Func->getContext()->getFlags()); |
370 case InstArithmetic::Fmul: | 570 break; |
371 UnimplementedError(Func->getContext()->getFlags()); | 571 case InstArithmetic::Srem: |
372 break; | 572 UnimplementedError(Func->getContext()->getFlags()); |
373 case InstArithmetic::Fdiv: | 573 break; |
374 UnimplementedError(Func->getContext()->getFlags()); | 574 case InstArithmetic::Fadd: |
375 break; | 575 UnimplementedError(Func->getContext()->getFlags()); |
376 case InstArithmetic::Frem: | 576 break; |
377 UnimplementedError(Func->getContext()->getFlags()); | 577 case InstArithmetic::Fsub: |
378 break; | 578 UnimplementedError(Func->getContext()->getFlags()); |
579 break; | |
580 case InstArithmetic::Fmul: | |
581 UnimplementedError(Func->getContext()->getFlags()); | |
582 break; | |
583 case InstArithmetic::Fdiv: | |
584 UnimplementedError(Func->getContext()->getFlags()); | |
585 break; | |
586 case InstArithmetic::Frem: | |
587 UnimplementedError(Func->getContext()->getFlags()); | |
588 break; | |
589 } | |
379 } | 590 } |
380 } | 591 } |
381 | 592 |
382 void TargetMIPS32::lowerAssign(const InstAssign *Inst) { | 593 void TargetMIPS32::lowerAssign(const InstAssign *Inst) { |
383 (void)Inst; | 594 Variable *Dest = Inst->getDest(); |
384 UnimplementedError(Func->getContext()->getFlags()); | 595 Operand *Src0 = Inst->getSrc(0); |
596 assert(Dest->getType() == Src0->getType()); | |
597 if (Dest->getType() == IceType_i64) { | |
598 Src0 = legalizeUndef(Src0); | |
599 Operand *Src0Lo = legalize(loOperand(Src0), Legal_Reg); | |
600 Operand *Src0Hi = legalize(hiOperand(Src0), Legal_Reg); | |
601 Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); | |
602 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); | |
603 // Variable *T_Lo = nullptr, *T_Hi = nullptr; | |
604 Variable *T_Lo = makeReg(IceType_i32); | |
605 Variable *T_Hi = makeReg(IceType_i32); | |
606 _mov(T_Lo, Src0Lo); | |
607 _mov(DestLo, T_Lo); | |
608 _mov(T_Hi, Src0Hi); | |
609 _mov(DestHi, T_Hi); | |
610 } else { | |
611 Operand *SrcR; | |
612 if (Dest->hasReg()) { | |
613 // If Dest already has a physical register, then legalize the Src operand | |
614 // into a Variable with the same register assignment. This especially | |
615 // helps allow the use of Flex operands. | |
616 SrcR = legalize(Src0, Legal_Reg, Dest->getRegNum()); | |
617 } else { | |
618 // Dest could be a stack operand. Since we could potentially need | |
619 // to do a Store (and store can only have Register operands), | |
620 // legalize this to a register. | |
621 SrcR = legalize(Src0, Legal_Reg); | |
622 } | |
623 if (isVectorType(Dest->getType())) { | |
624 UnimplementedError(Func->getContext()->getFlags()); | |
625 } else { | |
626 _mov(Dest, SrcR); | |
627 } | |
628 } | |
385 } | 629 } |
386 | 630 |
387 void TargetMIPS32::lowerBr(const InstBr *Inst) { | 631 void TargetMIPS32::lowerBr(const InstBr *Inst) { |
388 (void)Inst; | 632 (void)Inst; |
389 UnimplementedError(Func->getContext()->getFlags()); | 633 UnimplementedError(Func->getContext()->getFlags()); |
390 } | 634 } |
391 | 635 |
392 void TargetMIPS32::lowerCall(const InstCall *Inst) { | 636 void TargetMIPS32::lowerCall(const InstCall *Inst) { |
393 (void)Inst; | 637 (void)Inst; |
394 UnimplementedError(Func->getContext()->getFlags()); | 638 UnimplementedError(Func->getContext()->getFlags()); |
(...skipping 206 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
601 UnimplementedError(Func->getContext()->getFlags()); | 845 UnimplementedError(Func->getContext()->getFlags()); |
602 } | 846 } |
603 } | 847 } |
604 | 848 |
605 void TargetMIPS32::lowerPhi(const InstPhi * /*Inst*/) { | 849 void TargetMIPS32::lowerPhi(const InstPhi * /*Inst*/) { |
606 Func->setError("Phi found in regular instruction list"); | 850 Func->setError("Phi found in regular instruction list"); |
607 } | 851 } |
608 | 852 |
609 void TargetMIPS32::lowerRet(const InstRet *Inst) { | 853 void TargetMIPS32::lowerRet(const InstRet *Inst) { |
610 Variable *Reg = nullptr; | 854 Variable *Reg = nullptr; |
611 if (Inst->hasRetValue()) | 855 if (Inst->hasRetValue()) { |
612 UnimplementedError(Func->getContext()->getFlags()); | 856 Operand *Src0 = Inst->getRetValue(); |
857 switch (Src0->getType()) { | |
858 case IceType_i1: | |
859 case IceType_i8: | |
860 case IceType_i16: | |
861 case IceType_i32: { | |
862 // Reg = legalizeToReg(Src0, RegMIPS32::Reg_V0); | |
863 Operand *Src0F = legalize(Src0, Legal_Reg); | |
864 Reg = makeReg(Src0F->getType(), RegMIPS32::Reg_V0); | |
865 _mov(Reg, Src0F); | |
866 break; | |
867 } | |
868 case IceType_i64: { | |
869 Src0 = legalizeUndef(Src0); | |
870 Variable *R0 = legalizeToReg(loOperand(Src0), RegMIPS32::Reg_V0); | |
871 Variable *R1 = legalizeToReg(hiOperand(Src0), RegMIPS32::Reg_V1); | |
872 Reg = R0; | |
873 Context.insert(InstFakeUse::create(Func, R1)); | |
874 break; | |
875 } | |
876 | |
877 default: | |
878 UnimplementedError(Func->getContext()->getFlags()); | |
879 } | |
880 } | |
613 _ret(getPhysicalRegister(RegMIPS32::Reg_RA), Reg); | 881 _ret(getPhysicalRegister(RegMIPS32::Reg_RA), Reg); |
614 } | 882 } |
615 | 883 |
616 void TargetMIPS32::lowerSelect(const InstSelect *Inst) { | 884 void TargetMIPS32::lowerSelect(const InstSelect *Inst) { |
617 (void)Inst; | 885 (void)Inst; |
618 UnimplementedError(Func->getContext()->getFlags()); | 886 UnimplementedError(Func->getContext()->getFlags()); |
619 } | 887 } |
620 | 888 |
621 void TargetMIPS32::lowerStore(const InstStore *Inst) { | 889 void TargetMIPS32::lowerStore(const InstStore *Inst) { |
622 (void)Inst; | 890 (void)Inst; |
(...skipping 10 matching lines...) Expand all Loading... | |
633 } | 901 } |
634 | 902 |
635 void TargetMIPS32::lowerUnreachable(const InstUnreachable * /*Inst*/) { | 903 void TargetMIPS32::lowerUnreachable(const InstUnreachable * /*Inst*/) { |
636 UnimplementedError(Func->getContext()->getFlags()); | 904 UnimplementedError(Func->getContext()->getFlags()); |
637 } | 905 } |
638 | 906 |
639 // Turn an i64 Phi instruction into a pair of i32 Phi instructions, to preserve | 907 // Turn an i64 Phi instruction into a pair of i32 Phi instructions, to preserve |
640 // integrity of liveness analysis. Undef values are also turned into zeroes, | 908 // integrity of liveness analysis. Undef values are also turned into zeroes, |
641 // since loOperand() and hiOperand() don't expect Undef input. | 909 // since loOperand() and hiOperand() don't expect Undef input. |
642 void TargetMIPS32::prelowerPhis() { | 910 void TargetMIPS32::prelowerPhis() { |
643 UnimplementedError(Func->getContext()->getFlags()); | 911 PhiLowering::prelowerPhis32Bit<TargetMIPS32>(this, Context.getNode(), Func); |
644 } | 912 } |
645 | 913 |
646 void TargetMIPS32::postLower() { | 914 void TargetMIPS32::postLower() { |
647 if (Ctx->getFlags().getOptLevel() == Opt_m1) | 915 if (Ctx->getFlags().getOptLevel() == Opt_m1) |
648 return; | 916 return; |
649 // Find two-address non-SSA instructions where Dest==Src0, and set the | 917 // Find two-address non-SSA instructions where Dest==Src0, and set the |
650 // IsDestRedefined flag to keep liveness analysis consistent. | 918 // IsDestRedefined flag to keep liveness analysis consistent. |
651 UnimplementedError(Func->getContext()->getFlags()); | 919 UnimplementedError(Func->getContext()->getFlags()); |
652 } | 920 } |
653 | 921 |
(...skipping 44 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
698 return; | 966 return; |
699 UnimplementedError(Ctx->getFlags()); | 967 UnimplementedError(Ctx->getFlags()); |
700 } | 968 } |
701 | 969 |
702 void TargetDataMIPS32::lowerJumpTables() { | 970 void TargetDataMIPS32::lowerJumpTables() { |
703 if (Ctx->getFlags().getDisableTranslation()) | 971 if (Ctx->getFlags().getDisableTranslation()) |
704 return; | 972 return; |
705 UnimplementedError(Ctx->getFlags()); | 973 UnimplementedError(Ctx->getFlags()); |
706 } | 974 } |
707 | 975 |
976 // Helper for legalize() to emit the right code to lower an operand to a | |
977 // register of the appropriate type. | |
978 Variable *TargetMIPS32::copyToReg(Operand *Src, int32_t RegNum) { | |
979 Type Ty = Src->getType(); | |
980 Variable *Reg = makeReg(Ty, RegNum); | |
981 if (isVectorType(Ty) || isFloatingType(Ty)) { | |
982 UnimplementedError(Ctx->getFlags()); | |
983 } else { | |
984 // Mov's Src operand can really only be the flexible second operand type | |
985 // or a register. Users should guarantee that. | |
986 _mov(Reg, Src); | |
987 } | |
988 return Reg; | |
989 } | |
990 | |
991 Operand *TargetMIPS32::legalize(Operand *From, LegalMask Allowed, | |
992 int32_t RegNum) { | |
993 Type Ty = From->getType(); | |
994 // Assert that a physical register is allowed. To date, all calls | |
995 // to legalize() allow a physical register. Legal_Flex converts | |
996 // registers to the right type OperandMIPS32FlexReg as needed. | |
997 assert(Allowed & Legal_Reg); | |
998 // Go through the various types of operands: | |
999 // OperandMIPS32Mem, OperandMIPS32Flex, Constant, and Variable. | |
1000 // Given the above assertion, if type of operand is not legal | |
1001 // (e.g., OperandMIPS32Mem and !Legal_Mem), we can always copy | |
1002 // to a register. | |
1003 if (auto C = llvm::dyn_cast<ConstantRelocatable>(From)) { | |
1004 (void)C; | |
1005 return From; | |
1006 } else if (auto *C32 = llvm::dyn_cast<ConstantInteger32>(From)) { | |
1007 uint32_t Value = static_cast<uint32_t>(C32->getValue()); | |
1008 // Check if the immediate will fit in a Flexible second operand, | |
1009 // if a Flexible second operand is allowed. We need to know the exact | |
1010 // value, so that rules out relocatable constants. | |
1011 // Also try the inverse and use MVN if possible. | |
1012 // Do a movw/movt to a register. | |
1013 Variable *Reg; | |
1014 if (RegNum == Variable::NoRegister) | |
1015 Reg = makeReg(Ty, RegNum); | |
1016 else | |
1017 Reg = getPhysicalRegister(RegNum); | |
1018 if (isInt<16>(int32_t(Value))) { | |
1019 _addiu(Reg, getPhysicalRegister(RegMIPS32::Reg_ZERO, Ty), Value); | |
1020 } else { | |
1021 uint32_t UpperBits = (Value >> 16) & 0xFFFF; | |
1022 (void)UpperBits; | |
1023 uint32_t LowerBits = Value & 0xFFFF; | |
1024 Variable *TReg = makeReg(Ty, RegNum); | |
1025 _lui(TReg, UpperBits); | |
1026 _ori(Reg, TReg, LowerBits); | |
1027 } | |
1028 return Reg; | |
1029 } | |
1030 if (auto Var = llvm::dyn_cast<Variable>(From)) { | |
1031 // Check if the variable is guaranteed a physical register. This | |
1032 // can happen either when the variable is pre-colored or when it is | |
1033 // assigned infinite weight. | |
1034 bool MustHaveRegister = (Var->hasReg() || Var->mustHaveReg()); | |
1035 // We need a new physical register for the operand if: | |
1036 // Mem is not allowed and Var isn't guaranteed a physical | |
1037 // register, or | |
1038 // RegNum is required and Var->getRegNum() doesn't match. | |
1039 if ((!(Allowed & Legal_Mem) && !MustHaveRegister) || | |
1040 (RegNum != Variable::NoRegister && RegNum != Var->getRegNum())) { | |
1041 From = copyToReg(From, RegNum); | |
1042 } | |
1043 return From; | |
1044 } | |
1045 return From; | |
1046 } | |
1047 | |
1048 /// Provide a trivial wrapper to legalize() for this common usage. | |
Jim Stichnoth
2015/10/20 04:41:00
just remove all this
rkotlerimgtec
2015/10/21 00:30:54
Done.
| |
1049 // Variable *TargetMIPS32::legalizeToVar(Operand *From, int32_t RegNum) { | |
1050 // return llvm::cast<Variable>(legalize(From, Legal_Reg, RegNum)); | |
1051 //} | |
1052 | |
708 TargetHeaderMIPS32::TargetHeaderMIPS32(GlobalContext *Ctx) | 1053 TargetHeaderMIPS32::TargetHeaderMIPS32(GlobalContext *Ctx) |
709 : TargetHeaderLowering(Ctx) {} | 1054 : TargetHeaderLowering(Ctx) {} |
710 | 1055 |
1056 void TargetHeaderMIPS32::lower() { | |
1057 OstreamLocker L(Ctx); | |
1058 Ostream &Str = Ctx->getStrEmit(); | |
1059 Str << "\t.set\tnomicromips\n"; | |
1060 Str << "\t.set\tnomips16\n"; | |
1061 } | |
1062 | |
711 } // end of namespace Ice | 1063 } // end of namespace Ice |
OLD | NEW |