OLD | NEW |
---|---|
1 //===- subzero/src/IceAssemblerARM32.cpp - Assembler for ARM32 --*- C++ -*-===// | 1 //===- subzero/src/IceAssemblerARM32.cpp - Assembler for ARM32 --*- C++ -*-===// |
2 // | 2 // |
3 // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file | 3 // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
4 // for details. All rights reserved. Use of this source code is governed by a | 4 // for details. All rights reserved. Use of this source code is governed by a |
5 // BSD-style license that can be found in the LICENSE file. | 5 // BSD-style license that can be found in the LICENSE file. |
6 // | 6 // |
7 // Modified by the Subzero authors. | 7 // Modified by the Subzero authors. |
8 // | 8 // |
9 //===----------------------------------------------------------------------===// | 9 //===----------------------------------------------------------------------===// |
10 // | 10 // |
11 // The Subzero Code Generator | 11 // The Subzero Code Generator |
12 // | 12 // |
13 // This file is distributed under the University of Illinois Open Source | 13 // This file is distributed under the University of Illinois Open Source |
14 // License. See LICENSE.TXT for details. | 14 // License. See LICENSE.TXT for details. |
15 // | 15 // |
16 //===----------------------------------------------------------------------===// | 16 //===----------------------------------------------------------------------===// |
17 /// | 17 /// |
18 /// \file | 18 /// \file |
19 /// This file implements the Assembler class for ARM32. | 19 /// This file implements the Assembler class for ARM32. |
20 /// | 20 /// |
21 //===----------------------------------------------------------------------===// | 21 //===----------------------------------------------------------------------===// |
22 | 22 |
23 #include "IceAssemblerARM32.h" | 23 #include "IceAssemblerARM32.h" |
24 | 24 |
25 namespace Ice { | 25 namespace { |
26 | |
27 using namespace Ice; | |
26 | 28 |
27 // The following define individual bits. | 29 // The following define individual bits. |
28 static constexpr uint32_t B0 = 1; | 30 static constexpr uint32_t B0 = 1; |
29 static constexpr uint32_t B2 = 1 << 2; | 31 static constexpr uint32_t B2 = 1 << 2; |
30 static constexpr uint32_t B3 = 1 << 3; | 32 static constexpr uint32_t B3 = 1 << 3; |
31 static constexpr uint32_t B4 = 1 << 4; | 33 static constexpr uint32_t B4 = 1 << 4; |
32 static constexpr uint32_t B5 = 1 << 5; | 34 static constexpr uint32_t B5 = 1 << 5; |
33 static constexpr uint32_t B6 = 1 << 6; | 35 static constexpr uint32_t B6 = 1 << 6; |
34 static constexpr uint32_t B21 = 1 << 21; | 36 static constexpr uint32_t B21 = 1 << 21; |
35 static constexpr uint32_t B24 = 1 << 24; | 37 static constexpr uint32_t B24 = 1 << 24; |
36 | 38 |
37 // Constants used for the decoding or encoding of the individual fields of | 39 // Constants used for the decoding or encoding of the individual fields of |
38 // instructions. Based on ARM section A5.1. | 40 // instructions. Based on ARM section A5.1. |
39 static constexpr uint32_t kConditionShift = 28; | 41 static constexpr uint32_t kConditionShift = 28; |
40 static constexpr uint32_t kOpcodeShift = 21; | 42 static constexpr uint32_t kOpcodeShift = 21; |
41 static constexpr uint32_t kRdShift = 12; | 43 static constexpr uint32_t kRdShift = 12; |
42 static constexpr uint32_t kRmShift = 0; | 44 static constexpr uint32_t kRmShift = 0; |
43 static constexpr uint32_t kRnShift = 16; | 45 static constexpr uint32_t kRnShift = 16; |
44 static constexpr uint32_t kSShift = 20; | 46 static constexpr uint32_t kSShift = 20; |
45 static constexpr uint32_t kTypeShift = 25; | 47 static constexpr uint32_t kTypeShift = 25; |
46 | 48 |
47 // Immediate instruction fields encoding. | 49 // Immediate instruction fields encoding. |
48 static constexpr uint32_t kImmed8Bits = 8; | 50 static constexpr uint32_t kImmed8Bits = 8; |
49 static constexpr uint32_t kImmed8Shift = 0; | 51 static constexpr uint32_t kImmed8Shift = 0; |
50 static constexpr uint32_t kRotateBits = 4; | 52 static constexpr uint32_t kRotateBits = 4; |
51 static constexpr uint32_t kRotateShift = 8; | 53 static constexpr uint32_t kRotateShift = 8; |
52 | 54 |
53 // Types of instructions. | |
54 static constexpr uint32_t kInstTypeImmediate = 1; | |
55 | |
56 inline uint32_t encodeBool(bool b) { return b ? 1 : 0; } | 55 inline uint32_t encodeBool(bool b) { return b ? 1 : 0; } |
57 | 56 |
58 inline uint32_t encodeGPRRegister(RegARM32::GPRRegister Rn) { | 57 inline uint32_t encodeGPRRegister(RegARM32::GPRRegister Rn) { |
59 return static_cast<uint32_t>(Rn); | 58 return static_cast<uint32_t>(Rn); |
60 } | 59 } |
61 | 60 |
62 inline bool isGPRRegisterDefined(RegARM32::GPRRegister R) { | 61 inline bool isGPRRegisterDefined(RegARM32::GPRRegister R) { |
63 return R != RegARM32::Encoded_Not_GPR; | 62 return R != RegARM32::Encoded_Not_GPR; |
64 } | 63 } |
65 | 64 |
66 inline bool isGPRRegisterDefined(uint32_t R) { | 65 inline bool isGPRRegisterDefined(uint32_t R) { |
67 return R != encodeGPRRegister(RegARM32::Encoded_Not_GPR); | 66 return R != encodeGPRRegister(RegARM32::Encoded_Not_GPR); |
68 } | 67 } |
69 | 68 |
70 inline bool isConditionDefined(CondARM32::Cond Cond) { | 69 inline bool isConditionDefined(CondARM32::Cond Cond) { |
71 return Cond != CondARM32::kNone; | 70 return Cond != CondARM32::kNone; |
72 } | 71 } |
73 | 72 |
74 inline uint32_t encodeCondition(CondARM32::Cond Cond) { | 73 inline uint32_t encodeCondition(CondARM32::Cond Cond) { |
75 return static_cast<uint32_t>(Cond); | 74 return static_cast<uint32_t>(Cond); |
76 } | 75 } |
77 | 76 |
78 // Converts rotated immediate into imm12. | 77 // The way an operand was decoded in function decode below. |
79 inline uint32_t encodeImm12FromFlexImm(const OperandARM32FlexImm &FlexImm) { | 78 enum DecodedResult { |
80 uint32_t Immed8 = FlexImm.getImm(); | 79 CantDecode = 0, // I.e. will fail in test. |
81 uint32_t Rotate = FlexImm.getRotateAmt(); | 80 DecodedAsRegister, |
82 assert((Rotate < (1 << kRotateBits)) && (Immed8 < (1 << kImmed8Bits))); | 81 DecodedAsRotatedImm8 |
83 return (Rotate << kRotateShift) | (Immed8 << kImmed8Shift); | 82 }; |
83 | |
84 DecodedResult decode(const Ice::Operand *Operand, uint32_t &Value) { | |
Jim Stichnoth
2015/10/13 21:28:52
Can you use Operand instead of Ice::Operand?
Also
Karl
2015/10/13 21:39:25
Done.
| |
85 if (const auto *Var = llvm::dyn_cast<Variable>(Operand)) { | |
86 if (Var->hasReg()) { | |
87 Value = Var->getRegNum(); | |
88 return DecodedAsRegister; | |
89 } | |
90 } else if (const auto *FlexImm = | |
91 llvm::dyn_cast<OperandARM32FlexImm>(Operand)) { | |
92 uint32_t Immed8 = FlexImm->getImm(); | |
93 uint32_t Rotate = FlexImm->getRotateAmt(); | |
94 assert((Rotate < (1 << kRotateBits)) && (Immed8 < (1 << kImmed8Bits))); | |
95 Value = (Rotate << kRotateShift) | (Immed8 << kImmed8Shift); | |
96 return DecodedAsRotatedImm8; | |
97 } | |
98 return CantDecode; | |
84 } | 99 } |
85 | 100 |
101 } // end of anonymous namespace | |
102 | |
103 namespace Ice { | |
104 | |
86 Label *ARM32::AssemblerARM32::getOrCreateLabel(SizeT Number, | 105 Label *ARM32::AssemblerARM32::getOrCreateLabel(SizeT Number, |
87 LabelVector &Labels) { | 106 LabelVector &Labels) { |
88 Label *L = nullptr; | 107 Label *L = nullptr; |
89 if (Number == Labels.size()) { | 108 if (Number == Labels.size()) { |
90 L = new (this->allocate<Label>()) Label(); | 109 L = new (this->allocate<Label>()) Label(); |
91 Labels.push_back(L); | 110 Labels.push_back(L); |
92 return L; | 111 return L; |
93 } | 112 } |
94 if (Number > Labels.size()) { | 113 if (Number > Labels.size()) { |
95 Labels.resize(Number + 1); | 114 Labels.resize(Number + 1); |
(...skipping 17 matching lines...) Expand all Loading... | |
113 } | 132 } |
114 // TODO(kschimpf) Decide if we have near jumps. | 133 // TODO(kschimpf) Decide if we have near jumps. |
115 label->bindTo(bound); | 134 label->bindTo(bound); |
116 } | 135 } |
117 | 136 |
118 void ARM32::AssemblerARM32::emitType01(CondARM32::Cond Cond, uint32_t Type, | 137 void ARM32::AssemblerARM32::emitType01(CondARM32::Cond Cond, uint32_t Type, |
119 uint32_t Opcode, bool SetCc, uint32_t Rn, | 138 uint32_t Opcode, bool SetCc, uint32_t Rn, |
120 uint32_t Rd, uint32_t Imm12) { | 139 uint32_t Rd, uint32_t Imm12) { |
121 assert(isGPRRegisterDefined(Rd)); | 140 assert(isGPRRegisterDefined(Rd)); |
122 assert(Cond != CondARM32::kNone); | 141 assert(Cond != CondARM32::kNone); |
142 AssemblerBuffer::EnsureCapacity ensured(&Buffer); | |
123 uint32_t Encoding = encodeCondition(Cond) << kConditionShift | | 143 uint32_t Encoding = encodeCondition(Cond) << kConditionShift | |
124 (Type << kTypeShift) | (Opcode << kOpcodeShift) | | 144 (Type << kTypeShift) | (Opcode << kOpcodeShift) | |
125 (encodeBool(SetCc) << kSShift) | (Rn << kRnShift) | | 145 (encodeBool(SetCc) << kSShift) | (Rn << kRnShift) | |
126 (Rd << kRdShift) | Imm12; | 146 (Rd << kRdShift) | Imm12; |
127 emitInst(Encoding); | 147 emitInst(Encoding); |
128 } | 148 } |
129 | 149 |
150 void ARM32::AssemblerARM32::add(const Operand *OpRd, const Operand *OpRn, | |
151 const Operand *OpSrc1, bool SetFlags, | |
152 CondARM32::Cond Cond) { | |
153 // Note: Loop is used so that we can short circuit using break; | |
154 do { | |
155 uint32_t Rd; | |
156 if (decode(OpRd, Rd) != DecodedAsRegister) | |
157 break; | |
158 uint32_t Rn; | |
159 if (decode(OpRn, Rn) != DecodedAsRegister) | |
160 break; | |
161 uint32_t Src1Value; | |
162 // TODO(kschimpf) Other possible decodings of add. | |
163 if (decode(OpSrc1, Src1Value) == DecodedAsRotatedImm8) { | |
164 // ADD (Immediate): See ARM section A8.8.5, rule A1. | |
165 // cccc0010100snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn, | |
166 // s=SetFlags and iiiiiiiiiiii=Src1Value | |
167 if (!isConditionDefined(Cond) || (Rd == RegARM32::Reg_pc && SetFlags) || | |
168 (Rn == RegARM32::Reg_lr) || (Rn == RegARM32::Reg_pc && SetFlags)) | |
169 // Conditions of rule violated. | |
170 break; | |
171 uint32_t Add = B2; // 0100 | |
172 uint32_t InstType = 1; | |
173 emitType01(Cond, InstType, Add, SetFlags, Rn, Rd, Src1Value); | |
174 return; | |
175 } | |
176 } while (0); | |
177 UnimplementedError(Ctx->getFlags()); | |
178 } | |
179 | |
130 void ARM32::AssemblerARM32::bkpt(uint16_t imm16) { | 180 void ARM32::AssemblerARM32::bkpt(uint16_t imm16) { |
131 AssemblerBuffer::EnsureCapacity ensured(&Buffer); | 181 AssemblerBuffer::EnsureCapacity ensured(&Buffer); |
132 uint32_t Encoding = (CondARM32::AL << kConditionShift) | B24 | B21 | | 182 uint32_t Encoding = (CondARM32::AL << kConditionShift) | B24 | B21 | |
133 ((imm16 >> 4) << 8) | B6 | B5 | B4 | (imm16 & 0xf); | 183 ((imm16 >> 4) << 8) | B6 | B5 | B4 | (imm16 & 0xf); |
134 emitInst(Encoding); | 184 emitInst(Encoding); |
135 } | 185 } |
136 | 186 |
137 void ARM32::AssemblerARM32::bx(RegARM32::GPRRegister Rm, CondARM32::Cond Cond) { | 187 void ARM32::AssemblerARM32::bx(RegARM32::GPRRegister Rm, CondARM32::Cond Cond) { |
138 // cccc000100101111111111110001mmmm where mmmm=rm and cccc=Cond. | 188 // cccc000100101111111111110001mmmm where mmmm=rm and cccc=Cond. |
139 // (ARM section A8.8.27, encoding A1). | 189 // (ARM section A8.8.27, encoding A1). |
140 assert(isGPRRegisterDefined(Rm)); | 190 assert(isGPRRegisterDefined(Rm)); |
141 assert(isConditionDefined(Cond)); | 191 assert(isConditionDefined(Cond)); |
142 AssemblerBuffer::EnsureCapacity ensured(&Buffer); | 192 AssemblerBuffer::EnsureCapacity ensured(&Buffer); |
143 uint32_t Encoding = (encodeCondition(Cond) << kConditionShift) | B24 | B21 | | 193 uint32_t Encoding = (encodeCondition(Cond) << kConditionShift) | B24 | B21 | |
144 (0xfff << 8) | B4 | (encodeGPRRegister(Rm) << kRmShift); | 194 (0xfff << 8) | B4 | (encodeGPRRegister(Rm) << kRmShift); |
145 emitInst(Encoding); | 195 emitInst(Encoding); |
146 } | 196 } |
147 | 197 |
148 void ARM32::AssemblerARM32::mov(RegARM32::GPRRegister Rd, | 198 void ARM32::AssemblerARM32::mov(const Operand *OpRd, const Operand *OpSrc, |
149 const OperandARM32FlexImm &FlexImm, | |
150 CondARM32::Cond Cond) { | 199 CondARM32::Cond Cond) { |
151 // cccc0011101s0000ddddiiiiiiiiiiii (ARM section A8.8.102, encoding A1) | 200 // Note: Loop is used so that we can short ciruit using break; |
152 assert(isConditionDefined(Cond)); | 201 do { |
153 AssemblerBuffer::EnsureCapacity ensured(&Buffer); | 202 uint32_t Rd; |
154 bool SetCc = false; // Note: We don't use movs in this assembler. | 203 if (decode(OpRd, Rd) != DecodedAsRegister) |
155 uint32_t Rn = 0; | 204 break; |
156 uint32_t Mov = B3 | B2 | B0; // 1101. | 205 uint32_t Src; |
157 emitType01(Cond, kInstTypeImmediate, Mov, SetCc, Rn, encodeGPRRegister(Rd), | 206 // TODO(kschimpf) Handle other forms of mov. |
158 encodeImm12FromFlexImm(FlexImm)); | 207 if (decode(OpSrc, Src) == DecodedAsRotatedImm8) { |
208 // cccc0011101s0000ddddiiiiiiiiiiii (ARM section A8.8.102, encoding A1) | |
209 // Note: We don't use movs in this assembler. | |
210 constexpr bool SetFlags = false; | |
211 if (!isConditionDefined(Cond) || (Rd == RegARM32::Reg_pc && SetFlags)) | |
212 // Conditions of rule violated. | |
213 break; | |
214 uint32_t Rn = 0; | |
215 uint32_t Mov = B3 | B2 | B0; // 1101. | |
216 uint32_t InstType = 1; | |
217 emitType01(Cond, InstType, Mov, SetFlags, Rn, Rd, Src); | |
218 return; | |
219 } | |
220 } while (0); | |
221 UnimplementedError(Ctx->getFlags()); | |
159 } | 222 } |
160 | 223 |
161 } // end of namespace Ice | 224 } // end of namespace Ice |
OLD | NEW |