Index: nss/lib/freebl/ecl/ecp_384.c |
=================================================================== |
--- nss/lib/freebl/ecl/ecp_384.c (revision 0) |
+++ nss/lib/freebl/ecl/ecp_384.c (revision 0) |
@@ -0,0 +1,258 @@ |
+/* This Source Code Form is subject to the terms of the Mozilla Public |
+ * License, v. 2.0. If a copy of the MPL was not distributed with this |
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
+ |
+#include "ecp.h" |
+#include "mpi.h" |
+#include "mplogic.h" |
+#include "mpi-priv.h" |
+ |
+/* Fast modular reduction for p384 = 2^384 - 2^128 - 2^96 + 2^32 - 1. a can be r. |
+ * Uses algorithm 2.30 from Hankerson, Menezes, Vanstone. Guide to |
+ * Elliptic Curve Cryptography. */ |
+static mp_err |
+ec_GFp_nistp384_mod(const mp_int *a, mp_int *r, const GFMethod *meth) |
+{ |
+ mp_err res = MP_OKAY; |
+ int a_bits = mpl_significant_bits(a); |
+ int i; |
+ |
+ /* m1, m2 are statically-allocated mp_int of exactly the size we need */ |
+ mp_int m[10]; |
+ |
+#ifdef ECL_THIRTY_TWO_BIT |
+ mp_digit s[10][12]; |
+ for (i = 0; i < 10; i++) { |
+ MP_SIGN(&m[i]) = MP_ZPOS; |
+ MP_ALLOC(&m[i]) = 12; |
+ MP_USED(&m[i]) = 12; |
+ MP_DIGITS(&m[i]) = s[i]; |
+ } |
+#else |
+ mp_digit s[10][6]; |
+ for (i = 0; i < 10; i++) { |
+ MP_SIGN(&m[i]) = MP_ZPOS; |
+ MP_ALLOC(&m[i]) = 6; |
+ MP_USED(&m[i]) = 6; |
+ MP_DIGITS(&m[i]) = s[i]; |
+ } |
+#endif |
+ |
+#ifdef ECL_THIRTY_TWO_BIT |
+ /* for polynomials larger than twice the field size or polynomials |
+ * not using all words, use regular reduction */ |
+ if ((a_bits > 768) || (a_bits <= 736)) { |
+ MP_CHECKOK(mp_mod(a, &meth->irr, r)); |
+ } else { |
+ for (i = 0; i < 12; i++) { |
+ s[0][i] = MP_DIGIT(a, i); |
+ } |
+ s[1][0] = 0; |
+ s[1][1] = 0; |
+ s[1][2] = 0; |
+ s[1][3] = 0; |
+ s[1][4] = MP_DIGIT(a, 21); |
+ s[1][5] = MP_DIGIT(a, 22); |
+ s[1][6] = MP_DIGIT(a, 23); |
+ s[1][7] = 0; |
+ s[1][8] = 0; |
+ s[1][9] = 0; |
+ s[1][10] = 0; |
+ s[1][11] = 0; |
+ for (i = 0; i < 12; i++) { |
+ s[2][i] = MP_DIGIT(a, i+12); |
+ } |
+ s[3][0] = MP_DIGIT(a, 21); |
+ s[3][1] = MP_DIGIT(a, 22); |
+ s[3][2] = MP_DIGIT(a, 23); |
+ for (i = 3; i < 12; i++) { |
+ s[3][i] = MP_DIGIT(a, i+9); |
+ } |
+ s[4][0] = 0; |
+ s[4][1] = MP_DIGIT(a, 23); |
+ s[4][2] = 0; |
+ s[4][3] = MP_DIGIT(a, 20); |
+ for (i = 4; i < 12; i++) { |
+ s[4][i] = MP_DIGIT(a, i+8); |
+ } |
+ s[5][0] = 0; |
+ s[5][1] = 0; |
+ s[5][2] = 0; |
+ s[5][3] = 0; |
+ s[5][4] = MP_DIGIT(a, 20); |
+ s[5][5] = MP_DIGIT(a, 21); |
+ s[5][6] = MP_DIGIT(a, 22); |
+ s[5][7] = MP_DIGIT(a, 23); |
+ s[5][8] = 0; |
+ s[5][9] = 0; |
+ s[5][10] = 0; |
+ s[5][11] = 0; |
+ s[6][0] = MP_DIGIT(a, 20); |
+ s[6][1] = 0; |
+ s[6][2] = 0; |
+ s[6][3] = MP_DIGIT(a, 21); |
+ s[6][4] = MP_DIGIT(a, 22); |
+ s[6][5] = MP_DIGIT(a, 23); |
+ s[6][6] = 0; |
+ s[6][7] = 0; |
+ s[6][8] = 0; |
+ s[6][9] = 0; |
+ s[6][10] = 0; |
+ s[6][11] = 0; |
+ s[7][0] = MP_DIGIT(a, 23); |
+ for (i = 1; i < 12; i++) { |
+ s[7][i] = MP_DIGIT(a, i+11); |
+ } |
+ s[8][0] = 0; |
+ s[8][1] = MP_DIGIT(a, 20); |
+ s[8][2] = MP_DIGIT(a, 21); |
+ s[8][3] = MP_DIGIT(a, 22); |
+ s[8][4] = MP_DIGIT(a, 23); |
+ s[8][5] = 0; |
+ s[8][6] = 0; |
+ s[8][7] = 0; |
+ s[8][8] = 0; |
+ s[8][9] = 0; |
+ s[8][10] = 0; |
+ s[8][11] = 0; |
+ s[9][0] = 0; |
+ s[9][1] = 0; |
+ s[9][2] = 0; |
+ s[9][3] = MP_DIGIT(a, 23); |
+ s[9][4] = MP_DIGIT(a, 23); |
+ s[9][5] = 0; |
+ s[9][6] = 0; |
+ s[9][7] = 0; |
+ s[9][8] = 0; |
+ s[9][9] = 0; |
+ s[9][10] = 0; |
+ s[9][11] = 0; |
+ |
+ MP_CHECKOK(mp_add(&m[0], &m[1], r)); |
+ MP_CHECKOK(mp_add(r, &m[1], r)); |
+ MP_CHECKOK(mp_add(r, &m[2], r)); |
+ MP_CHECKOK(mp_add(r, &m[3], r)); |
+ MP_CHECKOK(mp_add(r, &m[4], r)); |
+ MP_CHECKOK(mp_add(r, &m[5], r)); |
+ MP_CHECKOK(mp_add(r, &m[6], r)); |
+ MP_CHECKOK(mp_sub(r, &m[7], r)); |
+ MP_CHECKOK(mp_sub(r, &m[8], r)); |
+ MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r)); |
+ s_mp_clamp(r); |
+ } |
+#else |
+ /* for polynomials larger than twice the field size or polynomials |
+ * not using all words, use regular reduction */ |
+ if ((a_bits > 768) || (a_bits <= 736)) { |
+ MP_CHECKOK(mp_mod(a, &meth->irr, r)); |
+ } else { |
+ for (i = 0; i < 6; i++) { |
+ s[0][i] = MP_DIGIT(a, i); |
+ } |
+ s[1][0] = 0; |
+ s[1][1] = 0; |
+ s[1][2] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32); |
+ s[1][3] = MP_DIGIT(a, 11) >> 32; |
+ s[1][4] = 0; |
+ s[1][5] = 0; |
+ for (i = 0; i < 6; i++) { |
+ s[2][i] = MP_DIGIT(a, i+6); |
+ } |
+ s[3][0] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32); |
+ s[3][1] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32); |
+ for (i = 2; i < 6; i++) { |
+ s[3][i] = (MP_DIGIT(a, i+4) >> 32) | (MP_DIGIT(a, i+5) << 32); |
+ } |
+ s[4][0] = (MP_DIGIT(a, 11) >> 32) << 32; |
+ s[4][1] = MP_DIGIT(a, 10) << 32; |
+ for (i = 2; i < 6; i++) { |
+ s[4][i] = MP_DIGIT(a, i+4); |
+ } |
+ s[5][0] = 0; |
+ s[5][1] = 0; |
+ s[5][2] = MP_DIGIT(a, 10); |
+ s[5][3] = MP_DIGIT(a, 11); |
+ s[5][4] = 0; |
+ s[5][5] = 0; |
+ s[6][0] = (MP_DIGIT(a, 10) << 32) >> 32; |
+ s[6][1] = (MP_DIGIT(a, 10) >> 32) << 32; |
+ s[6][2] = MP_DIGIT(a, 11); |
+ s[6][3] = 0; |
+ s[6][4] = 0; |
+ s[6][5] = 0; |
+ s[7][0] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32); |
+ for (i = 1; i < 6; i++) { |
+ s[7][i] = (MP_DIGIT(a, i+5) >> 32) | (MP_DIGIT(a, i+6) << 32); |
+ } |
+ s[8][0] = MP_DIGIT(a, 10) << 32; |
+ s[8][1] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32); |
+ s[8][2] = MP_DIGIT(a, 11) >> 32; |
+ s[8][3] = 0; |
+ s[8][4] = 0; |
+ s[8][5] = 0; |
+ s[9][0] = 0; |
+ s[9][1] = (MP_DIGIT(a, 11) >> 32) << 32; |
+ s[9][2] = MP_DIGIT(a, 11) >> 32; |
+ s[9][3] = 0; |
+ s[9][4] = 0; |
+ s[9][5] = 0; |
+ |
+ MP_CHECKOK(mp_add(&m[0], &m[1], r)); |
+ MP_CHECKOK(mp_add(r, &m[1], r)); |
+ MP_CHECKOK(mp_add(r, &m[2], r)); |
+ MP_CHECKOK(mp_add(r, &m[3], r)); |
+ MP_CHECKOK(mp_add(r, &m[4], r)); |
+ MP_CHECKOK(mp_add(r, &m[5], r)); |
+ MP_CHECKOK(mp_add(r, &m[6], r)); |
+ MP_CHECKOK(mp_sub(r, &m[7], r)); |
+ MP_CHECKOK(mp_sub(r, &m[8], r)); |
+ MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r)); |
+ s_mp_clamp(r); |
+ } |
+#endif |
+ |
+ CLEANUP: |
+ return res; |
+} |
+ |
+/* Compute the square of polynomial a, reduce modulo p384. Store the |
+ * result in r. r could be a. Uses optimized modular reduction for p384. |
+ */ |
+static mp_err |
+ec_GFp_nistp384_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) |
+{ |
+ mp_err res = MP_OKAY; |
+ |
+ MP_CHECKOK(mp_sqr(a, r)); |
+ MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth)); |
+ CLEANUP: |
+ return res; |
+} |
+ |
+/* Compute the product of two polynomials a and b, reduce modulo p384. |
+ * Store the result in r. r could be a or b; a could be b. Uses |
+ * optimized modular reduction for p384. */ |
+static mp_err |
+ec_GFp_nistp384_mul(const mp_int *a, const mp_int *b, mp_int *r, |
+ const GFMethod *meth) |
+{ |
+ mp_err res = MP_OKAY; |
+ |
+ MP_CHECKOK(mp_mul(a, b, r)); |
+ MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth)); |
+ CLEANUP: |
+ return res; |
+} |
+ |
+/* Wire in fast field arithmetic and precomputation of base point for |
+ * named curves. */ |
+mp_err |
+ec_group_set_gfp384(ECGroup *group, ECCurveName name) |
+{ |
+ if (name == ECCurve_NIST_P384) { |
+ group->meth->field_mod = &ec_GFp_nistp384_mod; |
+ group->meth->field_mul = &ec_GFp_nistp384_mul; |
+ group->meth->field_sqr = &ec_GFp_nistp384_sqr; |
+ } |
+ return MP_OKAY; |
+} |
Property changes on: nss/lib/freebl/ecl/ecp_384.c |
___________________________________________________________________ |
Added: svn:eol-style |
+ LF |