Index: third_party/WebKit/LayoutTests/webaudio/iirfilter.html |
diff --git a/third_party/WebKit/LayoutTests/webaudio/iirfilter.html b/third_party/WebKit/LayoutTests/webaudio/iirfilter.html |
new file mode 100644 |
index 0000000000000000000000000000000000000000..f1e9a8b4a68bfe12a3960b5b7adda7f1d28089ef |
--- /dev/null |
+++ b/third_party/WebKit/LayoutTests/webaudio/iirfilter.html |
@@ -0,0 +1,574 @@ |
+<!doctype html> |
+<html> |
+ <head> |
+ <title>Test Basic IIRFilterNode Operation</title> |
+ <script src="../resources/js-test.js"></script> |
+ <script src="resources/compatibility.js"></script> |
+ <script src="resources/audio-testing.js"></script> |
+ <script src="resources/biquad-filters.js"></script> |
+ </head> |
+ |
+ <body> |
+ <script> |
+ description("Test Basic IIRFilterNode Operation"); |
+ window.jsTestIsAsync = true; |
+ |
+ var sampleRate = 48000; |
+ var testDurationSec = 1; |
+ var testFrames = testDurationSec * sampleRate; |
+ |
+ var audit = Audit.createTaskRunner(); |
+ |
+ audit.defineTask("coefficient-normalization", function (done) { |
+ // Test that the feedback coefficients are normalized. Do this be creating two |
+ // IIRFilterNodes. One has normalized coefficients, and one doesn't. Compute the |
+ // difference and make sure they're the same. |
+ var success = true; |
+ var context = new OfflineAudioContext(2, testFrames, sampleRate); |
+ |
+ // Use a simple impulse as the source. |
+ var buffer = context.createBuffer(1, 1, sampleRate); |
+ buffer.getChannelData(0)[0] = 1; |
+ var source = context.createBufferSource(); |
+ source.buffer = buffer; |
+ |
+ // Gain node for computing the difference between the filters. |
+ var gain = context.createGain(); |
+ gain.gain.value = -1; |
+ |
+ // The IIR filters. Use a common feedforward array. |
+ var ff = [1]; |
+ |
+ var fb1 = [1, .9]; |
+ |
+ var fb2 = new Float64Array(2); |
+ // Scale the feedback coefficients by an arbitrary factor. |
+ var coefScaleFactor = 2; |
+ for (var k = 0; k < fb2.length; ++k) { |
+ fb2[k] = coefScaleFactor * fb1[k]; |
+ } |
+ |
+ var iir1; |
+ var iir2; |
+ |
+ success = Should("createIIRFilter with normalized coefficients", function () { |
+ iir1 = context.createIIRFilter(ff, fb1); |
+ }).notThrow() && success; |
+ |
+ success = Should("createIIRFilter with unnormalized coefficients", function () { |
+ iir2 = context.createIIRFilter(ff, fb2); |
+ }).notThrow() && success; |
+ |
+ // Create the graph. The output of iir1 (normalized coefficients) is channel 0, and the |
+ // output of iir2 (unnormalized coefficients), with appropriate scaling, is channel 1. |
+ var merger = context.createChannelMerger(2); |
+ source.connect(iir1); |
+ source.connect(iir2); |
+ iir1.connect(merger, 0, 0); |
+ iir2.connect(gain); |
+ |
+ // The gain for the gain node should be set to compensate for the scaling of the |
+ // coefficients. Since iir2 has scaled the coefficients by coefScaleFactor, the output is |
+ // reduced by the same factor, so adjust the gain to scale the output of iir2 back up. |
+ gain.gain.value = coefScaleFactor; |
+ gain.connect(merger, 0, 1); |
+ |
+ merger.connect(context.destination); |
+ |
+ source.start(); |
+ |
+ // Rock and roll! |
+ |
+ context.startRendering().then(function (result) { |
+ // Find the max amplitude of the result, which should be near zero. |
+ var iir1Data = result.getChannelData(0); |
+ var iir2Data = result.getChannelData(1); |
+ |
+ // Threshold isn't exactly zero because the arithmetic is done differently between the |
+ // IIRFilterNode and the BiquadFilterNode. |
+ success = Should("Output of IIR filter with unnormalized coefficients", iir2Data) |
+ .beCloseToArray(iir1Data, 2.1958e-38) && success; |
+ if (success) |
+ testPassed("IIRFilter coefficients correctly normalized.\n"); |
+ else |
+ testFailed("IIRFilter coefficients not correctly normalized.\n"); |
+ }).then(done); |
+ }); |
+ |
+ audit.defineTask("one-zero", function (done) { |
+ // Create a simple 1-zero filter and compare with the expected output. |
+ var context = new OfflineAudioContext(1, testFrames, sampleRate); |
+ |
+ // Use a simple impulse as the source |
+ var buffer = context.createBuffer(1, 1, sampleRate); |
+ buffer.getChannelData(0)[0] = 1; |
+ var source = context.createBufferSource(); |
+ source.buffer = buffer; |
+ |
+ // The filter is y(n) = 0.5*(x(n) + x(n-1)), a simple 2-point moving average. This is |
+ // rather arbitrary; keep it simple. |
+ |
+ var iir = context.createIIRFilter([0.5, 0.5], [1]); |
+ |
+ // Create the graph |
+ source.connect(iir); |
+ iir.connect(context.destination); |
+ |
+ // Rock and roll! |
+ source.start(); |
+ |
+ context.startRendering().then(function (result) { |
+ var actual = result.getChannelData(0); |
+ var expected = new Float64Array(testFrames); |
+ // The filter is a simple 2-point moving average of an impulse, so the first two values |
+ // are non-zero and the rest are zero. |
+ expected[0] = 0.5; |
+ expected[1] = 0.5; |
+ Should('IIR 1-zero output', actual).beCloseToArray(expected, 0); |
+ }).then(done); |
+ }); |
+ |
+ audit.defineTask("one-pole", function (done) { |
+ // Create a simple 1-pole filter and compare with the expected output. |
+ |
+ // The filter is y(n) + c*y(n-1)= x(n). The analytical response is (-c)^n, so choose a |
+ // suitable number of frames to run the test for where the output isn't flushed to zero. |
+ var c = 0.9; |
+ var eps = 1e-20; |
+ var duration = Math.floor(Math.log(eps) / Math.log(Math.abs(c))); |
+ var context = new OfflineAudioContext(1, duration, sampleRate); |
+ |
+ // Use a simple impulse as the source |
+ var buffer = context.createBuffer(1, 1, sampleRate); |
+ buffer.getChannelData(0)[0] = 1; |
+ var source = context.createBufferSource(); |
+ source.buffer = buffer; |
+ |
+ var iir = context.createIIRFilter([1], [1, c]); |
+ |
+ // Create the graph |
+ source.connect(iir); |
+ iir.connect(context.destination); |
+ |
+ // Rock and roll! |
+ source.start(); |
+ |
+ context.startRendering().then(function (result) { |
+ var actual = result.getChannelData(0); |
+ var expected = new Float64Array(actual.length); |
+ |
+ // The filter is a simple 1-pole filter: y(n) = -c*y(n-k)+x(n), with an impulse as the |
+ // input. |
+ expected[0] = 1; |
+ for (k = 1; k < testFrames; ++k) { |
+ expected[k] = -c * expected[k-1]; |
+ } |
+ |
+ // Threshold isn't exactly zero due to round-off in the single-precision IIRFilterNode |
+ // computations versus the double-precision Javascript computations. |
+ Should('IIR 1-pole output', actual, {verbose: true}) |
+ .beCloseToArray(expected, {relativeThreshold: 5.723e-8}); |
+ }).then(done); |
+ }); |
+ |
+ // Return a function suitable for use as a defineTask function. This function creates an |
+ // IIRFilterNode equivalent to the specified BiquadFilterNode and compares the outputs. The |
+ // outputs from the two filters should be virtually identical. |
+ function testWithBiquadFilter (filterType, errorThreshold, snrThreshold) { |
+ return function (done) { |
+ var context = new OfflineAudioContext(2, testFrames, sampleRate); |
+ |
+ // Use a constant (step function) as the source |
+ var buffer = createConstantBuffer(context, testFrames, 1); |
+ var source = context.createBufferSource(); |
+ source.buffer = buffer; |
+ |
+ |
+ // Create the biquad. Choose some rather arbitrary values for Q and gain for the biquad |
+ // so that the shelf filters aren't identical. |
+ var biquad = context.createBiquadFilter(); |
+ biquad.type = filterType; |
+ biquad.Q.value = 10; |
+ biquad.gain.value = 10; |
+ |
+ // Create the equivalent IIR Filter node by computing the coefficients of the given biquad |
+ // filter type. |
+ var nyquist = sampleRate / 2; |
+ var coef = createFilter(filterType, |
+ biquad.frequency.value / nyquist, |
+ biquad.Q.value, |
+ biquad.gain.value); |
+ |
+ var iir = context.createIIRFilter([coef.b0, coef.b1, coef.b2], [1, coef.a1, coef.a2]); |
+ |
+ var merger = context.createChannelMerger(2); |
+ // Create the graph |
+ source.connect(biquad); |
+ source.connect(iir); |
+ |
+ biquad.connect(merger, 0, 0); |
+ iir.connect(merger, 0, 1); |
+ |
+ merger.connect(context.destination); |
+ |
+ // Rock and roll! |
+ source.start(); |
+ |
+ context.startRendering().then(function (result) { |
+ // Find the max amplitude of the result, which should be near zero. |
+ var expected = result.getChannelData(0); |
+ var actual = result.getChannelData(1); |
+ |
+ // On MacOSX, WebAudio uses an optimized Biquad implementation that is different from |
+ // the implementation used for Linux and Windows. This will cause the output to differ, |
+ // even if the threshold passes. Thus, only print out a very small number of elements |
+ // of the array where we have tested that they are consistent. |
+ Should("IIRFilter for Biquad " + filterType, actual, { |
+ precision: 5, |
+ verbose: true |
+ }) |
+ .beCloseToArray(expected, errorThreshold); |
+ |
+ var snr = 10*Math.log10(computeSNR(actual, expected)); |
+ Should("SNR for IIRFIlter for Biquad " + filterType, snr).beGreaterThanOrEqualTo(snrThreshold); |
+ }).then(done); |
+ }; |
+ } |
+ |
+ // Thresholds here are experimentally determined. |
+ var biquadTestConfigs = [{ |
+ filterType: "lowpass", |
+ snrThreshold: 91.222, |
+ errorThreshold: { |
+ relativeThreshold: 4.15e-5 |
+ } |
+ }, { |
+ filterType: "highpass", |
+ snrThreshold: 107.246, |
+ errorThreshold: { |
+ absoluteThreshold: 2.9e-6, |
+ relativeThreshold: 3e-5 |
+ } |
+ }, { |
+ filterType: "bandpass", |
+ snrThreshold: 104.060, |
+ errorThreshold: { |
+ absoluteThreshold: 2e-7, |
+ relativeThreshold: 8.7e-4 |
+ } |
+ }, { |
+ filterType: "notch", |
+ snrThreshold: 91.312, |
+ errorThreshold: { |
+ absoluteThreshold: 0, |
+ relativeThreshold: 4.22e-5 |
+ } |
+ }, { |
+ filterType: "allpass", |
+ snrThreshold: 91.319, |
+ errorThreshold: { |
+ absoluteThreshold: 0, |
+ relativeThreshold: 4.31e-5 |
+ } |
+ }, { |
+ filterType: "lowshelf", |
+ snrThreshold: 90.609, |
+ errorThreshold: { |
+ absoluteThreshold: 0, |
+ relativeThreshold: 2.98e-5 |
+ } |
+ }, { |
+ filterType: "highshelf", |
+ snrThreshold: 103.159, |
+ errorThreshold: { |
+ absoluteThreshold: 0, |
+ relativeThreshold: 1.24e-5 |
+ } |
+ }, { |
+ filterType: "peaking", |
+ snrThreshold: 91.504, |
+ errorThreshold: { |
+ absoluteThreshold: 0, |
+ relativeThreshold: 5.05e-5 |
+ } |
+ }]; |
+ |
+ // Create a set of tasks based on biquadTestConfigs. |
+ for (k = 0; k < biquadTestConfigs.length; ++k) { |
+ var config = biquadTestConfigs[k]; |
+ var name = k + ": " + config.filterType; |
+ audit.defineTask(name, testWithBiquadFilter(config.filterType, config.errorThreshold, config.snrThreshold)); |
+ } |
+ |
+ audit.defineTask("multi-channel", function (done) { |
+ // Multi-channel test. Create a biquad filter and the equivalent IIR filter. Filter the |
+ // same multichannel signal and compare the results. |
+ var nChannels = 3; |
+ var context = new OfflineAudioContext(nChannels, testFrames, sampleRate); |
+ |
+ // Create a set of oscillators as the multi-channel source. |
+ var source = []; |
+ |
+ for (k = 0; k < nChannels; ++k) { |
+ source[k] = context.createOscillator(); |
+ source[k].type = "sawtooth"; |
+ // The frequency of the oscillator is pretty arbitrary, but each oscillator should have a |
+ // different frequency. |
+ source[k].frequency.value = 100 + k * 100; |
+ } |
+ |
+ var merger = context.createChannelMerger(3); |
+ |
+ var biquad = context.createBiquadFilter(); |
+ |
+ // Create the equivalent IIR Filter node. |
+ var nyquist = sampleRate / 2; |
+ var coef = createFilter(biquad.type, |
+ biquad.frequency.value / nyquist, |
+ biquad.Q.value, |
+ biquad.gain.value); |
+ var fb = [1, coef.a1, coef.a2]; |
+ var ff = [coef.b0, coef.b1, coef.b2]; |
+ |
+ var iir = context.createIIRFilter(ff, fb); |
+ // Gain node to compute the difference between the IIR and biquad filter. |
+ var gain = context.createGain(); |
+ gain.gain.value = -1; |
+ |
+ // Create the graph. |
+ for (k = 0; k < nChannels; ++k) |
+ source[k].connect(merger, 0, k); |
+ |
+ merger.connect(biquad); |
+ merger.connect(iir); |
+ iir.connect(gain); |
+ biquad.connect(context.destination); |
+ gain.connect(context.destination); |
+ |
+ for (k = 0; k < nChannels; ++k) |
+ source[k].start(); |
+ |
+ context.startRendering().then(function (result) { |
+ var success = true; |
+ var errorThresholds = [3.7671e-5, 3.0071e-5, 2.6241e-5]; |
+ |
+ // Check the difference signal on each channel |
+ for (channel = 0; channel < result.numberOfChannels; ++channel) { |
+ // Find the max amplitude of the result, which should be near zero. |
+ var data = result.getChannelData(channel); |
+ var maxError = data.reduce(function(reducedValue, currentValue) { |
+ return Math.max(reducedValue, Math.abs(currentValue)); |
+ }); |
+ |
+ success = Should("Max difference between IIR and Biquad on channel " + channel, |
+ maxError).beLessThanOrEqualTo(errorThresholds[channel]); |
+ } |
+ |
+ if (success) { |
+ testPassed("IIRFilter correctly processed " + result.numberOfChannels + |
+ "-channel input."); |
+ } else { |
+ testFailed("IIRFilter failed to correctly process " + result.numberOfChannels + |
+ "-channel input."); |
+ } |
+ }).then(done); |
+ }); |
+ |
+ // Apply an IIRFilter to the given input signal. |
+ // |
+ // IIR filter in the time domain is |
+ // |
+ // y[n] = sum(ff[k]*x[n-k], k, 0, M) - sum(fb[k]*y[n-k], k, 1, N) |
+ // |
+ function iirFilter(input, feedforward, feedback) { |
+ // For simplicity, create an x buffer that contains the input, and a y buffer that contains |
+ // the output. Both of these buffers have an initial work space to implement the initial |
+ // memory of the filter. |
+ var workSize = Math.max(feedforward.length, feedback.length); |
+ var x = new Float32Array(input.length + workSize); |
+ |
+ // Float64 because we want to match the implementation that uses doubles to minimize |
+ // roundoff. |
+ var y = new Float64Array(input.length + workSize); |
+ |
+ // Copy the input over. |
+ for (var k = 0; k < input.length; ++k) |
+ x[k + feedforward.length] = input[k]; |
+ |
+ // Run the filter |
+ for (var n = 0; n < input.length; ++n) { |
+ var index = n + workSize; |
+ var yn = 0; |
+ for (var k = 0; k < feedforward.length; ++k) |
+ yn += feedforward[k] * x[index - k]; |
+ for (var k = 0; k < feedback.length; ++k) |
+ yn -= feedback[k] * y[index - k]; |
+ |
+ y[index] = yn; |
+ } |
+ |
+ return y.slice(workSize).map(Math.fround); |
+ } |
+ |
+ // Cascade the two given biquad filters to create one IIR filter. |
+ function cascadeBiquads(f1Coef, f2Coef) { |
+ // The biquad filters are: |
+ // |
+ // f1 = (b10 + b11/z + b12/z^2)/(1 + a11/z + a12/z^2); |
+ // f2 = (b20 + b21/z + b22/z^2)/(1 + a21/z + a22/z^2); |
+ // |
+ // To cascade them, multiply the two transforms together to get a fourth order IIR filter. |
+ |
+ var numProduct = [f1Coef.b0 * f2Coef.b0, |
+ f1Coef.b0 * f2Coef.b1 + f1Coef.b1 * f2Coef.b0, |
+ f1Coef.b0 * f2Coef.b2 + f1Coef.b1 * f2Coef.b1 + f1Coef.b2 * f2Coef.b0, |
+ f1Coef.b1 * f2Coef.b2 + f1Coef.b2 * f2Coef.b1, |
+ f1Coef.b2 * f2Coef.b2 |
+ ]; |
+ |
+ var denProduct = [1, |
+ f2Coef.a1 + f1Coef.a1, |
+ f2Coef.a2 + f1Coef.a1 * f2Coef.a1 + f1Coef.a2, |
+ f1Coef.a1 * f2Coef.a2 + f1Coef.a2 * f2Coef.a1, |
+ f1Coef.a2 * f2Coef.a2 |
+ ]; |
+ |
+ return { |
+ ff: numProduct, |
+ fb: denProduct |
+ } |
+ } |
+ |
+ // Find the magnitude of the root of the quadratic that has the maximum magnitude. |
+ // |
+ // The quadratic is z^2 + a1 * z + a2 and we want the root z that has the largest magnitude. |
+ function largestRootMagnitude(a1, a2) { |
+ var discriminant = a1 * a1 - 4 * a2; |
+ if (discriminant < 0) { |
+ // Complex roots: -a1/2 +/- i*sqrt(-d)/2. Thus the magnitude of each root is the same |
+ // and is sqrt(a1^2/4 + |d|/4) |
+ var d = Math.sqrt(-discriminant); |
+ return Math.hypot(a1 / 2, d / 2); |
+ } else { |
+ // Real roots |
+ var d = Math.sqrt(discriminant); |
+ return Math.max(Math.abs((-a1 + d) / 2), Math.abs((-a1 - d) / 2)); |
+ } |
+ } |
+ |
+ audit.defineTask("4th-order-iir", function(done) { |
+ // Cascade 2 lowpass biquad filters and compare that with the equivalent 4th order IIR |
+ // filter. |
+ |
+ var nyquist = sampleRate / 2; |
+ // Compute the coefficients of a lowpass filter. |
+ |
+ // First some preliminary stuff. Compute the coefficients of the biquad. This is used to |
+ // figure out how frames to use in the test. |
+ var biquadType = "lowpass"; |
+ var biquadCutoff = 350; |
+ var biquadQ = 5; |
+ var biquadGain = 1; |
+ |
+ var coef = createFilter(biquadType, |
+ biquadCutoff / nyquist, |
+ biquadQ, |
+ biquadGain); |
+ |
+ // Cascade the biquads together to create an equivalent IIR filter. |
+ var cascade = cascadeBiquads(coef, coef); |
+ |
+ // Since we're cascading two identical biquads, the root of denominator of the IIR filter is |
+ // repeated, so the root of the denominator with the largest magnitude occurs twice. The |
+ // impulse response of the IIR filter will be roughly c*(r*r)^n at time n, where r is the |
+ // root of largest magnitude. This approximation gets better as n increases. We can use |
+ // this to get a rough idea of when the response has died down to a small value. |
+ |
+ // This is the value we will use to determine how many frames to render. Rendering too many |
+ // is a waste of time and also makes it hard to compare the actual result to the expected |
+ // because the magnitudes are so small that they could be mostly round-off noise. |
+ // |
+ // Find magnitude of the root with largest magnitude |
+ var rootMagnitude = largestRootMagnitude(coef.a1, coef.a2); |
+ |
+ // Find n such that |r|^(2*n) <= eps. That is, n = log(eps)/(2*log(r)). Somewhat |
+ // arbitrarily choose eps = 1e-20; |
+ var eps = 1e-20; |
+ var framesForTest = Math.floor(Math.log(eps) / (2 * Math.log(rootMagnitude))); |
+ |
+ // We're ready to create the graph for the test. The offline context has two channels: |
+ // channel 0 is the expected (cascaded biquad) result and channel 1 is the actual IIR filter |
+ // result. |
+ var context = new OfflineAudioContext(2, framesForTest, sampleRate); |
+ |
+ // Use a simple impulse with a large (arbitrary) amplitude as the source |
+ var amplitude = 1; |
+ var buffer = context.createBuffer(1, testFrames, sampleRate); |
+ buffer.getChannelData(0)[0] = amplitude; |
+ var source = context.createBufferSource(); |
+ source.buffer = buffer; |
+ |
+ // Create the two biquad filters. Doesn't really matter what, but for simplicity we choose |
+ // identical lowpass filters with the same parameters. |
+ var biquad1 = context.createBiquadFilter(); |
+ biquad1.type = biquadType; |
+ biquad1.frequency.value = biquadCutoff; |
+ biquad1.Q.value = biquadQ; |
+ |
+ var biquad2 = context.createBiquadFilter(); |
+ biquad2.type = biquadType; |
+ biquad2.frequency.value = biquadCutoff; |
+ biquad2.Q.value = biquadQ; |
+ |
+ var iir = context.createIIRFilter(cascade.ff, cascade.fb); |
+ |
+ // Create the merger to get the signals into multiple channels |
+ var merger = context.createChannelMerger(2); |
+ |
+ // Create the graph, filtering the source through two biquads. |
+ source.connect(biquad1); |
+ biquad1.connect(biquad2); |
+ biquad2.connect(merger, 0, 0); |
+ |
+ source.connect(iir); |
+ iir.connect(merger, 0, 1); |
+ |
+ merger.connect(context.destination); |
+ |
+ // Now filter the source through the IIR filter. |
+ var y = iirFilter(buffer.getChannelData(0), cascade.ff, cascade.fb); |
+ |
+ // Rock and roll! |
+ source.start(); |
+ |
+ context.startRendering().then(function(result) { |
+ var expected = result.getChannelData(0); |
+ var actual = result.getChannelData(1); |
+ |
+ Should("4-th order IIRFilter (biquad ref)", |
+ actual, { |
+ verbose: true, |
+ precision: 5 |
+ }) |
+ .beCloseToArray(expected, { |
+ // Thresholds experimentally determined. |
+ absoluteThreshold: 8.4e-8, |
+ relativeThreshold: 5e-7, |
+ }); |
+ |
+ var snr = 10*Math.log10(computeSNR(actual, expected)); |
+ Should("SNR of 4-th order IIRFilter (biquad ref)", snr) |
+ .beGreaterThanOrEqualTo(110.684); |
+ }).then(done); |
+ }); |
+ |
+ audit.defineTask("finish", function (done) { |
+ finishJSTest(); |
+ done(); |
+ }); |
+ |
+ audit.runTasks(); |
+ successfullyParsed = true; |
+ </script> |
+ </body> |
+</html> |