| Index: src/x64/code-stubs-x64.cc
|
| diff --git a/src/x64/code-stubs-x64.cc b/src/x64/code-stubs-x64.cc
|
| index 095113c40da56f397fbecbdc8f8b6d261ee38295..21066468792a95cdfdbaf66b77860361bbf69d02 100644
|
| --- a/src/x64/code-stubs-x64.cc
|
| +++ b/src/x64/code-stubs-x64.cc
|
| @@ -2956,6 +2956,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
| __ JumpIfSmi(rax, &runtime);
|
| __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister);
|
| __ j(not_equal, &runtime);
|
| +
|
| // Check that the RegExp has been compiled (data contains a fixed array).
|
| __ movq(rax, FieldOperand(rax, JSRegExp::kDataOffset));
|
| if (FLAG_debug_code) {
|
| @@ -2976,149 +2977,120 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
| // Check that the number of captures fit in the static offsets vector buffer.
|
| __ SmiToInteger32(rdx,
|
| FieldOperand(rax, JSRegExp::kIrregexpCaptureCountOffset));
|
| - // Calculate number of capture registers (number_of_captures + 1) * 2.
|
| - __ leal(rdx, Operand(rdx, rdx, times_1, 2));
|
| - // Check that the static offsets vector buffer is large enough.
|
| - __ cmpl(rdx, Immediate(Isolate::kJSRegexpStaticOffsetsVectorSize));
|
| + // Check (number_of_captures + 1) * 2 <= offsets vector size
|
| + // Or number_of_captures <= offsets vector size / 2 - 1
|
| + STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
|
| + __ cmpl(rdx, Immediate(Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1));
|
| __ j(above, &runtime);
|
|
|
| - // rax: RegExp data (FixedArray)
|
| - // rdx: Number of capture registers
|
| - // Check that the second argument is a string.
|
| - __ movq(rdi, Operand(rsp, kSubjectOffset));
|
| - __ JumpIfSmi(rdi, &runtime);
|
| - Condition is_string = masm->IsObjectStringType(rdi, rbx, rbx);
|
| - __ j(NegateCondition(is_string), &runtime);
|
| -
|
| - // rdi: Subject string.
|
| - // rax: RegExp data (FixedArray).
|
| - // rdx: Number of capture registers.
|
| - // Check that the third argument is a positive smi less than the string
|
| - // length. A negative value will be greater (unsigned comparison).
|
| - __ movq(rbx, Operand(rsp, kPreviousIndexOffset));
|
| - __ JumpIfNotSmi(rbx, &runtime);
|
| - __ SmiCompare(rbx, FieldOperand(rdi, String::kLengthOffset));
|
| - __ j(above_equal, &runtime);
|
| -
|
| - // rax: RegExp data (FixedArray)
|
| - // rdx: Number of capture registers
|
| - // Check that the fourth object is a JSArray object.
|
| - __ movq(rdi, Operand(rsp, kLastMatchInfoOffset));
|
| - __ JumpIfSmi(rdi, &runtime);
|
| - __ CmpObjectType(rdi, JS_ARRAY_TYPE, kScratchRegister);
|
| - __ j(not_equal, &runtime);
|
| - // Check that the JSArray is in fast case.
|
| - __ movq(rbx, FieldOperand(rdi, JSArray::kElementsOffset));
|
| - __ movq(rdi, FieldOperand(rbx, HeapObject::kMapOffset));
|
| - __ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
|
| - Heap::kFixedArrayMapRootIndex);
|
| - __ j(not_equal, &runtime);
|
| - // Check that the last match info has space for the capture registers and the
|
| - // additional information. Ensure no overflow in add.
|
| - STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
|
| - __ SmiToInteger32(rdi, FieldOperand(rbx, FixedArray::kLengthOffset));
|
| - __ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead));
|
| - __ cmpl(rdx, rdi);
|
| - __ j(greater, &runtime);
|
| -
|
| // Reset offset for possibly sliced string.
|
| __ Set(r14, 0);
|
| - // rax: RegExp data (FixedArray)
|
| - // Check the representation and encoding of the subject string.
|
| - Label seq_ascii_string, seq_two_byte_string, check_code;
|
| __ movq(rdi, Operand(rsp, kSubjectOffset));
|
| - // Make a copy of the original subject string.
|
| - __ movq(r15, rdi);
|
| + __ JumpIfSmi(rdi, &runtime);
|
| + __ movq(r15, rdi); // Make a copy of the original subject string.
|
| __ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
|
| __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
|
| - // First check for flat two byte string.
|
| + // rax: RegExp data (FixedArray)
|
| + // rdi: subject string
|
| + // r15: subject string
|
| + // Handle subject string according to its encoding and representation:
|
| + // (1) Sequential two byte? If yes, go to (9).
|
| + // (2) Sequential one byte? If yes, go to (6).
|
| + // (3) Anything but sequential or cons? If yes, go to (7).
|
| + // (4) Cons string. Replace subject with first string.
|
| + // (5a) Is subject two byte? If yes, go to (9).
|
| + // (5b) Is subject external? If yes, go to (8).
|
| + // (6) One byte sequential. Load regexp code for one byte.
|
| + // (E) Carry on.
|
| + /// [...]
|
| +
|
| + // Deferred code at the end of the stub:
|
| + // (7) Not a long external string? If yes, go to (10).
|
| + // (8) External string. Make it, offset-wise, look like a sequential string.
|
| + // (8a) Is the external string one byte? If yes, go to (6).
|
| + // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
|
| + // (10) Short external string or not a string? If yes, bail out to runtime.
|
| + // (11) Sliced string. Replace subject with parent. Go to (5a).
|
| +
|
| + Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */,
|
| + external_string /* 8 */, check_underlying /* 5a */,
|
| + not_seq_nor_cons /* 7 */, check_code /* E */,
|
| + not_long_external /* 10 */;
|
| +
|
| + // (1) Sequential two byte? If yes, go to (9).
|
| __ andb(rbx, Immediate(kIsNotStringMask |
|
| kStringRepresentationMask |
|
| kStringEncodingMask |
|
| kShortExternalStringMask));
|
| STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
|
| - __ j(zero, &seq_two_byte_string, Label::kNear);
|
| - // Any other flat string must be a flat ASCII string. None of the following
|
| - // string type tests will succeed if subject is not a string or a short
|
| - // external string.
|
| + __ j(zero, &seq_two_byte_string); // Go to (9).
|
| +
|
| + // (2) Sequential one byte? If yes, go to (6).
|
| + // Any other sequential string must be one byte.
|
| __ andb(rbx, Immediate(kIsNotStringMask |
|
| kStringRepresentationMask |
|
| kShortExternalStringMask));
|
| - __ j(zero, &seq_ascii_string, Label::kNear);
|
| -
|
| - // rbx: whether subject is a string and if yes, its string representation
|
| - // Check for flat cons string or sliced string.
|
| - // A flat cons string is a cons string where the second part is the empty
|
| - // string. In that case the subject string is just the first part of the cons
|
| - // string. Also in this case the first part of the cons string is known to be
|
| - // a sequential string or an external string.
|
| - // In the case of a sliced string its offset has to be taken into account.
|
| - Label cons_string, external_string, check_encoding;
|
| + __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (6).
|
| +
|
| + // (3) Anything but sequential or cons? If yes, go to (7).
|
| + // We check whether the subject string is a cons, since sequential strings
|
| + // have already been covered.
|
| STATIC_ASSERT(kConsStringTag < kExternalStringTag);
|
| STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
|
| STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
|
| STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
|
| __ cmpq(rbx, Immediate(kExternalStringTag));
|
| - __ j(less, &cons_string, Label::kNear);
|
| - __ j(equal, &external_string);
|
| -
|
| - // Catch non-string subject or short external string.
|
| - STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
|
| - __ testb(rbx, Immediate(kIsNotStringMask | kShortExternalStringMask));
|
| - __ j(not_zero, &runtime);
|
| + __ j(greater_equal, ¬_seq_nor_cons); // Go to (7).
|
|
|
| - // String is sliced.
|
| - __ SmiToInteger32(r14, FieldOperand(rdi, SlicedString::kOffsetOffset));
|
| - __ movq(rdi, FieldOperand(rdi, SlicedString::kParentOffset));
|
| - // r14: slice offset
|
| - // r15: original subject string
|
| - // rdi: parent string
|
| - __ jmp(&check_encoding, Label::kNear);
|
| - // String is a cons string, check whether it is flat.
|
| - __ bind(&cons_string);
|
| + // (4) Cons string. Check that it's flat.
|
| + // Replace subject with first string and reload instance type.
|
| __ CompareRoot(FieldOperand(rdi, ConsString::kSecondOffset),
|
| Heap::kEmptyStringRootIndex);
|
| __ j(not_equal, &runtime);
|
| __ movq(rdi, FieldOperand(rdi, ConsString::kFirstOffset));
|
| - // rdi: first part of cons string or parent of sliced string.
|
| - // rbx: map of first part of cons string or map of parent of sliced string.
|
| - // Is first part of cons or parent of slice a flat two byte string?
|
| - __ bind(&check_encoding);
|
| + __ bind(&check_underlying);
|
| __ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
|
| - __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
|
| - Immediate(kStringRepresentationMask | kStringEncodingMask));
|
| + __ movq(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
|
| +
|
| + // (5a) Is subject two byte? If yes, go to (9).
|
| + __ testb(rbx, Immediate(kStringRepresentationMask | kStringEncodingMask));
|
| STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
|
| - __ j(zero, &seq_two_byte_string, Label::kNear);
|
| - // Any other flat string must be sequential ASCII or external.
|
| - __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
|
| - Immediate(kStringRepresentationMask));
|
| - __ j(not_zero, &external_string);
|
| -
|
| - __ bind(&seq_ascii_string);
|
| - // rdi: subject string (sequential ASCII)
|
| + __ j(zero, &seq_two_byte_string); // Go to (9).
|
| + // (5b) Is subject external? If yes, go to (8).
|
| + __ testb(rbx, Immediate(kStringRepresentationMask));
|
| + // The underlying external string is never a short external string.
|
| + STATIC_CHECK(ExternalString::kMaxShortLength < ConsString::kMinLength);
|
| + STATIC_CHECK(ExternalString::kMaxShortLength < SlicedString::kMinLength);
|
| + __ j(not_zero, &external_string); // Go to (8)
|
| +
|
| + // (6) One byte sequential. Load regexp code for one byte.
|
| + __ bind(&seq_one_byte_string);
|
| // rax: RegExp data (FixedArray)
|
| __ movq(r11, FieldOperand(rax, JSRegExp::kDataAsciiCodeOffset));
|
| - __ Set(rcx, 1); // Type is ASCII.
|
| - __ jmp(&check_code, Label::kNear);
|
| -
|
| - __ bind(&seq_two_byte_string);
|
| - // rdi: subject string (flat two-byte)
|
| - // rax: RegExp data (FixedArray)
|
| - __ movq(r11, FieldOperand(rax, JSRegExp::kDataUC16CodeOffset));
|
| - __ Set(rcx, 0); // Type is two byte.
|
| + __ Set(rcx, 1); // Type is one byte.
|
|
|
| + // (E) Carry on. String handling is done.
|
| __ bind(&check_code);
|
| + // r11: irregexp code
|
| // Check that the irregexp code has been generated for the actual string
|
| // encoding. If it has, the field contains a code object otherwise it contains
|
| // smi (code flushing support)
|
| __ JumpIfSmi(r11, &runtime);
|
|
|
| - // rdi: subject string
|
| + // rdi: sequential subject string (or look-alike, external string)
|
| + // r15: original subject string
|
| // rcx: encoding of subject string (1 if ASCII, 0 if two_byte);
|
| // r11: code
|
| // Load used arguments before starting to push arguments for call to native
|
| // RegExp code to avoid handling changing stack height.
|
| - __ SmiToInteger64(rbx, Operand(rsp, kPreviousIndexOffset));
|
| + // We have to use r15 instead of rdi to load the length because rdi might
|
| + // have been only made to look like a sequential string when it actually
|
| + // is an external string.
|
| + __ movq(rbx, Operand(rsp, kPreviousIndexOffset));
|
| + __ JumpIfNotSmi(rbx, &runtime);
|
| + __ SmiCompare(rbx, FieldOperand(r15, String::kLengthOffset));
|
| + __ j(above_equal, &runtime);
|
| + __ SmiToInteger64(rbx, rbx);
|
|
|
| // rdi: subject string
|
| // rbx: previous index
|
| @@ -3257,9 +3229,23 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
| __ leal(rdx, Operand(rax, rax, times_1, 2));
|
|
|
| // rdx: Number of capture registers
|
| - // Load last_match_info which is still known to be a fast case JSArray.
|
| - __ movq(rax, Operand(rsp, kLastMatchInfoOffset));
|
| - __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset));
|
| + // Check that the fourth object is a JSArray object.
|
| + __ movq(r15, Operand(rsp, kLastMatchInfoOffset));
|
| + __ JumpIfSmi(r15, &runtime);
|
| + __ CmpObjectType(r15, JS_ARRAY_TYPE, kScratchRegister);
|
| + __ j(not_equal, &runtime);
|
| + // Check that the JSArray is in fast case.
|
| + __ movq(rbx, FieldOperand(r15, JSArray::kElementsOffset));
|
| + __ movq(rax, FieldOperand(rbx, HeapObject::kMapOffset));
|
| + __ CompareRoot(rax, Heap::kFixedArrayMapRootIndex);
|
| + __ j(not_equal, &runtime);
|
| + // Check that the last match info has space for the capture registers and the
|
| + // additional information. Ensure no overflow in add.
|
| + STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
|
| + __ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset));
|
| + __ subl(rax, Immediate(RegExpImpl::kLastMatchOverhead));
|
| + __ cmpl(rdx, rax);
|
| + __ j(greater, &runtime);
|
|
|
| // rbx: last_match_info backing store (FixedArray)
|
| // rdx: number of capture registers
|
| @@ -3270,16 +3256,16 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
| // Store last subject and last input.
|
| __ movq(rax, Operand(rsp, kSubjectOffset));
|
| __ movq(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax);
|
| + __ movq(rcx, rax);
|
| __ RecordWriteField(rbx,
|
| RegExpImpl::kLastSubjectOffset,
|
| rax,
|
| rdi,
|
| kDontSaveFPRegs);
|
| - __ movq(rax, Operand(rsp, kSubjectOffset));
|
| - __ movq(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax);
|
| + __ movq(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rcx);
|
| __ RecordWriteField(rbx,
|
| RegExpImpl::kLastInputOffset,
|
| - rax,
|
| + rcx,
|
| rdi,
|
| kDontSaveFPRegs);
|
|
|
| @@ -3309,7 +3295,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
| __ bind(&done);
|
|
|
| // Return last match info.
|
| - __ movq(rax, Operand(rsp, kLastMatchInfoOffset));
|
| + __ movq(rax, r15);
|
| __ ret(4 * kPointerSize);
|
|
|
| __ bind(&exception);
|
| @@ -3335,9 +3321,17 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
| __ bind(&termination_exception);
|
| __ ThrowUncatchable(rax);
|
|
|
| - // External string. Short external strings have already been ruled out.
|
| - // rdi: subject string (expected to be external)
|
| - // rbx: scratch
|
| + // Do the runtime call to execute the regexp.
|
| + __ bind(&runtime);
|
| + __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
|
| +
|
| + // Deferred code for string handling.
|
| + // (7) Not a long external string? If yes, go to (10).
|
| + __ bind(¬_seq_nor_cons);
|
| + // Compare flags are still set from (3).
|
| + __ j(greater, ¬_long_external, Label::kNear); // Go to (10).
|
| +
|
| + // (8) External string. Short external strings have been ruled out.
|
| __ bind(&external_string);
|
| __ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
|
| __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
|
| @@ -3352,13 +3346,30 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
| STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
|
| __ subq(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
| STATIC_ASSERT(kTwoByteStringTag == 0);
|
| + // (8a) Is the external string one byte? If yes, go to (6).
|
| __ testb(rbx, Immediate(kStringEncodingMask));
|
| - __ j(not_zero, &seq_ascii_string);
|
| - __ jmp(&seq_two_byte_string);
|
| + __ j(not_zero, &seq_one_byte_string); // Goto (6).
|
|
|
| - // Do the runtime call to execute the regexp.
|
| - __ bind(&runtime);
|
| - __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
|
| + // rdi: subject string (flat two-byte)
|
| + // rax: RegExp data (FixedArray)
|
| + // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
|
| + __ bind(&seq_two_byte_string);
|
| + __ movq(r11, FieldOperand(rax, JSRegExp::kDataUC16CodeOffset));
|
| + __ Set(rcx, 0); // Type is two byte.
|
| + __ jmp(&check_code); // Go to (E).
|
| +
|
| + // (10) Not a string or a short external string? If yes, bail out to runtime.
|
| + __ bind(¬_long_external);
|
| + // Catch non-string subject or short external string.
|
| + STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
|
| + __ testb(rbx, Immediate(kIsNotStringMask | kShortExternalStringMask));
|
| + __ j(not_zero, &runtime);
|
| +
|
| + // (11) Sliced string. Replace subject with parent. Go to (5a).
|
| + // Load offset into r14 and replace subject string with parent.
|
| + __ SmiToInteger32(r14, FieldOperand(rdi, SlicedString::kOffsetOffset));
|
| + __ movq(rdi, FieldOperand(rdi, SlicedString::kParentOffset));
|
| + __ jmp(&check_underlying);
|
| #endif // V8_INTERPRETED_REGEXP
|
| }
|
|
|
| @@ -6266,6 +6277,7 @@ struct AheadOfTimeWriteBarrierStubList {
|
| struct AheadOfTimeWriteBarrierStubList kAheadOfTime[] = {
|
| // Used in RegExpExecStub.
|
| { REG(rbx), REG(rax), REG(rdi), EMIT_REMEMBERED_SET },
|
| + { REG(rbx), REG(rcx), REG(rdi), EMIT_REMEMBERED_SET },
|
| // Used in CompileArrayPushCall.
|
| { REG(rbx), REG(rcx), REG(rdx), EMIT_REMEMBERED_SET },
|
| // Used in CompileStoreGlobal.
|
|
|