OLD | NEW |
1 Index: mozilla/security/nss/lib/freebl/ecl/ecl-priv.h | 1 Index: mozilla/security/nss/lib/freebl/ecl/ecl-priv.h |
2 =================================================================== | 2 =================================================================== |
3 RCS file: /cvsroot/mozilla/security/nss/lib/freebl/ecl/ecl-priv.h,v | 3 RCS file: /cvsroot/mozilla/security/nss/lib/freebl/ecl/ecl-priv.h,v |
4 retrieving revision 1.8 | 4 retrieving revision 1.8 |
5 diff -p -u -r1.8 ecl-priv.h | 5 diff -p -u -r1.8 ecl-priv.h |
6 --- mozilla/security/nss/lib/freebl/ecl/ecl-priv.h 25 Apr 2012 14:49:44 -00
00 1.8 | 6 --- mozilla/security/nss/lib/freebl/ecl/ecl-priv.h 25 Apr 2012 14:49:44 -00
00 1.8 |
7 +++ mozilla/security/nss/lib/freebl/ecl/ecl-priv.h 26 Jan 2013 01:58:30 -00
00 | 7 +++ mozilla/security/nss/lib/freebl/ecl/ecl-priv.h 26 Jan 2013 01:58:30 -00
00 |
8 @@ -236,6 +236,9 @@ mp_err ec_group_set_gf2m163(ECGroup *gro | 8 @@ -236,6 +236,9 @@ mp_err ec_group_set_gf2m163(ECGroup *gro |
9 mp_err ec_group_set_gf2m193(ECGroup *group, ECCurveName name); | 9 mp_err ec_group_set_gf2m193(ECGroup *group, ECCurveName name); |
10 mp_err ec_group_set_gf2m233(ECGroup *group, ECCurveName name); | 10 mp_err ec_group_set_gf2m233(ECGroup *group, ECCurveName name); |
(...skipping 53 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
64 group = | 64 group = |
65 ECGroup_consGFp_mont(&irr, &curvea, &curveb, &ge
nx, &geny, | 65 ECGroup_consGFp_mont(&irr, &curvea, &curveb, &ge
nx, &geny, |
66 &order,
params->cofactor); | 66 &order,
params->cofactor); |
67 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; } | 67 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; } |
68 -#ifdef NSS_ECC_MORE_THAN_SUITE_B | 68 -#ifdef NSS_ECC_MORE_THAN_SUITE_B |
69 } | 69 } |
70 +#ifdef NSS_ECC_MORE_THAN_SUITE_B | 70 +#ifdef NSS_ECC_MORE_THAN_SUITE_B |
71 } else if (params->field == ECField_GF2m) { | 71 } else if (params->field == ECField_GF2m) { |
72 group = ECGroup_consGF2m(&irr, NULL, &curvea, &curveb, &genx, &g
eny, &order, params->cofactor); | 72 group = ECGroup_consGF2m(&irr, NULL, &curvea, &curveb, &genx, &g
eny, &order, params->cofactor); |
73 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; } | 73 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; } |
74 Index: mozilla/security/nss/lib/freebl/ecl/ecp_256_32.c | |
75 =================================================================== | |
76 RCS file: mozilla/security/nss/lib/freebl/ecl/ecp_256_32.c | |
77 diff -N mozilla/security/nss/lib/freebl/ecl/ecp_256_32.c | |
78 --- /dev/null 1 Jan 1970 00:00:00 -0000 | |
79 +++ mozilla/security/nss/lib/freebl/ecl/ecp_256_32.c 26 Jan 2013 01:58:30 -00
00 | |
80 @@ -0,0 +1,1470 @@ | |
81 +/* This Source Code Form is subject to the terms of the Mozilla Public | |
82 + * License, v. 2.0. If a copy of the MPL was not distributed with this | |
83 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | |
84 + | |
85 +/* A 32-bit implementation of the NIST P-256 elliptic curve. */ | |
86 + | |
87 +#include <string.h> | |
88 + | |
89 +#include "prtypes.h" | |
90 +#include "mpi.h" | |
91 +#include "mpi-priv.h" | |
92 +#include "ecp.h" | |
93 + | |
94 +typedef PRUint8 u8; | |
95 +typedef PRUint32 u32; | |
96 +typedef PRInt32 s32; | |
97 +typedef PRUint64 u64; | |
98 + | |
99 +/* Our field elements are represented as nine, unsigned 32-bit words. Freebl's | |
100 + * MPI library calls them digits, but here they are called limbs, which is | |
101 + * GMP's terminology. | |
102 + * | |
103 + * The value of an felem (field element) is: | |
104 + * x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228) | |
105 + * | |
106 + * That is, each limb is alternately 29 or 28-bits wide in little-endian | |
107 + * order. | |
108 + * | |
109 + * This means that an felem hits 2**257, rather than 2**256 as we would like. A | |
110 + * 28, 29, ... pattern would cause us to hit 2**256, but that causes problems | |
111 + * when multiplying as terms end up one bit short of a limb which would require | |
112 + * much bit-shifting to correct. | |
113 + * | |
114 + * Finally, the values stored in an felem are in Montgomery form. So the value | |
115 + * |y| is stored as (y*R) mod p, where p is the P-256 prime and R is 2**257. | |
116 + */ | |
117 +typedef u32 limb; | |
118 +#define NLIMBS 9 | |
119 +typedef limb felem[NLIMBS]; | |
120 + | |
121 +static const limb kBottom28Bits = 0xfffffff; | |
122 +static const limb kBottom29Bits = 0x1fffffff; | |
123 + | |
124 +/* kOne is the number 1 as an felem. It's 2**257 mod p split up into 29 and | |
125 + * 28-bit words. | |
126 + */ | |
127 +static const felem kOne = { | |
128 + 2, 0, 0, 0xffff800, | |
129 + 0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff, | |
130 + 0 | |
131 +}; | |
132 +static const felem kZero = {0}; | |
133 +static const felem kP = { | |
134 + 0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff, | |
135 + 0, 0, 0x200000, 0xf000000, | |
136 + 0xfffffff | |
137 +}; | |
138 +static const felem k2P = { | |
139 + 0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff, | |
140 + 0, 0, 0x400000, 0xe000000, | |
141 + 0x1fffffff | |
142 +}; | |
143 + | |
144 +/* kPrecomputed contains precomputed values to aid the calculation of scalar | |
145 + * multiples of the base point, G. It's actually two, equal length, tables | |
146 + * concatenated. | |
147 + * | |
148 + * The first table contains (x,y) felem pairs for 16 multiples of the base | |
149 + * point, G. | |
150 + * | |
151 + * Index | Index (binary) | Value | |
152 + * 0 | 0000 | 0G (all zeros, omitted) | |
153 + * 1 | 0001 | G | |
154 + * 2 | 0010 | 2**64G | |
155 + * 3 | 0011 | 2**64G + G | |
156 + * 4 | 0100 | 2**128G | |
157 + * 5 | 0101 | 2**128G + G | |
158 + * 6 | 0110 | 2**128G + 2**64G | |
159 + * 7 | 0111 | 2**128G + 2**64G + G | |
160 + * 8 | 1000 | 2**192G | |
161 + * 9 | 1001 | 2**192G + G | |
162 + * 10 | 1010 | 2**192G + 2**64G | |
163 + * 11 | 1011 | 2**192G + 2**64G + G | |
164 + * 12 | 1100 | 2**192G + 2**128G | |
165 + * 13 | 1101 | 2**192G + 2**128G + G | |
166 + * 14 | 1110 | 2**192G + 2**128G + 2**64G | |
167 + * 15 | 1111 | 2**192G + 2**128G + 2**64G + G | |
168 + * | |
169 + * The second table follows the same style, but the terms are 2**32G, | |
170 + * 2**96G, 2**160G, 2**224G. | |
171 + * | |
172 + * This is ~2KB of data. | |
173 + */ | |
174 +static const limb kPrecomputed[NLIMBS * 2 * 15 * 2] = { | |
175 + 0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7
edc, 0xd4a6eab, 0x3120bee, | |
176 + 0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154b
a21, 0x14b10bb, 0xae3fe3, | |
177 + 0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe490
73, 0x3fa36cc, 0x5ebcd2c, | |
178 + 0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea124
46, 0xe1ade1e, 0xec91f22, | |
179 + 0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c710
9, 0xa267a00, 0xb57c050, | |
180 + 0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5,
0x7d6dee7, 0x2976e4b, | |
181 + 0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96
a5a9, 0x843a649, 0xc3ab0fa, | |
182 + 0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e1
1, 0x58c43df, 0xf423fc2, | |
183 + 0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db
40f, 0x83e277d, 0xb0dd609, | |
184 + 0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f
5, 0xe10c9e, 0x33ab581, | |
185 + 0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9
f, 0x48764cd, 0x76dbcca, | |
186 + 0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b
20, 0x4ba3173, 0xc168c33, | |
187 + 0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c
0, 0x65dd7ff, 0x3a1e4f6, | |
188 + 0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f0
77, 0xa6add89, 0x4894acd, | |
189 + 0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a
, 0x69a8556, 0x7e7c0, | |
190 + 0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825
c, 0xda0cf5b, 0x812e881, | |
191 + 0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c5
1, 0xc22be3e, 0xe35e65a, | |
192 + 0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e
9, 0x1c5a839, 0x47a1e26, | |
193 + 0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c
502, 0x2f32042, 0xa17769b, | |
194 + 0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06
a02, 0x3fc93, 0x5620023, | |
195 + 0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513
c, 0x407f75c, 0xbaab133, | |
196 + 0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469e
a7, 0x3293ac0, 0xcdc98aa, | |
197 + 0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16
, 0x2b6fcc7, 0xf5a4e29, | |
198 + 0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f7
2, 0x73e1c35, 0xee70fbc, | |
199 + 0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de8
5, 0x27de188, 0x66f70b8, | |
200 + 0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154a
e914, 0x2f3ec51, 0x3826b59, | |
201 + 0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0
x823d9d2, 0x8213f39, | |
202 + 0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a
4a, 0xf5ddc3d, 0x3786689, | |
203 + 0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a7
29, 0x4be3499, 0x52b23aa, | |
204 + 0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048
035, 0xe31de66, 0xc6ecaa3, | |
205 + 0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a75
29, 0xcb7beb1, 0xb2a78a1, | |
206 + 0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff
658, 0xe3d6511, 0xc7d76f, | |
207 + 0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c
, 0x50daa90, 0xb13f72, | |
208 + 0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d324
11, 0xb04a838, 0xd760d2d, | |
209 + 0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e1
1e, 0x20bca9a, 0x66f496b, | |
210 + 0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d
, 0xbe985f7, 0x1acbc1a, | |
211 + 0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa5
6ff, 0x65ef930, 0x21dc4a, | |
212 + 0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac1
5f, 0x624e62e, 0xa90ae2f, | |
213 + 0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x72552
2b, 0xdc78583, 0x40eeabb, | |
214 + 0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef
34, 0xae2a960, 0x91b8bdc, | |
215 + 0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb,
0x2413c8e, 0x5425bf9, | |
216 + 0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e763
3, 0x7c91952, 0xd806dce, | |
217 + 0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef
73, 0x8956f34, 0xe4b5cf2, | |
218 + 0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed
7, 0x627b614, 0x7371cca, | |
219 + 0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3ed
c9, 0x9c19bf2, 0x5882229, | |
220 + 0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5
b3, 0xe85ff25, 0x408ef57, | |
221 + 0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa03811
3, 0xa4a1769, 0x11fbc6c, | |
222 + 0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60
b7, 0x4acbad9, 0x5efc5fa, | |
223 + 0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142c
c, 0x7bf0fa9, 0x957651, | |
224 + 0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57
, 0xf2ecaac, 0xca86dec, | |
225 + 0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c
12d, 0xf20bd46, 0x1951fa7, | |
226 + 0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc7
4, 0x99bb618, 0x2db944c, | |
227 + 0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e747
79, 0x576138, 0x9587927, | |
228 + 0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d0778
2d, 0xfc72e0b, 0x701b298, | |
229 + 0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f
5d8, 0xf858d3a, 0x942eea8, | |
230 + 0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7
a1, 0x8395659, 0x52ed4e2, | |
231 + 0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146
c0, 0x6bdf55a, 0x4e4457d, | |
232 + 0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x40474
7b, 0x878558d, 0x7d29aa4, | |
233 + 0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55
d7, 0xa5bef68, 0xb7b30d8, | |
234 + 0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f519
51, 0x9d0c177, 0x1c49a78, | |
235 +}; | |
236 + | |
237 +/* Field element operations: | |
238 + */ | |
239 + | |
240 +/* NON_ZERO_TO_ALL_ONES returns: | |
241 + * 0xffffffff for 0 < x <= 2**31 | |
242 + * 0 for x == 0 or x > 2**31. | |
243 + * | |
244 + * This macro assumes that right-shifting a signed number shifts in the MSB on | |
245 + * the left. This is not ensured by the C standard, but is true on the CPUs | |
246 + * that we're targetting with this code (x86 and ARM). | |
247 + */ | |
248 +#define NON_ZERO_TO_ALL_ONES(x) (~((u32) (((s32) ((x)-1)) >> 31))) | |
249 + | |
250 +/* felem_reduce_carry adds a multiple of p in order to cancel |carry|, | |
251 + * which is a term at 2**257. | |
252 + * | |
253 + * On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28. | |
254 + * On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29. | |
255 + */ | |
256 +static void felem_reduce_carry(felem inout, limb carry) | |
257 +{ | |
258 + const u32 carry_mask = NON_ZERO_TO_ALL_ONES(carry); | |
259 + | |
260 + inout[0] += carry << 1; | |
261 + inout[3] += 0x10000000 & carry_mask; | |
262 + /* carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the | |
263 + * previous line therefore this doesn't underflow. | |
264 + */ | |
265 + inout[3] -= carry << 11; | |
266 + inout[4] += (0x20000000 - 1) & carry_mask; | |
267 + inout[5] += (0x10000000 - 1) & carry_mask; | |
268 + inout[6] += (0x20000000 - 1) & carry_mask; | |
269 + inout[6] -= carry << 22; | |
270 + /* This may underflow if carry is non-zero but, if so, we'll fix it in the | |
271 + * next line. | |
272 + */ | |
273 + inout[7] -= 1 & carry_mask; | |
274 + inout[7] += carry << 25; | |
275 +} | |
276 + | |
277 +/* felem_sum sets out = in+in2. | |
278 + * | |
279 + * On entry, in[i]+in2[i] must not overflow a 32-bit word. | |
280 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 | |
281 + */ | |
282 +static void felem_sum(felem out, const felem in, const felem in2) | |
283 +{ | |
284 + limb carry = 0; | |
285 + unsigned int i; | |
286 + for (i = 0;; i++) { | |
287 + out[i] = in[i] + in2[i]; | |
288 + out[i] += carry; | |
289 + carry = out[i] >> 29; | |
290 + out[i] &= kBottom29Bits; | |
291 + | |
292 + i++; | |
293 + if (i == NLIMBS) | |
294 + break; | |
295 + | |
296 + out[i] = in[i] + in2[i]; | |
297 + out[i] += carry; | |
298 + carry = out[i] >> 28; | |
299 + out[i] &= kBottom28Bits; | |
300 + } | |
301 + | |
302 + felem_reduce_carry(out, carry); | |
303 +} | |
304 + | |
305 +#define two31m3 (((limb)1) << 31) - (((limb)1) << 3) | |
306 +#define two30m2 (((limb)1) << 30) - (((limb)1) << 2) | |
307 +#define two30p13m2 (((limb)1) << 30) + (((limb)1) << 13) - (((limb)1) << 2) | |
308 +#define two31m2 (((limb)1) << 31) - (((limb)1) << 2) | |
309 +#define two31p24m2 (((limb)1) << 31) + (((limb)1) << 24) - (((limb)1) << 2) | |
310 +#define two30m27m2 (((limb)1) << 30) - (((limb)1) << 27) - (((limb)1) << 2) | |
311 + | |
312 +/* zero31 is 0 mod p. | |
313 + */ | |
314 +static const felem zero31 = { | |
315 + two31m3, two30m2, two31m2, two30p13m2, | |
316 + two31m2, two30m2, two31p24m2, two30m27m2, | |
317 + two31m2 | |
318 +}; | |
319 + | |
320 +/* felem_diff sets out = in-in2. | |
321 + * | |
322 + * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and | |
323 + * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. | |
324 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
325 + */ | |
326 +static void felem_diff(felem out, const felem in, const felem in2) | |
327 +{ | |
328 + limb carry = 0; | |
329 + unsigned int i; | |
330 + | |
331 + for (i = 0;; i++) { | |
332 + out[i] = in[i] - in2[i]; | |
333 + out[i] += zero31[i]; | |
334 + out[i] += carry; | |
335 + carry = out[i] >> 29; | |
336 + out[i] &= kBottom29Bits; | |
337 + | |
338 + i++; | |
339 + if (i == NLIMBS) | |
340 + break; | |
341 + | |
342 + out[i] = in[i] - in2[i]; | |
343 + out[i] += zero31[i]; | |
344 + out[i] += carry; | |
345 + carry = out[i] >> 28; | |
346 + out[i] &= kBottom28Bits; | |
347 + } | |
348 + | |
349 + felem_reduce_carry(out, carry); | |
350 +} | |
351 + | |
352 +/* felem_reduce_degree sets out = tmp/R mod p where tmp contains 64-bit words | |
353 + * with the same 29,28,... bit positions as an felem. | |
354 + * | |
355 + * The values in felems are in Montgomery form: x*R mod p where R = 2**257. | |
356 + * Since we just multiplied two Montgomery values together, the result is | |
357 + * x*y*R*R mod p. We wish to divide by R in order for the result also to be | |
358 + * in Montgomery form. | |
359 + * | |
360 + * On entry: tmp[i] < 2**64 | |
361 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 | |
362 + */ | |
363 +static void felem_reduce_degree(felem out, u64 tmp[17]) | |
364 +{ | |
365 + /* The following table may be helpful when reading this code: | |
366 + * | |
367 + * Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10... | |
368 + * Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29 | |
369 + * Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285 | |
370 + * (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285 | |
371 + */ | |
372 + limb tmp2[18], carry, x, xMask; | |
373 + unsigned int i; | |
374 + | |
375 + /* tmp contains 64-bit words with the same 29,28,29-bit positions as an | |
376 + * felem. So the top of an element of tmp might overlap with another | |
377 + * element two positions down. The following loop eliminates this | |
378 + * overlap. | |
379 + */ | |
380 + tmp2[0] = tmp[0] & kBottom29Bits; | |
381 + | |
382 + /* In the following we use "(limb) tmp[x]" and "(limb) (tmp[x]>>32)" to try | |
383 + * and hint to the compiler that it can do a single-word shift by selecting | |
384 + * the right register rather than doing a double-word shift and truncating | |
385 + * afterwards. | |
386 + */ | |
387 + tmp2[1] = ((limb) tmp[0]) >> 29; | |
388 + tmp2[1] |= (((limb) (tmp[0] >> 32)) << 3) & kBottom28Bits; | |
389 + tmp2[1] += ((limb) tmp[1]) & kBottom28Bits; | |
390 + carry = tmp2[1] >> 28; | |
391 + tmp2[1] &= kBottom28Bits; | |
392 + | |
393 + for (i = 2; i < 17; i++) { | |
394 + tmp2[i] = ((limb) (tmp[i - 2] >> 32)) >> 25; | |
395 + tmp2[i] += ((limb) (tmp[i - 1])) >> 28; | |
396 + tmp2[i] += (((limb) (tmp[i - 1] >> 32)) << 4) & kBottom29Bits; | |
397 + tmp2[i] += ((limb) tmp[i]) & kBottom29Bits; | |
398 + tmp2[i] += carry; | |
399 + carry = tmp2[i] >> 29; | |
400 + tmp2[i] &= kBottom29Bits; | |
401 + | |
402 + i++; | |
403 + if (i == 17) | |
404 + break; | |
405 + tmp2[i] = ((limb) (tmp[i - 2] >> 32)) >> 25; | |
406 + tmp2[i] += ((limb) (tmp[i - 1])) >> 29; | |
407 + tmp2[i] += (((limb) (tmp[i - 1] >> 32)) << 3) & kBottom28Bits; | |
408 + tmp2[i] += ((limb) tmp[i]) & kBottom28Bits; | |
409 + tmp2[i] += carry; | |
410 + carry = tmp2[i] >> 28; | |
411 + tmp2[i] &= kBottom28Bits; | |
412 + } | |
413 + | |
414 + tmp2[17] = ((limb) (tmp[15] >> 32)) >> 25; | |
415 + tmp2[17] += ((limb) (tmp[16])) >> 29; | |
416 + tmp2[17] += (((limb) (tmp[16] >> 32)) << 3); | |
417 + tmp2[17] += carry; | |
418 + | |
419 + /* Montgomery elimination of terms: | |
420 + * | |
421 + * Since R is 2**257, we can divide by R with a bitwise shift if we can | |
422 + * ensure that the right-most 257 bits are all zero. We can make that true | |
423 + * by adding multiplies of p without affecting the value. | |
424 + * | |
425 + * So we eliminate limbs from right to left. Since the bottom 29 bits of p | |
426 + * are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0. | |
427 + * We can do that for 8 further limbs and then right shift to eliminate the | |
428 + * extra factor of R. | |
429 + */ | |
430 + for (i = 0;; i += 2) { | |
431 + tmp2[i + 1] += tmp2[i] >> 29; | |
432 + x = tmp2[i] & kBottom29Bits; | |
433 + xMask = NON_ZERO_TO_ALL_ONES(x); | |
434 + tmp2[i] = 0; | |
435 + | |
436 + /* The bounds calculations for this loop are tricky. Each iteration of | |
437 + * the loop eliminates two words by adding values to words to their | |
438 + * right. | |
439 + * | |
440 + * The following table contains the amounts added to each word (as an | |
441 + * offset from the value of i at the top of the loop). The amounts are | |
442 + * accounted for from the first and second half of the loop separately | |
443 + * and are written as, for example, 28 to mean a value <2**28. | |
444 + * | |
445 + * Word: 3 4 5 6 7 8 9 10 | |
446 + * Added in top half: 28 11 29 21 29 28 | |
447 + * 28 29 | |
448 + * 29 | |
449 + * Added in bottom half: 29 10 28 21 28 28 | |
450 + * 29 | |
451 + * | |
452 + * The value that is currently offset 7 will be offset 5 for the next | |
453 + * iteration and then offset 3 for the iteration after that. Therefore | |
454 + * the total value added will be the values added at 7, 5 and 3. | |
455 + * | |
456 + * The following table accumulates these values. The sums at the bottom | |
457 + * are written as, for example, 29+28, to mean a value < 2**29+2**28. | |
458 + * | |
459 + * Word: 3 4 5 6 7 8 9 10 11 12 13 | |
460 + * 28 11 10 29 21 29 28 28 28 28 28 | |
461 + * 29 28 11 28 29 28 29 28 29 28 | |
462 + * 29 28 21 21 29 21 29 21 | |
463 + * 10 29 28 21 28 21 28 | |
464 + * 28 29 28 29 28 29 28 | |
465 + * 11 10 29 10 29 10 | |
466 + * 29 28 11 28 11 | |
467 + * 29 29 | |
468 + * -------------------------------------------- | |
469 + * 30+ 31+ 30+ 31+ 30+ | |
470 + * 28+ 29+ 28+ 29+ 21+ | |
471 + * 21+ 28+ 21+ 28+ 10 | |
472 + * 10 21+ 10 21+ | |
473 + * 11 11 | |
474 + * | |
475 + * So the greatest amount is added to tmp2[10] and tmp2[12]. If | |
476 + * tmp2[10/12] has an initial value of <2**29, then the maximum value | |
477 + * will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32, | |
478 + * as required. | |
479 + */ | |
480 + tmp2[i + 3] += (x << 10) & kBottom28Bits; | |
481 + tmp2[i + 4] += (x >> 18); | |
482 + | |
483 + tmp2[i + 6] += (x << 21) & kBottom29Bits; | |
484 + tmp2[i + 7] += x >> 8; | |
485 + | |
486 + /* At position 200, which is the starting bit position for word 7, we | |
487 + * have a factor of 0xf000000 = 2**28 - 2**24. | |
488 + */ | |
489 + tmp2[i + 7] += 0x10000000 & xMask; | |
490 + /* Word 7 is 28 bits wide, so the 2**28 term exactly hits word 8. */ | |
491 + tmp2[i + 8] += (x - 1) & xMask; | |
492 + tmp2[i + 7] -= (x << 24) & kBottom28Bits; | |
493 + tmp2[i + 8] -= x >> 4; | |
494 + | |
495 + tmp2[i + 8] += 0x20000000 & xMask; | |
496 + tmp2[i + 8] -= x; | |
497 + tmp2[i + 8] += (x << 28) & kBottom29Bits; | |
498 + tmp2[i + 9] += ((x >> 1) - 1) & xMask; | |
499 + | |
500 + if (i+1 == NLIMBS) | |
501 + break; | |
502 + tmp2[i + 2] += tmp2[i + 1] >> 28; | |
503 + x = tmp2[i + 1] & kBottom28Bits; | |
504 + xMask = NON_ZERO_TO_ALL_ONES(x); | |
505 + tmp2[i + 1] = 0; | |
506 + | |
507 + tmp2[i + 4] += (x << 11) & kBottom29Bits; | |
508 + tmp2[i + 5] += (x >> 18); | |
509 + | |
510 + tmp2[i + 7] += (x << 21) & kBottom28Bits; | |
511 + tmp2[i + 8] += x >> 7; | |
512 + | |
513 + /* At position 199, which is the starting bit of the 8th word when | |
514 + * dealing with a context starting on an odd word, we have a factor of | |
515 + * 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th | |
516 + * word from i+1 is i+8. | |
517 + */ | |
518 + tmp2[i + 8] += 0x20000000 & xMask; | |
519 + tmp2[i + 9] += (x - 1) & xMask; | |
520 + tmp2[i + 8] -= (x << 25) & kBottom29Bits; | |
521 + tmp2[i + 9] -= x >> 4; | |
522 + | |
523 + tmp2[i + 9] += 0x10000000 & xMask; | |
524 + tmp2[i + 9] -= x; | |
525 + tmp2[i + 10] += (x - 1) & xMask; | |
526 + } | |
527 + | |
528 + /* We merge the right shift with a carry chain. The words above 2**257 have | |
529 + * widths of 28,29,... which we need to correct when copying them down. | |
530 + */ | |
531 + carry = 0; | |
532 + for (i = 0; i < 8; i++) { | |
533 + /* The maximum value of tmp2[i + 9] occurs on the first iteration and | |
534 + * is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is | |
535 + * therefore safe. | |
536 + */ | |
537 + out[i] = tmp2[i + 9]; | |
538 + out[i] += carry; | |
539 + out[i] += (tmp2[i + 10] << 28) & kBottom29Bits; | |
540 + carry = out[i] >> 29; | |
541 + out[i] &= kBottom29Bits; | |
542 + | |
543 + i++; | |
544 + out[i] = tmp2[i + 9] >> 1; | |
545 + out[i] += carry; | |
546 + carry = out[i] >> 28; | |
547 + out[i] &= kBottom28Bits; | |
548 + } | |
549 + | |
550 + out[8] = tmp2[17]; | |
551 + out[8] += carry; | |
552 + carry = out[8] >> 29; | |
553 + out[8] &= kBottom29Bits; | |
554 + | |
555 + felem_reduce_carry(out, carry); | |
556 +} | |
557 + | |
558 +/* felem_square sets out=in*in. | |
559 + * | |
560 + * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29. | |
561 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
562 + */ | |
563 +static void felem_square(felem out, const felem in) | |
564 +{ | |
565 + u64 tmp[17]; | |
566 + | |
567 + tmp[0] = ((u64) in[0]) * in[0]; | |
568 + tmp[1] = ((u64) in[0]) * (in[1] << 1); | |
569 + tmp[2] = ((u64) in[0]) * (in[2] << 1) + | |
570 + ((u64) in[1]) * (in[1] << 1); | |
571 + tmp[3] = ((u64) in[0]) * (in[3] << 1) + | |
572 + ((u64) in[1]) * (in[2] << 1); | |
573 + tmp[4] = ((u64) in[0]) * (in[4] << 1) + | |
574 + ((u64) in[1]) * (in[3] << 2) + | |
575 + ((u64) in[2]) * in[2]; | |
576 + tmp[5] = ((u64) in[0]) * (in[5] << 1) + | |
577 + ((u64) in[1]) * (in[4] << 1) + | |
578 + ((u64) in[2]) * (in[3] << 1); | |
579 + tmp[6] = ((u64) in[0]) * (in[6] << 1) + | |
580 + ((u64) in[1]) * (in[5] << 2) + | |
581 + ((u64) in[2]) * (in[4] << 1) + | |
582 + ((u64) in[3]) * (in[3] << 1); | |
583 + tmp[7] = ((u64) in[0]) * (in[7] << 1) + | |
584 + ((u64) in[1]) * (in[6] << 1) + | |
585 + ((u64) in[2]) * (in[5] << 1) + | |
586 + ((u64) in[3]) * (in[4] << 1); | |
587 + /* tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60, | |
588 + * which is < 2**64 as required. | |
589 + */ | |
590 + tmp[8] = ((u64) in[0]) * (in[8] << 1) + | |
591 + ((u64) in[1]) * (in[7] << 2) + | |
592 + ((u64) in[2]) * (in[6] << 1) + | |
593 + ((u64) in[3]) * (in[5] << 2) + | |
594 + ((u64) in[4]) * in[4]; | |
595 + tmp[9] = ((u64) in[1]) * (in[8] << 1) + | |
596 + ((u64) in[2]) * (in[7] << 1) + | |
597 + ((u64) in[3]) * (in[6] << 1) + | |
598 + ((u64) in[4]) * (in[5] << 1); | |
599 + tmp[10] = ((u64) in[2]) * (in[8] << 1) + | |
600 + ((u64) in[3]) * (in[7] << 2) + | |
601 + ((u64) in[4]) * (in[6] << 1) + | |
602 + ((u64) in[5]) * (in[5] << 1); | |
603 + tmp[11] = ((u64) in[3]) * (in[8] << 1) + | |
604 + ((u64) in[4]) * (in[7] << 1) + | |
605 + ((u64) in[5]) * (in[6] << 1); | |
606 + tmp[12] = ((u64) in[4]) * (in[8] << 1) + | |
607 + ((u64) in[5]) * (in[7] << 2) + | |
608 + ((u64) in[6]) * in[6]; | |
609 + tmp[13] = ((u64) in[5]) * (in[8] << 1) + | |
610 + ((u64) in[6]) * (in[7] << 1); | |
611 + tmp[14] = ((u64) in[6]) * (in[8] << 1) + | |
612 + ((u64) in[7]) * (in[7] << 1); | |
613 + tmp[15] = ((u64) in[7]) * (in[8] << 1); | |
614 + tmp[16] = ((u64) in[8]) * in[8]; | |
615 + | |
616 + felem_reduce_degree(out, tmp); | |
617 +} | |
618 + | |
619 +/* felem_mul sets out=in*in2. | |
620 + * | |
621 + * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and | |
622 + * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. | |
623 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
624 + */ | |
625 +static void felem_mul(felem out, const felem in, const felem in2) | |
626 +{ | |
627 + u64 tmp[17]; | |
628 + | |
629 + tmp[0] = ((u64) in[0]) * in2[0]; | |
630 + tmp[1] = ((u64) in[0]) * (in2[1] << 0) + | |
631 + ((u64) in[1]) * (in2[0] << 0); | |
632 + tmp[2] = ((u64) in[0]) * (in2[2] << 0) + | |
633 + ((u64) in[1]) * (in2[1] << 1) + | |
634 + ((u64) in[2]) * (in2[0] << 0); | |
635 + tmp[3] = ((u64) in[0]) * (in2[3] << 0) + | |
636 + ((u64) in[1]) * (in2[2] << 0) + | |
637 + ((u64) in[2]) * (in2[1] << 0) + | |
638 + ((u64) in[3]) * (in2[0] << 0); | |
639 + tmp[4] = ((u64) in[0]) * (in2[4] << 0) + | |
640 + ((u64) in[1]) * (in2[3] << 1) + | |
641 + ((u64) in[2]) * (in2[2] << 0) + | |
642 + ((u64) in[3]) * (in2[1] << 1) + | |
643 + ((u64) in[4]) * (in2[0] << 0); | |
644 + tmp[5] = ((u64) in[0]) * (in2[5] << 0) + | |
645 + ((u64) in[1]) * (in2[4] << 0) + | |
646 + ((u64) in[2]) * (in2[3] << 0) + | |
647 + ((u64) in[3]) * (in2[2] << 0) + | |
648 + ((u64) in[4]) * (in2[1] << 0) + | |
649 + ((u64) in[5]) * (in2[0] << 0); | |
650 + tmp[6] = ((u64) in[0]) * (in2[6] << 0) + | |
651 + ((u64) in[1]) * (in2[5] << 1) + | |
652 + ((u64) in[2]) * (in2[4] << 0) + | |
653 + ((u64) in[3]) * (in2[3] << 1) + | |
654 + ((u64) in[4]) * (in2[2] << 0) + | |
655 + ((u64) in[5]) * (in2[1] << 1) + | |
656 + ((u64) in[6]) * (in2[0] << 0); | |
657 + tmp[7] = ((u64) in[0]) * (in2[7] << 0) + | |
658 + ((u64) in[1]) * (in2[6] << 0) + | |
659 + ((u64) in[2]) * (in2[5] << 0) + | |
660 + ((u64) in[3]) * (in2[4] << 0) + | |
661 + ((u64) in[4]) * (in2[3] << 0) + | |
662 + ((u64) in[5]) * (in2[2] << 0) + | |
663 + ((u64) in[6]) * (in2[1] << 0) + | |
664 + ((u64) in[7]) * (in2[0] << 0); | |
665 + /* tmp[8] has the greatest value but doesn't overflow. See logic in | |
666 + * felem_square. | |
667 + */ | |
668 + tmp[8] = ((u64) in[0]) * (in2[8] << 0) + | |
669 + ((u64) in[1]) * (in2[7] << 1) + | |
670 + ((u64) in[2]) * (in2[6] << 0) + | |
671 + ((u64) in[3]) * (in2[5] << 1) + | |
672 + ((u64) in[4]) * (in2[4] << 0) + | |
673 + ((u64) in[5]) * (in2[3] << 1) + | |
674 + ((u64) in[6]) * (in2[2] << 0) + | |
675 + ((u64) in[7]) * (in2[1] << 1) + | |
676 + ((u64) in[8]) * (in2[0] << 0); | |
677 + tmp[9] = ((u64) in[1]) * (in2[8] << 0) + | |
678 + ((u64) in[2]) * (in2[7] << 0) + | |
679 + ((u64) in[3]) * (in2[6] << 0) + | |
680 + ((u64) in[4]) * (in2[5] << 0) + | |
681 + ((u64) in[5]) * (in2[4] << 0) + | |
682 + ((u64) in[6]) * (in2[3] << 0) + | |
683 + ((u64) in[7]) * (in2[2] << 0) + | |
684 + ((u64) in[8]) * (in2[1] << 0); | |
685 + tmp[10] = ((u64) in[2]) * (in2[8] << 0) + | |
686 + ((u64) in[3]) * (in2[7] << 1) + | |
687 + ((u64) in[4]) * (in2[6] << 0) + | |
688 + ((u64) in[5]) * (in2[5] << 1) + | |
689 + ((u64) in[6]) * (in2[4] << 0) + | |
690 + ((u64) in[7]) * (in2[3] << 1) + | |
691 + ((u64) in[8]) * (in2[2] << 0); | |
692 + tmp[11] = ((u64) in[3]) * (in2[8] << 0) + | |
693 + ((u64) in[4]) * (in2[7] << 0) + | |
694 + ((u64) in[5]) * (in2[6] << 0) + | |
695 + ((u64) in[6]) * (in2[5] << 0) + | |
696 + ((u64) in[7]) * (in2[4] << 0) + | |
697 + ((u64) in[8]) * (in2[3] << 0); | |
698 + tmp[12] = ((u64) in[4]) * (in2[8] << 0) + | |
699 + ((u64) in[5]) * (in2[7] << 1) + | |
700 + ((u64) in[6]) * (in2[6] << 0) + | |
701 + ((u64) in[7]) * (in2[5] << 1) + | |
702 + ((u64) in[8]) * (in2[4] << 0); | |
703 + tmp[13] = ((u64) in[5]) * (in2[8] << 0) + | |
704 + ((u64) in[6]) * (in2[7] << 0) + | |
705 + ((u64) in[7]) * (in2[6] << 0) + | |
706 + ((u64) in[8]) * (in2[5] << 0); | |
707 + tmp[14] = ((u64) in[6]) * (in2[8] << 0) + | |
708 + ((u64) in[7]) * (in2[7] << 1) + | |
709 + ((u64) in[8]) * (in2[6] << 0); | |
710 + tmp[15] = ((u64) in[7]) * (in2[8] << 0) + | |
711 + ((u64) in[8]) * (in2[7] << 0); | |
712 + tmp[16] = ((u64) in[8]) * (in2[8] << 0); | |
713 + | |
714 + felem_reduce_degree(out, tmp); | |
715 +} | |
716 + | |
717 +static void felem_assign(felem out, const felem in) | |
718 +{ | |
719 + memcpy(out, in, sizeof(felem)); | |
720 +} | |
721 + | |
722 +/* felem_inv calculates |out| = |in|^{-1} | |
723 + * | |
724 + * Based on Fermat's Little Theorem: | |
725 + * a^p = a (mod p) | |
726 + * a^{p-1} = 1 (mod p) | |
727 + * a^{p-2} = a^{-1} (mod p) | |
728 + */ | |
729 +static void felem_inv(felem out, const felem in) | |
730 +{ | |
731 + felem ftmp, ftmp2; | |
732 + /* each e_I will hold |in|^{2^I - 1} */ | |
733 + felem e2, e4, e8, e16, e32, e64; | |
734 + unsigned int i; | |
735 + | |
736 + felem_square(ftmp, in); /* 2^1 */ | |
737 + felem_mul(ftmp, in, ftmp); /* 2^2 - 2^0 */ | |
738 + felem_assign(e2, ftmp); | |
739 + felem_square(ftmp, ftmp); /* 2^3 - 2^1 */ | |
740 + felem_square(ftmp, ftmp); /* 2^4 - 2^2 */ | |
741 + felem_mul(ftmp, ftmp, e2); /* 2^4 - 2^0 */ | |
742 + felem_assign(e4, ftmp); | |
743 + felem_square(ftmp, ftmp); /* 2^5 - 2^1 */ | |
744 + felem_square(ftmp, ftmp); /* 2^6 - 2^2 */ | |
745 + felem_square(ftmp, ftmp); /* 2^7 - 2^3 */ | |
746 + felem_square(ftmp, ftmp); /* 2^8 - 2^4 */ | |
747 + felem_mul(ftmp, ftmp, e4); /* 2^8 - 2^0 */ | |
748 + felem_assign(e8, ftmp); | |
749 + for (i = 0; i < 8; i++) { | |
750 + felem_square(ftmp, ftmp); | |
751 + } /* 2^16 - 2^8 */ | |
752 + felem_mul(ftmp, ftmp, e8); /* 2^16 - 2^0 */ | |
753 + felem_assign(e16, ftmp); | |
754 + for (i = 0; i < 16; i++) { | |
755 + felem_square(ftmp, ftmp); | |
756 + } /* 2^32 - 2^16 */ | |
757 + felem_mul(ftmp, ftmp, e16); /* 2^32 - 2^0 */ | |
758 + felem_assign(e32, ftmp); | |
759 + for (i = 0; i < 32; i++) { | |
760 + felem_square(ftmp, ftmp); | |
761 + } /* 2^64 - 2^32 */ | |
762 + felem_assign(e64, ftmp); | |
763 + felem_mul(ftmp, ftmp, in); /* 2^64 - 2^32 + 2^0 */ | |
764 + for (i = 0; i < 192; i++) { | |
765 + felem_square(ftmp, ftmp); | |
766 + } /* 2^256 - 2^224 + 2^192 */ | |
767 + | |
768 + felem_mul(ftmp2, e64, e32); /* 2^64 - 2^0 */ | |
769 + for (i = 0; i < 16; i++) { | |
770 + felem_square(ftmp2, ftmp2); | |
771 + } /* 2^80 - 2^16 */ | |
772 + felem_mul(ftmp2, ftmp2, e16); /* 2^80 - 2^0 */ | |
773 + for (i = 0; i < 8; i++) { | |
774 + felem_square(ftmp2, ftmp2); | |
775 + } /* 2^88 - 2^8 */ | |
776 + felem_mul(ftmp2, ftmp2, e8); /* 2^88 - 2^0 */ | |
777 + for (i = 0; i < 4; i++) { | |
778 + felem_square(ftmp2, ftmp2); | |
779 + } /* 2^92 - 2^4 */ | |
780 + felem_mul(ftmp2, ftmp2, e4); /* 2^92 - 2^0 */ | |
781 + felem_square(ftmp2, ftmp2); /* 2^93 - 2^1 */ | |
782 + felem_square(ftmp2, ftmp2); /* 2^94 - 2^2 */ | |
783 + felem_mul(ftmp2, ftmp2, e2); /* 2^94 - 2^0 */ | |
784 + felem_square(ftmp2, ftmp2); /* 2^95 - 2^1 */ | |
785 + felem_square(ftmp2, ftmp2); /* 2^96 - 2^2 */ | |
786 + felem_mul(ftmp2, ftmp2, in); /* 2^96 - 3 */ | |
787 + | |
788 + felem_mul(out, ftmp2, ftmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */ | |
789 +} | |
790 + | |
791 +/* felem_scalar_3 sets out=3*out. | |
792 + * | |
793 + * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
794 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
795 + */ | |
796 +static void felem_scalar_3(felem out) | |
797 +{ | |
798 + limb carry = 0; | |
799 + unsigned int i; | |
800 + | |
801 + for (i = 0;; i++) { | |
802 + out[i] *= 3; | |
803 + out[i] += carry; | |
804 + carry = out[i] >> 29; | |
805 + out[i] &= kBottom29Bits; | |
806 + | |
807 + i++; | |
808 + if (i == NLIMBS) | |
809 + break; | |
810 + | |
811 + out[i] *= 3; | |
812 + out[i] += carry; | |
813 + carry = out[i] >> 28; | |
814 + out[i] &= kBottom28Bits; | |
815 + } | |
816 + | |
817 + felem_reduce_carry(out, carry); | |
818 +} | |
819 + | |
820 +/* felem_scalar_4 sets out=4*out. | |
821 + * | |
822 + * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
823 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
824 + */ | |
825 +static void felem_scalar_4(felem out) | |
826 +{ | |
827 + limb carry = 0, next_carry; | |
828 + unsigned int i; | |
829 + | |
830 + for (i = 0;; i++) { | |
831 + next_carry = out[i] >> 27; | |
832 + out[i] <<= 2; | |
833 + out[i] &= kBottom29Bits; | |
834 + out[i] += carry; | |
835 + carry = next_carry + (out[i] >> 29); | |
836 + out[i] &= kBottom29Bits; | |
837 + | |
838 + i++; | |
839 + if (i == NLIMBS) | |
840 + break; | |
841 + next_carry = out[i] >> 26; | |
842 + out[i] <<= 2; | |
843 + out[i] &= kBottom28Bits; | |
844 + out[i] += carry; | |
845 + carry = next_carry + (out[i] >> 28); | |
846 + out[i] &= kBottom28Bits; | |
847 + } | |
848 + | |
849 + felem_reduce_carry(out, carry); | |
850 +} | |
851 + | |
852 +/* felem_scalar_8 sets out=8*out. | |
853 + * | |
854 + * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
855 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. | |
856 + */ | |
857 +static void felem_scalar_8(felem out) | |
858 +{ | |
859 + limb carry = 0, next_carry; | |
860 + unsigned int i; | |
861 + | |
862 + for (i = 0;; i++) { | |
863 + next_carry = out[i] >> 26; | |
864 + out[i] <<= 3; | |
865 + out[i] &= kBottom29Bits; | |
866 + out[i] += carry; | |
867 + carry = next_carry + (out[i] >> 29); | |
868 + out[i] &= kBottom29Bits; | |
869 + | |
870 + i++; | |
871 + if (i == NLIMBS) | |
872 + break; | |
873 + next_carry = out[i] >> 25; | |
874 + out[i] <<= 3; | |
875 + out[i] &= kBottom28Bits; | |
876 + out[i] += carry; | |
877 + carry = next_carry + (out[i] >> 28); | |
878 + out[i] &= kBottom28Bits; | |
879 + } | |
880 + | |
881 + felem_reduce_carry(out, carry); | |
882 +} | |
883 + | |
884 +/* felem_is_zero_vartime returns 1 iff |in| == 0. It takes a variable amount of | |
885 + * time depending on the value of |in|. | |
886 + */ | |
887 +static char felem_is_zero_vartime(const felem in) | |
888 +{ | |
889 + limb carry; | |
890 + int i; | |
891 + limb tmp[NLIMBS]; | |
892 + felem_assign(tmp, in); | |
893 + | |
894 + /* First, reduce tmp to a minimal form. | |
895 + */ | |
896 + do { | |
897 + carry = 0; | |
898 + for (i = 0;; i++) { | |
899 + tmp[i] += carry; | |
900 + carry = tmp[i] >> 29; | |
901 + tmp[i] &= kBottom29Bits; | |
902 + | |
903 + i++; | |
904 + if (i == NLIMBS) | |
905 + break; | |
906 + | |
907 + tmp[i] += carry; | |
908 + carry = tmp[i] >> 28; | |
909 + tmp[i] &= kBottom28Bits; | |
910 + } | |
911 + | |
912 + felem_reduce_carry(tmp, carry); | |
913 + } while (carry); | |
914 + | |
915 + /* tmp < 2**257, so the only possible zero values are 0, p and 2p. | |
916 + */ | |
917 + return memcmp(tmp, kZero, sizeof(tmp)) == 0 || | |
918 + memcmp(tmp, kP, sizeof(tmp)) == 0 || | |
919 + memcmp(tmp, k2P, sizeof(tmp)) == 0; | |
920 +} | |
921 + | |
922 +/* Group operations: | |
923 + * | |
924 + * Elements of the elliptic curve group are represented in Jacobian | |
925 + * coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in | |
926 + * Jacobian form. | |
927 + */ | |
928 + | |
929 +/* point_double sets {x_out,y_out,z_out} = 2*{x,y,z}. | |
930 + * | |
931 + * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doublin
g-dbl-2009-l | |
932 + */ | |
933 +static void point_double(felem x_out, felem y_out, felem z_out, | |
934 + const felem x, const felem y, const felem z) | |
935 +{ | |
936 + felem delta, gamma, alpha, beta, tmp, tmp2; | |
937 + | |
938 + felem_square(delta, z); | |
939 + felem_square(gamma, y); | |
940 + felem_mul(beta, x, gamma); | |
941 + | |
942 + felem_sum(tmp, x, delta); | |
943 + felem_diff(tmp2, x, delta); | |
944 + felem_mul(alpha, tmp, tmp2); | |
945 + felem_scalar_3(alpha); | |
946 + | |
947 + felem_sum(tmp, y, z); | |
948 + felem_square(tmp, tmp); | |
949 + felem_diff(tmp, tmp, gamma); | |
950 + felem_diff(z_out, tmp, delta); | |
951 + | |
952 + felem_scalar_4(beta); | |
953 + felem_square(x_out, alpha); | |
954 + felem_diff(x_out, x_out, beta); | |
955 + felem_diff(x_out, x_out, beta); | |
956 + | |
957 + felem_diff(tmp, beta, x_out); | |
958 + felem_mul(tmp, alpha, tmp); | |
959 + felem_square(tmp2, gamma); | |
960 + felem_scalar_8(tmp2); | |
961 + felem_diff(y_out, tmp, tmp2); | |
962 +} | |
963 + | |
964 +/* point_add_mixed sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,1}. | |
965 + * (i.e. the second point is affine.) | |
966 + * | |
967 + * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#additio
n-add-2007-bl | |
968 + * | |
969 + * Note that this function does not handle P+P, infinity+P nor P+infinity | |
970 + * correctly. | |
971 + */ | |
972 +static void point_add_mixed(felem x_out, felem y_out, felem z_out, | |
973 + const felem x1, const felem y1, const felem z1, | |
974 + const felem x2, const felem y2) | |
975 +{ | |
976 + felem z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp; | |
977 + | |
978 + felem_square(z1z1, z1); | |
979 + felem_sum(tmp, z1, z1); | |
980 + | |
981 + felem_mul(u2, x2, z1z1); | |
982 + felem_mul(z1z1z1, z1, z1z1); | |
983 + felem_mul(s2, y2, z1z1z1); | |
984 + felem_diff(h, u2, x1); | |
985 + felem_sum(i, h, h); | |
986 + felem_square(i, i); | |
987 + felem_mul(j, h, i); | |
988 + felem_diff(r, s2, y1); | |
989 + felem_sum(r, r, r); | |
990 + felem_mul(v, x1, i); | |
991 + | |
992 + felem_mul(z_out, tmp, h); | |
993 + felem_square(rr, r); | |
994 + felem_diff(x_out, rr, j); | |
995 + felem_diff(x_out, x_out, v); | |
996 + felem_diff(x_out, x_out, v); | |
997 + | |
998 + felem_diff(tmp, v, x_out); | |
999 + felem_mul(y_out, tmp, r); | |
1000 + felem_mul(tmp, y1, j); | |
1001 + felem_diff(y_out, y_out, tmp); | |
1002 + felem_diff(y_out, y_out, tmp); | |
1003 +} | |
1004 + | |
1005 +/* point_add sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,z2}. | |
1006 + * | |
1007 + * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#additio
n-add-2007-bl | |
1008 + * | |
1009 + * Note that this function does not handle P+P, infinity+P nor P+infinity | |
1010 + * correctly. | |
1011 + */ | |
1012 +static void point_add(felem x_out, felem y_out, felem z_out, | |
1013 + const felem x1, const felem y1, const felem z1, | |
1014 + const felem x2, const felem y2, const felem z2) | |
1015 +{ | |
1016 + felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp; | |
1017 + | |
1018 + felem_square(z1z1, z1); | |
1019 + felem_square(z2z2, z2); | |
1020 + felem_mul(u1, x1, z2z2); | |
1021 + | |
1022 + felem_sum(tmp, z1, z2); | |
1023 + felem_square(tmp, tmp); | |
1024 + felem_diff(tmp, tmp, z1z1); | |
1025 + felem_diff(tmp, tmp, z2z2); | |
1026 + | |
1027 + felem_mul(z2z2z2, z2, z2z2); | |
1028 + felem_mul(s1, y1, z2z2z2); | |
1029 + | |
1030 + felem_mul(u2, x2, z1z1); | |
1031 + felem_mul(z1z1z1, z1, z1z1); | |
1032 + felem_mul(s2, y2, z1z1z1); | |
1033 + felem_diff(h, u2, u1); | |
1034 + felem_sum(i, h, h); | |
1035 + felem_square(i, i); | |
1036 + felem_mul(j, h, i); | |
1037 + felem_diff(r, s2, s1); | |
1038 + felem_sum(r, r, r); | |
1039 + felem_mul(v, u1, i); | |
1040 + | |
1041 + felem_mul(z_out, tmp, h); | |
1042 + felem_square(rr, r); | |
1043 + felem_diff(x_out, rr, j); | |
1044 + felem_diff(x_out, x_out, v); | |
1045 + felem_diff(x_out, x_out, v); | |
1046 + | |
1047 + felem_diff(tmp, v, x_out); | |
1048 + felem_mul(y_out, tmp, r); | |
1049 + felem_mul(tmp, s1, j); | |
1050 + felem_diff(y_out, y_out, tmp); | |
1051 + felem_diff(y_out, y_out, tmp); | |
1052 +} | |
1053 + | |
1054 +/* point_add_or_double_vartime sets {x_out,y_out,z_out} = {x1,y1,z1} + | |
1055 + * {x2,y2,z2}. | |
1056 + * | |
1057 + * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#additio
n-add-2007-bl | |
1058 + * | |
1059 + * This function handles the case where {x1,y1,z1}={x2,y2,z2}. | |
1060 + */ | |
1061 +static void point_add_or_double_vartime( | |
1062 + felem x_out, felem y_out, felem z_out, | |
1063 + const felem x1, const felem y1, const felem z1, | |
1064 + const felem x2, const felem y2, const felem z2) | |
1065 +{ | |
1066 + felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp; | |
1067 + char x_equal, y_equal; | |
1068 + | |
1069 + felem_square(z1z1, z1); | |
1070 + felem_square(z2z2, z2); | |
1071 + felem_mul(u1, x1, z2z2); | |
1072 + | |
1073 + felem_sum(tmp, z1, z2); | |
1074 + felem_square(tmp, tmp); | |
1075 + felem_diff(tmp, tmp, z1z1); | |
1076 + felem_diff(tmp, tmp, z2z2); | |
1077 + | |
1078 + felem_mul(z2z2z2, z2, z2z2); | |
1079 + felem_mul(s1, y1, z2z2z2); | |
1080 + | |
1081 + felem_mul(u2, x2, z1z1); | |
1082 + felem_mul(z1z1z1, z1, z1z1); | |
1083 + felem_mul(s2, y2, z1z1z1); | |
1084 + felem_diff(h, u2, u1); | |
1085 + x_equal = felem_is_zero_vartime(h); | |
1086 + felem_sum(i, h, h); | |
1087 + felem_square(i, i); | |
1088 + felem_mul(j, h, i); | |
1089 + felem_diff(r, s2, s1); | |
1090 + y_equal = felem_is_zero_vartime(r); | |
1091 + if (x_equal && y_equal) { | |
1092 + point_double(x_out, y_out, z_out, x1, y1, z1); | |
1093 + return; | |
1094 + } | |
1095 + felem_sum(r, r, r); | |
1096 + felem_mul(v, u1, i); | |
1097 + | |
1098 + felem_mul(z_out, tmp, h); | |
1099 + felem_square(rr, r); | |
1100 + felem_diff(x_out, rr, j); | |
1101 + felem_diff(x_out, x_out, v); | |
1102 + felem_diff(x_out, x_out, v); | |
1103 + | |
1104 + felem_diff(tmp, v, x_out); | |
1105 + felem_mul(y_out, tmp, r); | |
1106 + felem_mul(tmp, s1, j); | |
1107 + felem_diff(y_out, y_out, tmp); | |
1108 + felem_diff(y_out, y_out, tmp); | |
1109 +} | |
1110 + | |
1111 +/* copy_conditional sets out=in if mask = 0xffffffff in constant time. | |
1112 + * | |
1113 + * On entry: mask is either 0 or 0xffffffff. | |
1114 + */ | |
1115 +static void copy_conditional(felem out, const felem in, limb mask) | |
1116 +{ | |
1117 + int i; | |
1118 + | |
1119 + for (i = 0; i < NLIMBS; i++) { | |
1120 + const limb tmp = mask & (in[i] ^ out[i]); | |
1121 + out[i] ^= tmp; | |
1122 + } | |
1123 +} | |
1124 + | |
1125 +/* select_affine_point sets {out_x,out_y} to the index'th entry of table. | |
1126 + * On entry: index < 16, table[0] must be zero. | |
1127 + */ | |
1128 +static void select_affine_point(felem out_x, felem out_y, | |
1129 + const limb *table, limb index) | |
1130 +{ | |
1131 + limb i, j; | |
1132 + | |
1133 + memset(out_x, 0, sizeof(felem)); | |
1134 + memset(out_y, 0, sizeof(felem)); | |
1135 + | |
1136 + for (i = 1; i < 16; i++) { | |
1137 + limb mask = i ^ index; | |
1138 + mask |= mask >> 2; | |
1139 + mask |= mask >> 1; | |
1140 + mask &= 1; | |
1141 + mask--; | |
1142 + for (j = 0; j < NLIMBS; j++, table++) { | |
1143 + out_x[j] |= *table & mask; | |
1144 + } | |
1145 + for (j = 0; j < NLIMBS; j++, table++) { | |
1146 + out_y[j] |= *table & mask; | |
1147 + } | |
1148 + } | |
1149 +} | |
1150 + | |
1151 +/* select_jacobian_point sets {out_x,out_y,out_z} to the index'th entry of | |
1152 + * table. On entry: index < 16, table[0] must be zero. | |
1153 + */ | |
1154 +static void select_jacobian_point(felem out_x, felem out_y, felem out_z, | |
1155 + const limb *table, limb index) | |
1156 +{ | |
1157 + limb i, j; | |
1158 + | |
1159 + memset(out_x, 0, sizeof(felem)); | |
1160 + memset(out_y, 0, sizeof(felem)); | |
1161 + memset(out_z, 0, sizeof(felem)); | |
1162 + | |
1163 + /* The implicit value at index 0 is all zero. We don't need to perform that | |
1164 + * iteration of the loop because we already set out_* to zero. | |
1165 + */ | |
1166 + table += 3*NLIMBS; | |
1167 + | |
1168 + for (i = 1; i < 16; i++) { | |
1169 + limb mask = i ^ index; | |
1170 + mask |= mask >> 2; | |
1171 + mask |= mask >> 1; | |
1172 + mask &= 1; | |
1173 + mask--; | |
1174 + for (j = 0; j < NLIMBS; j++, table++) { | |
1175 + out_x[j] |= *table & mask; | |
1176 + } | |
1177 + for (j = 0; j < NLIMBS; j++, table++) { | |
1178 + out_y[j] |= *table & mask; | |
1179 + } | |
1180 + for (j = 0; j < NLIMBS; j++, table++) { | |
1181 + out_z[j] |= *table & mask; | |
1182 + } | |
1183 + } | |
1184 +} | |
1185 + | |
1186 +/* get_bit returns the bit'th bit of scalar. */ | |
1187 +static char get_bit(const u8 scalar[32], int bit) | |
1188 +{ | |
1189 + return ((scalar[bit >> 3]) >> (bit & 7)) & 1; | |
1190 +} | |
1191 + | |
1192 +/* scalar_base_mult sets {nx,ny,nz} = scalar*G where scalar is a little-endian | |
1193 + * number. Note that the value of scalar must be less than the order of the | |
1194 + * group. | |
1195 + */ | |
1196 +static void scalar_base_mult(felem nx, felem ny, felem nz, const u8 scalar[32]) | |
1197 +{ | |
1198 + int i, j; | |
1199 + limb n_is_infinity_mask = -1, p_is_noninfinite_mask, mask; | |
1200 + u32 table_offset; | |
1201 + | |
1202 + felem px, py; | |
1203 + felem tx, ty, tz; | |
1204 + | |
1205 + memset(nx, 0, sizeof(felem)); | |
1206 + memset(ny, 0, sizeof(felem)); | |
1207 + memset(nz, 0, sizeof(felem)); | |
1208 + | |
1209 + /* The loop adds bits at positions 0, 64, 128 and 192, followed by | |
1210 + * positions 32,96,160 and 224 and does this 32 times. | |
1211 + */ | |
1212 + for (i = 0; i < 32; i++) { | |
1213 + if (i) { | |
1214 + point_double(nx, ny, nz, nx, ny, nz); | |
1215 + } | |
1216 + for (j = 0; j <= 32; j += 32) { | |
1217 + char bit0 = get_bit(scalar, 31 - i + j); | |
1218 + char bit1 = get_bit(scalar, 95 - i + j); | |
1219 + char bit2 = get_bit(scalar, 159 - i + j); | |
1220 + char bit3 = get_bit(scalar, 223 - i + j); | |
1221 + limb index = bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3); | |
1222 + | |
1223 + table_offset = ((((s32)j) << (32-6)) >> 31) & (30*NLIMBS); | |
1224 + select_affine_point(px, py, kPrecomputed + table_offset, index); | |
1225 + | |
1226 + /* Since scalar is less than the order of the group, we know that | |
1227 + * {nx,ny,nz} != {px,py,1}, unless both are zero, which we handle | |
1228 + * below. | |
1229 + */ | |
1230 + point_add_mixed(tx, ty, tz, nx, ny, nz, px, py); | |
1231 + /* The result of point_add_mixed is incorrect if {nx,ny,nz} is zero | |
1232 + * (a.k.a. the point at infinity). We handle that situation by | |
1233 + * copying the point from the table. | |
1234 + */ | |
1235 + copy_conditional(nx, px, n_is_infinity_mask); | |
1236 + copy_conditional(ny, py, n_is_infinity_mask); | |
1237 + copy_conditional(nz, kOne, n_is_infinity_mask); | |
1238 + | |
1239 + /* Equally, the result is also wrong if the point from the table is | |
1240 + * zero, which happens when the index is zero. We handle that by | |
1241 + * only copying from {tx,ty,tz} to {nx,ny,nz} if index != 0. | |
1242 + */ | |
1243 + p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index); | |
1244 + mask = p_is_noninfinite_mask & ~n_is_infinity_mask; | |
1245 + copy_conditional(nx, tx, mask); | |
1246 + copy_conditional(ny, ty, mask); | |
1247 + copy_conditional(nz, tz, mask); | |
1248 + /* If p was not zero, then n is now non-zero. */ | |
1249 + n_is_infinity_mask &= ~p_is_noninfinite_mask; | |
1250 + } | |
1251 + } | |
1252 +} | |
1253 + | |
1254 +/* point_to_affine converts a Jacobian point to an affine point. If the input | |
1255 + * is the point at infinity then it returns (0, 0) in constant time. | |
1256 + */ | |
1257 +static void point_to_affine(felem x_out, felem y_out, | |
1258 + const felem nx, const felem ny, const felem nz) { | |
1259 + felem z_inv, z_inv_sq; | |
1260 + felem_inv(z_inv, nz); | |
1261 + felem_square(z_inv_sq, z_inv); | |
1262 + felem_mul(x_out, nx, z_inv_sq); | |
1263 + felem_mul(z_inv, z_inv, z_inv_sq); | |
1264 + felem_mul(y_out, ny, z_inv); | |
1265 +} | |
1266 + | |
1267 +/* scalar_mult sets {nx,ny,nz} = scalar*{x,y}. */ | |
1268 +static void scalar_mult(felem nx, felem ny, felem nz, | |
1269 + const felem x, const felem y, const u8 scalar[32]) | |
1270 +{ | |
1271 + int i; | |
1272 + felem px, py, pz, tx, ty, tz; | |
1273 + felem precomp[16][3]; | |
1274 + limb n_is_infinity_mask, index, p_is_noninfinite_mask, mask; | |
1275 + | |
1276 + /* We precompute 0,1,2,... times {x,y}. */ | |
1277 + memset(precomp, 0, sizeof(felem) * 3); | |
1278 + memcpy(&precomp[1][0], x, sizeof(felem)); | |
1279 + memcpy(&precomp[1][1], y, sizeof(felem)); | |
1280 + memcpy(&precomp[1][2], kOne, sizeof(felem)); | |
1281 + | |
1282 + for (i = 2; i < 16; i += 2) { | |
1283 + point_double(precomp[i][0], precomp[i][1], precomp[i][2], | |
1284 + precomp[i / 2][0], precomp[i / 2][1], precomp[i / 2][2]); | |
1285 + | |
1286 + point_add_mixed(precomp[i + 1][0], precomp[i + 1][1], precomp[i + 1][2], | |
1287 + precomp[i][0], precomp[i][1], precomp[i][2], x, y); | |
1288 + } | |
1289 + | |
1290 + memset(nx, 0, sizeof(felem)); | |
1291 + memset(ny, 0, sizeof(felem)); | |
1292 + memset(nz, 0, sizeof(felem)); | |
1293 + n_is_infinity_mask = -1; | |
1294 + | |
1295 + /* We add in a window of four bits each iteration and do this 64 times. */ | |
1296 + for (i = 0; i < 64; i++) { | |
1297 + if (i) { | |
1298 + point_double(nx, ny, nz, nx, ny, nz); | |
1299 + point_double(nx, ny, nz, nx, ny, nz); | |
1300 + point_double(nx, ny, nz, nx, ny, nz); | |
1301 + point_double(nx, ny, nz, nx, ny, nz); | |
1302 + } | |
1303 + | |
1304 + index = scalar[31 - i / 2]; | |
1305 + if ((i & 1) == 1) { | |
1306 + index &= 15; | |
1307 + } else { | |
1308 + index >>= 4; | |
1309 + } | |
1310 + | |
1311 + /* See the comments in scalar_base_mult about handling infinities. */ | |
1312 + select_jacobian_point(px, py, pz, (limb *) precomp, index); | |
1313 + point_add(tx, ty, tz, nx, ny, nz, px, py, pz); | |
1314 + copy_conditional(nx, px, n_is_infinity_mask); | |
1315 + copy_conditional(ny, py, n_is_infinity_mask); | |
1316 + copy_conditional(nz, pz, n_is_infinity_mask); | |
1317 + | |
1318 + p_is_noninfinite_mask = ((s32) ~ (index - 1)) >> 31; | |
1319 + mask = p_is_noninfinite_mask & ~n_is_infinity_mask; | |
1320 + copy_conditional(nx, tx, mask); | |
1321 + copy_conditional(ny, ty, mask); | |
1322 + copy_conditional(nz, tz, mask); | |
1323 + n_is_infinity_mask &= ~p_is_noninfinite_mask; | |
1324 + } | |
1325 +} | |
1326 + | |
1327 +/* Interface with Freebl: */ | |
1328 + | |
1329 +#ifdef IS_BIG_ENDIAN | |
1330 +#error "This code needs a little-endian processor" | |
1331 +#endif | |
1332 + | |
1333 +static const u32 kRInvDigits[8] = { | |
1334 + 0x80000000, 1, 0xffffffff, 0, | |
1335 + 0x80000001, 0xfffffffe, 1, 0x7fffffff | |
1336 +}; | |
1337 +#define MP_DIGITS_IN_256_BITS (32/sizeof(mp_digit)) | |
1338 +static const mp_int kRInv = { | |
1339 + MP_ZPOS, | |
1340 + MP_DIGITS_IN_256_BITS, | |
1341 + MP_DIGITS_IN_256_BITS, | |
1342 + /* Because we are running on a little-endian processor, this cast works for | |
1343 + * both 32 and 64-bit processors. | |
1344 + */ | |
1345 + (mp_digit*) kRInvDigits | |
1346 +}; | |
1347 + | |
1348 +static const limb kTwo28 = 0x10000000; | |
1349 +static const limb kTwo29 = 0x20000000; | |
1350 + | |
1351 +/* to_montgomery sets out = R*in. */ | |
1352 +static mp_err to_montgomery(felem out, const mp_int *in, const ECGroup *group) | |
1353 +{ | |
1354 + /* There are no MPI functions for bitshift operations and we wish to shift | |
1355 + * in 257 bits left so we move the digits 256-bits left and then multiply | |
1356 + * by two. | |
1357 + */ | |
1358 + mp_int in_shifted; | |
1359 + int i; | |
1360 + mp_err res; | |
1361 + | |
1362 + mp_init(&in_shifted); | |
1363 + s_mp_pad(&in_shifted, MP_USED(in) + MP_DIGITS_IN_256_BITS); | |
1364 + memcpy(&MP_DIGIT(&in_shifted, MP_DIGITS_IN_256_BITS), | |
1365 + MP_DIGITS(in), | |
1366 + MP_USED(in)*sizeof(mp_digit)); | |
1367 + mp_mul_2(&in_shifted, &in_shifted); | |
1368 + MP_CHECKOK(group->meth->field_mod(&in_shifted, &in_shifted, group->meth)); | |
1369 + | |
1370 + for (i = 0;; i++) { | |
1371 + out[i] = MP_DIGIT(&in_shifted, 0) & kBottom29Bits; | |
1372 + mp_div_d(&in_shifted, kTwo29, &in_shifted, NULL); | |
1373 + | |
1374 + i++; | |
1375 + if (i == NLIMBS) | |
1376 + break; | |
1377 + out[i] = MP_DIGIT(&in_shifted, 0) & kBottom28Bits; | |
1378 + mp_div_d(&in_shifted, kTwo28, &in_shifted, NULL); | |
1379 + } | |
1380 + | |
1381 +CLEANUP: | |
1382 + mp_clear(&in_shifted); | |
1383 + return res; | |
1384 +} | |
1385 + | |
1386 +/* from_montgomery sets out=in/R. */ | |
1387 +static mp_err from_montgomery(mp_int *out, const felem in, | |
1388 + const ECGroup *group) | |
1389 +{ | |
1390 + mp_int result, tmp; | |
1391 + mp_err res; | |
1392 + int i; | |
1393 + | |
1394 + mp_init(&result); | |
1395 + mp_init(&tmp); | |
1396 + | |
1397 + MP_CHECKOK(mp_add_d(&tmp, in[NLIMBS-1], &result)); | |
1398 + for (i = NLIMBS-2; i >= 0; i--) { | |
1399 + if ((i & 1) == 0) { | |
1400 + MP_CHECKOK(mp_mul_d(&result, kTwo29, &tmp)); | |
1401 + } else { | |
1402 + MP_CHECKOK(mp_mul_d(&result, kTwo28, &tmp)); | |
1403 + } | |
1404 + MP_CHECKOK(mp_add_d(&tmp, in[i], &result)); | |
1405 + } | |
1406 + | |
1407 + MP_CHECKOK(mp_mul(&result, &kRInv, out)); | |
1408 + MP_CHECKOK(group->meth->field_mod(out, out, group->meth)); | |
1409 + | |
1410 +CLEANUP: | |
1411 + mp_clear(&result); | |
1412 + mp_clear(&tmp); | |
1413 + return res; | |
1414 +} | |
1415 + | |
1416 +/* scalar_from_mp_int sets out_scalar=n, where n < the group order. */ | |
1417 +static void scalar_from_mp_int(u8 out_scalar[32], const mp_int *n) | |
1418 +{ | |
1419 + /* We require that |n| is less than the order of the group and therefore it | |
1420 + * will fit into |scalar|. However, these is a timing side-channel here tha
t | |
1421 + * we cannot avoid: if |n| is sufficiently small it may be one or more word
s | |
1422 + * too short and we'll copy less data. | |
1423 + */ | |
1424 + memset(out_scalar, 0, 32); | |
1425 + memcpy(out_scalar, MP_DIGITS(n), MP_USED(n) * sizeof(mp_digit)); | |
1426 +} | |
1427 + | |
1428 +/* ec_GFp_nistp256_base_point_mul sets {out_x,out_y} = nG, where n is < the | |
1429 + * order of the group. | |
1430 + */ | |
1431 +static mp_err ec_GFp_nistp256_base_point_mul(const mp_int *n, | |
1432 + mp_int *out_x, mp_int *out_y, | |
1433 + const ECGroup *group) | |
1434 +{ | |
1435 + u8 scalar[32]; | |
1436 + felem x, y, z, x_affine, y_affine; | |
1437 + mp_err res; | |
1438 + | |
1439 + /* FIXME(agl): test that n < order. */ | |
1440 + | |
1441 + scalar_from_mp_int(scalar, n); | |
1442 + scalar_base_mult(x, y, z, scalar); | |
1443 + point_to_affine(x_affine, y_affine, x, y, z); | |
1444 + MP_CHECKOK(from_montgomery(out_x, x_affine, group)); | |
1445 + MP_CHECKOK(from_montgomery(out_y, y_affine, group)); | |
1446 + | |
1447 +CLEANUP: | |
1448 + return res; | |
1449 +} | |
1450 + | |
1451 +/* ec_GFp_nistp256_point_mul sets {out_x,out_y} = n*{in_x,in_y}, where n is < | |
1452 + * the order of the group. | |
1453 + */ | |
1454 +static mp_err ec_GFp_nistp256_point_mul(const mp_int *n, | |
1455 + const mp_int *in_x, const mp_int *in_y, | |
1456 + mp_int *out_x, mp_int *out_y, | |
1457 + const ECGroup *group) | |
1458 +{ | |
1459 + u8 scalar[32]; | |
1460 + felem x, y, z, x_affine, y_affine, px, py; | |
1461 + mp_err res; | |
1462 + | |
1463 + scalar_from_mp_int(scalar, n); | |
1464 + | |
1465 + MP_CHECKOK(to_montgomery(px, in_x, group)); | |
1466 + MP_CHECKOK(to_montgomery(py, in_y, group)); | |
1467 + | |
1468 + scalar_mult(x, y, z, px, py, scalar); | |
1469 + point_to_affine(x_affine, y_affine, x, y, z); | |
1470 + MP_CHECKOK(from_montgomery(out_x, x_affine, group)); | |
1471 + MP_CHECKOK(from_montgomery(out_y, y_affine, group)); | |
1472 + | |
1473 +CLEANUP: | |
1474 + return res; | |
1475 +} | |
1476 + | |
1477 +/* ec_GFp_nistp256_point_mul_vartime sets {out_x,out_y} = n1*G + | |
1478 + * n2*{in_x,in_y}, where n1 and n2 are < the order of the group. | |
1479 + * | |
1480 + * As indicated by the name, this function operates in variable time. This | |
1481 + * is safe because it's used for signature validation which doesn't deal | |
1482 + * with secrets. | |
1483 + */ | |
1484 +static mp_err ec_GFp_nistp256_points_mul_vartime( | |
1485 + const mp_int *n1, const mp_int *n2, | |
1486 + const mp_int *in_x, const mp_int *in_y, | |
1487 + mp_int *out_x, mp_int *out_y, | |
1488 + const ECGroup *group) | |
1489 +{ | |
1490 + u8 scalar1[32], scalar2[32]; | |
1491 + felem x1, y1, z1, x2, y2, z2, x_affine, y_affine, px, py; | |
1492 + mp_err res = MP_OKAY; | |
1493 + | |
1494 + /* If n2 == NULL, this is just a base-point multiplication. */ | |
1495 + if (n2 == NULL) { | |
1496 + return ec_GFp_nistp256_base_point_mul(n1, out_x, out_y, group); | |
1497 + } | |
1498 + | |
1499 + /* If n1 == nULL, this is just an arbitary-point multiplication. */ | |
1500 + if (n1 == NULL) { | |
1501 + return ec_GFp_nistp256_point_mul(n2, in_x, in_y, out_x, out_y, group); | |
1502 + } | |
1503 + | |
1504 + /* If both scalars are zero, then the result is the point at infinity. */ | |
1505 + if (mp_cmp_z(n1) == 0 && mp_cmp_z(n2) == 0) { | |
1506 + mp_zero(out_x); | |
1507 + mp_zero(out_y); | |
1508 + return res; | |
1509 + } | |
1510 + | |
1511 + scalar_from_mp_int(scalar1, n1); | |
1512 + scalar_from_mp_int(scalar2, n2); | |
1513 + | |
1514 + MP_CHECKOK(to_montgomery(px, in_x, group)); | |
1515 + MP_CHECKOK(to_montgomery(py, in_y, group)); | |
1516 + scalar_base_mult(x1, y1, z1, scalar1); | |
1517 + scalar_mult(x2, y2, z2, px, py, scalar2); | |
1518 + | |
1519 + if (mp_cmp_z(n2) == 0) { | |
1520 + /* If n2 == 0, then {x2,y2,z2} is zero and the result is just | |
1521 + * {x1,y1,z1}. */ | |
1522 + } else if (mp_cmp_z(n1) == 0) { | |
1523 + /* If n1 == 0, then {x1,y1,z1} is zero and the result is just | |
1524 + * {x2,y2,z2}. */ | |
1525 + memcpy(x1, x2, sizeof(x2)); | |
1526 + memcpy(y1, y2, sizeof(y2)); | |
1527 + memcpy(z1, z2, sizeof(z2)); | |
1528 + } else { | |
1529 + /* This function handles the case where {x1,y1,z1} == {x2,y2,z2}. */ | |
1530 + point_add_or_double_vartime(x1, y1, z1, x1, y1, z1, x2, y2, z2); | |
1531 + } | |
1532 + | |
1533 + point_to_affine(x_affine, y_affine, x1, y1, z1); | |
1534 + MP_CHECKOK(from_montgomery(out_x, x_affine, group)); | |
1535 + MP_CHECKOK(from_montgomery(out_y, y_affine, group)); | |
1536 + | |
1537 +CLEANUP: | |
1538 + return res; | |
1539 +} | |
1540 + | |
1541 +/* Wire in fast point multiplication for named curves. */ | |
1542 +mp_err ec_group_set_gfp256_32(ECGroup *group, ECCurveName name) | |
1543 +{ | |
1544 + if (name == ECCurve_NIST_P256) { | |
1545 + group->base_point_mul = &ec_GFp_nistp256_base_point_mul; | |
1546 + group->point_mul = &ec_GFp_nistp256_point_mul; | |
1547 + group->points_mul = &ec_GFp_nistp256_points_mul_vartime; | |
1548 + } | |
1549 + return MP_OKAY; | |
1550 +} | |
OLD | NEW |