Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(86)

Side by Side Diff: patches/nss-curve-p256.patch

Issue 12137003: Support big-endian processors. Eliminate the dependency on the (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/deps/third_party/nss/
Patch Set: Add the TODO(agl) back. Remove ecp_256_32.c from nss-curve-p256.patch Created 7 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « mozilla/security/nss/lib/freebl/ecl/ecp_256_32.c ('k') | no next file » | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 Index: mozilla/security/nss/lib/freebl/ecl/ecl-priv.h 1 Index: mozilla/security/nss/lib/freebl/ecl/ecl-priv.h
2 =================================================================== 2 ===================================================================
3 RCS file: /cvsroot/mozilla/security/nss/lib/freebl/ecl/ecl-priv.h,v 3 RCS file: /cvsroot/mozilla/security/nss/lib/freebl/ecl/ecl-priv.h,v
4 retrieving revision 1.8 4 retrieving revision 1.8
5 diff -p -u -r1.8 ecl-priv.h 5 diff -p -u -r1.8 ecl-priv.h
6 --- mozilla/security/nss/lib/freebl/ecl/ecl-priv.h 25 Apr 2012 14:49:44 -00 00 1.8 6 --- mozilla/security/nss/lib/freebl/ecl/ecl-priv.h 25 Apr 2012 14:49:44 -00 00 1.8
7 +++ mozilla/security/nss/lib/freebl/ecl/ecl-priv.h 26 Jan 2013 01:58:30 -00 00 7 +++ mozilla/security/nss/lib/freebl/ecl/ecl-priv.h 26 Jan 2013 01:58:30 -00 00
8 @@ -236,6 +236,9 @@ mp_err ec_group_set_gf2m163(ECGroup *gro 8 @@ -236,6 +236,9 @@ mp_err ec_group_set_gf2m163(ECGroup *gro
9 mp_err ec_group_set_gf2m193(ECGroup *group, ECCurveName name); 9 mp_err ec_group_set_gf2m193(ECGroup *group, ECCurveName name);
10 mp_err ec_group_set_gf2m233(ECGroup *group, ECCurveName name); 10 mp_err ec_group_set_gf2m233(ECGroup *group, ECCurveName name);
(...skipping 53 matching lines...) Expand 10 before | Expand all | Expand 10 after
64 group = 64 group =
65 ECGroup_consGFp_mont(&irr, &curvea, &curveb, &ge nx, &geny, 65 ECGroup_consGFp_mont(&irr, &curvea, &curveb, &ge nx, &geny,
66 &order, params->cofactor); 66 &order, params->cofactor);
67 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; } 67 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
68 -#ifdef NSS_ECC_MORE_THAN_SUITE_B 68 -#ifdef NSS_ECC_MORE_THAN_SUITE_B
69 } 69 }
70 +#ifdef NSS_ECC_MORE_THAN_SUITE_B 70 +#ifdef NSS_ECC_MORE_THAN_SUITE_B
71 } else if (params->field == ECField_GF2m) { 71 } else if (params->field == ECField_GF2m) {
72 group = ECGroup_consGF2m(&irr, NULL, &curvea, &curveb, &genx, &g eny, &order, params->cofactor); 72 group = ECGroup_consGF2m(&irr, NULL, &curvea, &curveb, &genx, &g eny, &order, params->cofactor);
73 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; } 73 if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
74 Index: mozilla/security/nss/lib/freebl/ecl/ecp_256_32.c
75 ===================================================================
76 RCS file: mozilla/security/nss/lib/freebl/ecl/ecp_256_32.c
77 diff -N mozilla/security/nss/lib/freebl/ecl/ecp_256_32.c
78 --- /dev/null 1 Jan 1970 00:00:00 -0000
79 +++ mozilla/security/nss/lib/freebl/ecl/ecp_256_32.c 26 Jan 2013 01:58:30 -00 00
80 @@ -0,0 +1,1470 @@
81 +/* This Source Code Form is subject to the terms of the Mozilla Public
82 + * License, v. 2.0. If a copy of the MPL was not distributed with this
83 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
84 +
85 +/* A 32-bit implementation of the NIST P-256 elliptic curve. */
86 +
87 +#include <string.h>
88 +
89 +#include "prtypes.h"
90 +#include "mpi.h"
91 +#include "mpi-priv.h"
92 +#include "ecp.h"
93 +
94 +typedef PRUint8 u8;
95 +typedef PRUint32 u32;
96 +typedef PRInt32 s32;
97 +typedef PRUint64 u64;
98 +
99 +/* Our field elements are represented as nine, unsigned 32-bit words. Freebl's
100 + * MPI library calls them digits, but here they are called limbs, which is
101 + * GMP's terminology.
102 + *
103 + * The value of an felem (field element) is:
104 + * x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228)
105 + *
106 + * That is, each limb is alternately 29 or 28-bits wide in little-endian
107 + * order.
108 + *
109 + * This means that an felem hits 2**257, rather than 2**256 as we would like. A
110 + * 28, 29, ... pattern would cause us to hit 2**256, but that causes problems
111 + * when multiplying as terms end up one bit short of a limb which would require
112 + * much bit-shifting to correct.
113 + *
114 + * Finally, the values stored in an felem are in Montgomery form. So the value
115 + * |y| is stored as (y*R) mod p, where p is the P-256 prime and R is 2**257.
116 + */
117 +typedef u32 limb;
118 +#define NLIMBS 9
119 +typedef limb felem[NLIMBS];
120 +
121 +static const limb kBottom28Bits = 0xfffffff;
122 +static const limb kBottom29Bits = 0x1fffffff;
123 +
124 +/* kOne is the number 1 as an felem. It's 2**257 mod p split up into 29 and
125 + * 28-bit words.
126 + */
127 +static const felem kOne = {
128 + 2, 0, 0, 0xffff800,
129 + 0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff,
130 + 0
131 +};
132 +static const felem kZero = {0};
133 +static const felem kP = {
134 + 0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff,
135 + 0, 0, 0x200000, 0xf000000,
136 + 0xfffffff
137 +};
138 +static const felem k2P = {
139 + 0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff,
140 + 0, 0, 0x400000, 0xe000000,
141 + 0x1fffffff
142 +};
143 +
144 +/* kPrecomputed contains precomputed values to aid the calculation of scalar
145 + * multiples of the base point, G. It's actually two, equal length, tables
146 + * concatenated.
147 + *
148 + * The first table contains (x,y) felem pairs for 16 multiples of the base
149 + * point, G.
150 + *
151 + * Index | Index (binary) | Value
152 + * 0 | 0000 | 0G (all zeros, omitted)
153 + * 1 | 0001 | G
154 + * 2 | 0010 | 2**64G
155 + * 3 | 0011 | 2**64G + G
156 + * 4 | 0100 | 2**128G
157 + * 5 | 0101 | 2**128G + G
158 + * 6 | 0110 | 2**128G + 2**64G
159 + * 7 | 0111 | 2**128G + 2**64G + G
160 + * 8 | 1000 | 2**192G
161 + * 9 | 1001 | 2**192G + G
162 + * 10 | 1010 | 2**192G + 2**64G
163 + * 11 | 1011 | 2**192G + 2**64G + G
164 + * 12 | 1100 | 2**192G + 2**128G
165 + * 13 | 1101 | 2**192G + 2**128G + G
166 + * 14 | 1110 | 2**192G + 2**128G + 2**64G
167 + * 15 | 1111 | 2**192G + 2**128G + 2**64G + G
168 + *
169 + * The second table follows the same style, but the terms are 2**32G,
170 + * 2**96G, 2**160G, 2**224G.
171 + *
172 + * This is ~2KB of data.
173 + */
174 +static const limb kPrecomputed[NLIMBS * 2 * 15 * 2] = {
175 + 0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7 edc, 0xd4a6eab, 0x3120bee,
176 + 0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154b a21, 0x14b10bb, 0xae3fe3,
177 + 0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe490 73, 0x3fa36cc, 0x5ebcd2c,
178 + 0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea124 46, 0xe1ade1e, 0xec91f22,
179 + 0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c710 9, 0xa267a00, 0xb57c050,
180 + 0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0x7d6dee7, 0x2976e4b,
181 + 0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96 a5a9, 0x843a649, 0xc3ab0fa,
182 + 0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e1 1, 0x58c43df, 0xf423fc2,
183 + 0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db 40f, 0x83e277d, 0xb0dd609,
184 + 0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f 5, 0xe10c9e, 0x33ab581,
185 + 0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9 f, 0x48764cd, 0x76dbcca,
186 + 0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b 20, 0x4ba3173, 0xc168c33,
187 + 0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c 0, 0x65dd7ff, 0x3a1e4f6,
188 + 0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f0 77, 0xa6add89, 0x4894acd,
189 + 0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a , 0x69a8556, 0x7e7c0,
190 + 0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825 c, 0xda0cf5b, 0x812e881,
191 + 0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c5 1, 0xc22be3e, 0xe35e65a,
192 + 0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e 9, 0x1c5a839, 0x47a1e26,
193 + 0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c 502, 0x2f32042, 0xa17769b,
194 + 0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06 a02, 0x3fc93, 0x5620023,
195 + 0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513 c, 0x407f75c, 0xbaab133,
196 + 0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469e a7, 0x3293ac0, 0xcdc98aa,
197 + 0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16 , 0x2b6fcc7, 0xf5a4e29,
198 + 0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f7 2, 0x73e1c35, 0xee70fbc,
199 + 0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de8 5, 0x27de188, 0x66f70b8,
200 + 0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154a e914, 0x2f3ec51, 0x3826b59,
201 + 0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0 x823d9d2, 0x8213f39,
202 + 0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a 4a, 0xf5ddc3d, 0x3786689,
203 + 0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a7 29, 0x4be3499, 0x52b23aa,
204 + 0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048 035, 0xe31de66, 0xc6ecaa3,
205 + 0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a75 29, 0xcb7beb1, 0xb2a78a1,
206 + 0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff 658, 0xe3d6511, 0xc7d76f,
207 + 0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c , 0x50daa90, 0xb13f72,
208 + 0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d324 11, 0xb04a838, 0xd760d2d,
209 + 0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e1 1e, 0x20bca9a, 0x66f496b,
210 + 0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d , 0xbe985f7, 0x1acbc1a,
211 + 0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa5 6ff, 0x65ef930, 0x21dc4a,
212 + 0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac1 5f, 0x624e62e, 0xa90ae2f,
213 + 0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x72552 2b, 0xdc78583, 0x40eeabb,
214 + 0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef 34, 0xae2a960, 0x91b8bdc,
215 + 0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0x2413c8e, 0x5425bf9,
216 + 0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e763 3, 0x7c91952, 0xd806dce,
217 + 0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef 73, 0x8956f34, 0xe4b5cf2,
218 + 0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed 7, 0x627b614, 0x7371cca,
219 + 0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3ed c9, 0x9c19bf2, 0x5882229,
220 + 0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5 b3, 0xe85ff25, 0x408ef57,
221 + 0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa03811 3, 0xa4a1769, 0x11fbc6c,
222 + 0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60 b7, 0x4acbad9, 0x5efc5fa,
223 + 0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142c c, 0x7bf0fa9, 0x957651,
224 + 0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57 , 0xf2ecaac, 0xca86dec,
225 + 0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c 12d, 0xf20bd46, 0x1951fa7,
226 + 0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc7 4, 0x99bb618, 0x2db944c,
227 + 0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e747 79, 0x576138, 0x9587927,
228 + 0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d0778 2d, 0xfc72e0b, 0x701b298,
229 + 0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f 5d8, 0xf858d3a, 0x942eea8,
230 + 0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7 a1, 0x8395659, 0x52ed4e2,
231 + 0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146 c0, 0x6bdf55a, 0x4e4457d,
232 + 0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x40474 7b, 0x878558d, 0x7d29aa4,
233 + 0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55 d7, 0xa5bef68, 0xb7b30d8,
234 + 0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f519 51, 0x9d0c177, 0x1c49a78,
235 +};
236 +
237 +/* Field element operations:
238 + */
239 +
240 +/* NON_ZERO_TO_ALL_ONES returns:
241 + * 0xffffffff for 0 < x <= 2**31
242 + * 0 for x == 0 or x > 2**31.
243 + *
244 + * This macro assumes that right-shifting a signed number shifts in the MSB on
245 + * the left. This is not ensured by the C standard, but is true on the CPUs
246 + * that we're targetting with this code (x86 and ARM).
247 + */
248 +#define NON_ZERO_TO_ALL_ONES(x) (~((u32) (((s32) ((x)-1)) >> 31)))
249 +
250 +/* felem_reduce_carry adds a multiple of p in order to cancel |carry|,
251 + * which is a term at 2**257.
252 + *
253 + * On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28.
254 + * On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29.
255 + */
256 +static void felem_reduce_carry(felem inout, limb carry)
257 +{
258 + const u32 carry_mask = NON_ZERO_TO_ALL_ONES(carry);
259 +
260 + inout[0] += carry << 1;
261 + inout[3] += 0x10000000 & carry_mask;
262 + /* carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the
263 + * previous line therefore this doesn't underflow.
264 + */
265 + inout[3] -= carry << 11;
266 + inout[4] += (0x20000000 - 1) & carry_mask;
267 + inout[5] += (0x10000000 - 1) & carry_mask;
268 + inout[6] += (0x20000000 - 1) & carry_mask;
269 + inout[6] -= carry << 22;
270 + /* This may underflow if carry is non-zero but, if so, we'll fix it in the
271 + * next line.
272 + */
273 + inout[7] -= 1 & carry_mask;
274 + inout[7] += carry << 25;
275 +}
276 +
277 +/* felem_sum sets out = in+in2.
278 + *
279 + * On entry, in[i]+in2[i] must not overflow a 32-bit word.
280 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29
281 + */
282 +static void felem_sum(felem out, const felem in, const felem in2)
283 +{
284 + limb carry = 0;
285 + unsigned int i;
286 + for (i = 0;; i++) {
287 + out[i] = in[i] + in2[i];
288 + out[i] += carry;
289 + carry = out[i] >> 29;
290 + out[i] &= kBottom29Bits;
291 +
292 + i++;
293 + if (i == NLIMBS)
294 + break;
295 +
296 + out[i] = in[i] + in2[i];
297 + out[i] += carry;
298 + carry = out[i] >> 28;
299 + out[i] &= kBottom28Bits;
300 + }
301 +
302 + felem_reduce_carry(out, carry);
303 +}
304 +
305 +#define two31m3 (((limb)1) << 31) - (((limb)1) << 3)
306 +#define two30m2 (((limb)1) << 30) - (((limb)1) << 2)
307 +#define two30p13m2 (((limb)1) << 30) + (((limb)1) << 13) - (((limb)1) << 2)
308 +#define two31m2 (((limb)1) << 31) - (((limb)1) << 2)
309 +#define two31p24m2 (((limb)1) << 31) + (((limb)1) << 24) - (((limb)1) << 2)
310 +#define two30m27m2 (((limb)1) << 30) - (((limb)1) << 27) - (((limb)1) << 2)
311 +
312 +/* zero31 is 0 mod p.
313 + */
314 +static const felem zero31 = {
315 + two31m3, two30m2, two31m2, two30p13m2,
316 + two31m2, two30m2, two31p24m2, two30m27m2,
317 + two31m2
318 +};
319 +
320 +/* felem_diff sets out = in-in2.
321 + *
322 + * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
323 + * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
324 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
325 + */
326 +static void felem_diff(felem out, const felem in, const felem in2)
327 +{
328 + limb carry = 0;
329 + unsigned int i;
330 +
331 + for (i = 0;; i++) {
332 + out[i] = in[i] - in2[i];
333 + out[i] += zero31[i];
334 + out[i] += carry;
335 + carry = out[i] >> 29;
336 + out[i] &= kBottom29Bits;
337 +
338 + i++;
339 + if (i == NLIMBS)
340 + break;
341 +
342 + out[i] = in[i] - in2[i];
343 + out[i] += zero31[i];
344 + out[i] += carry;
345 + carry = out[i] >> 28;
346 + out[i] &= kBottom28Bits;
347 + }
348 +
349 + felem_reduce_carry(out, carry);
350 +}
351 +
352 +/* felem_reduce_degree sets out = tmp/R mod p where tmp contains 64-bit words
353 + * with the same 29,28,... bit positions as an felem.
354 + *
355 + * The values in felems are in Montgomery form: x*R mod p where R = 2**257.
356 + * Since we just multiplied two Montgomery values together, the result is
357 + * x*y*R*R mod p. We wish to divide by R in order for the result also to be
358 + * in Montgomery form.
359 + *
360 + * On entry: tmp[i] < 2**64
361 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29
362 + */
363 +static void felem_reduce_degree(felem out, u64 tmp[17])
364 +{
365 + /* The following table may be helpful when reading this code:
366 + *
367 + * Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10...
368 + * Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29
369 + * Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285
370 + * (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285
371 + */
372 + limb tmp2[18], carry, x, xMask;
373 + unsigned int i;
374 +
375 + /* tmp contains 64-bit words with the same 29,28,29-bit positions as an
376 + * felem. So the top of an element of tmp might overlap with another
377 + * element two positions down. The following loop eliminates this
378 + * overlap.
379 + */
380 + tmp2[0] = tmp[0] & kBottom29Bits;
381 +
382 + /* In the following we use "(limb) tmp[x]" and "(limb) (tmp[x]>>32)" to try
383 + * and hint to the compiler that it can do a single-word shift by selecting
384 + * the right register rather than doing a double-word shift and truncating
385 + * afterwards.
386 + */
387 + tmp2[1] = ((limb) tmp[0]) >> 29;
388 + tmp2[1] |= (((limb) (tmp[0] >> 32)) << 3) & kBottom28Bits;
389 + tmp2[1] += ((limb) tmp[1]) & kBottom28Bits;
390 + carry = tmp2[1] >> 28;
391 + tmp2[1] &= kBottom28Bits;
392 +
393 + for (i = 2; i < 17; i++) {
394 + tmp2[i] = ((limb) (tmp[i - 2] >> 32)) >> 25;
395 + tmp2[i] += ((limb) (tmp[i - 1])) >> 28;
396 + tmp2[i] += (((limb) (tmp[i - 1] >> 32)) << 4) & kBottom29Bits;
397 + tmp2[i] += ((limb) tmp[i]) & kBottom29Bits;
398 + tmp2[i] += carry;
399 + carry = tmp2[i] >> 29;
400 + tmp2[i] &= kBottom29Bits;
401 +
402 + i++;
403 + if (i == 17)
404 + break;
405 + tmp2[i] = ((limb) (tmp[i - 2] >> 32)) >> 25;
406 + tmp2[i] += ((limb) (tmp[i - 1])) >> 29;
407 + tmp2[i] += (((limb) (tmp[i - 1] >> 32)) << 3) & kBottom28Bits;
408 + tmp2[i] += ((limb) tmp[i]) & kBottom28Bits;
409 + tmp2[i] += carry;
410 + carry = tmp2[i] >> 28;
411 + tmp2[i] &= kBottom28Bits;
412 + }
413 +
414 + tmp2[17] = ((limb) (tmp[15] >> 32)) >> 25;
415 + tmp2[17] += ((limb) (tmp[16])) >> 29;
416 + tmp2[17] += (((limb) (tmp[16] >> 32)) << 3);
417 + tmp2[17] += carry;
418 +
419 + /* Montgomery elimination of terms:
420 + *
421 + * Since R is 2**257, we can divide by R with a bitwise shift if we can
422 + * ensure that the right-most 257 bits are all zero. We can make that true
423 + * by adding multiplies of p without affecting the value.
424 + *
425 + * So we eliminate limbs from right to left. Since the bottom 29 bits of p
426 + * are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0.
427 + * We can do that for 8 further limbs and then right shift to eliminate the
428 + * extra factor of R.
429 + */
430 + for (i = 0;; i += 2) {
431 + tmp2[i + 1] += tmp2[i] >> 29;
432 + x = tmp2[i] & kBottom29Bits;
433 + xMask = NON_ZERO_TO_ALL_ONES(x);
434 + tmp2[i] = 0;
435 +
436 + /* The bounds calculations for this loop are tricky. Each iteration of
437 + * the loop eliminates two words by adding values to words to their
438 + * right.
439 + *
440 + * The following table contains the amounts added to each word (as an
441 + * offset from the value of i at the top of the loop). The amounts are
442 + * accounted for from the first and second half of the loop separately
443 + * and are written as, for example, 28 to mean a value <2**28.
444 + *
445 + * Word: 3 4 5 6 7 8 9 10
446 + * Added in top half: 28 11 29 21 29 28
447 + * 28 29
448 + * 29
449 + * Added in bottom half: 29 10 28 21 28 28
450 + * 29
451 + *
452 + * The value that is currently offset 7 will be offset 5 for the next
453 + * iteration and then offset 3 for the iteration after that. Therefore
454 + * the total value added will be the values added at 7, 5 and 3.
455 + *
456 + * The following table accumulates these values. The sums at the bottom
457 + * are written as, for example, 29+28, to mean a value < 2**29+2**28.
458 + *
459 + * Word: 3 4 5 6 7 8 9 10 11 12 13
460 + * 28 11 10 29 21 29 28 28 28 28 28
461 + * 29 28 11 28 29 28 29 28 29 28
462 + * 29 28 21 21 29 21 29 21
463 + * 10 29 28 21 28 21 28
464 + * 28 29 28 29 28 29 28
465 + * 11 10 29 10 29 10
466 + * 29 28 11 28 11
467 + * 29 29
468 + * --------------------------------------------
469 + * 30+ 31+ 30+ 31+ 30+
470 + * 28+ 29+ 28+ 29+ 21+
471 + * 21+ 28+ 21+ 28+ 10
472 + * 10 21+ 10 21+
473 + * 11 11
474 + *
475 + * So the greatest amount is added to tmp2[10] and tmp2[12]. If
476 + * tmp2[10/12] has an initial value of <2**29, then the maximum value
477 + * will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32,
478 + * as required.
479 + */
480 + tmp2[i + 3] += (x << 10) & kBottom28Bits;
481 + tmp2[i + 4] += (x >> 18);
482 +
483 + tmp2[i + 6] += (x << 21) & kBottom29Bits;
484 + tmp2[i + 7] += x >> 8;
485 +
486 + /* At position 200, which is the starting bit position for word 7, we
487 + * have a factor of 0xf000000 = 2**28 - 2**24.
488 + */
489 + tmp2[i + 7] += 0x10000000 & xMask;
490 + /* Word 7 is 28 bits wide, so the 2**28 term exactly hits word 8. */
491 + tmp2[i + 8] += (x - 1) & xMask;
492 + tmp2[i + 7] -= (x << 24) & kBottom28Bits;
493 + tmp2[i + 8] -= x >> 4;
494 +
495 + tmp2[i + 8] += 0x20000000 & xMask;
496 + tmp2[i + 8] -= x;
497 + tmp2[i + 8] += (x << 28) & kBottom29Bits;
498 + tmp2[i + 9] += ((x >> 1) - 1) & xMask;
499 +
500 + if (i+1 == NLIMBS)
501 + break;
502 + tmp2[i + 2] += tmp2[i + 1] >> 28;
503 + x = tmp2[i + 1] & kBottom28Bits;
504 + xMask = NON_ZERO_TO_ALL_ONES(x);
505 + tmp2[i + 1] = 0;
506 +
507 + tmp2[i + 4] += (x << 11) & kBottom29Bits;
508 + tmp2[i + 5] += (x >> 18);
509 +
510 + tmp2[i + 7] += (x << 21) & kBottom28Bits;
511 + tmp2[i + 8] += x >> 7;
512 +
513 + /* At position 199, which is the starting bit of the 8th word when
514 + * dealing with a context starting on an odd word, we have a factor of
515 + * 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th
516 + * word from i+1 is i+8.
517 + */
518 + tmp2[i + 8] += 0x20000000 & xMask;
519 + tmp2[i + 9] += (x - 1) & xMask;
520 + tmp2[i + 8] -= (x << 25) & kBottom29Bits;
521 + tmp2[i + 9] -= x >> 4;
522 +
523 + tmp2[i + 9] += 0x10000000 & xMask;
524 + tmp2[i + 9] -= x;
525 + tmp2[i + 10] += (x - 1) & xMask;
526 + }
527 +
528 + /* We merge the right shift with a carry chain. The words above 2**257 have
529 + * widths of 28,29,... which we need to correct when copying them down.
530 + */
531 + carry = 0;
532 + for (i = 0; i < 8; i++) {
533 + /* The maximum value of tmp2[i + 9] occurs on the first iteration and
534 + * is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is
535 + * therefore safe.
536 + */
537 + out[i] = tmp2[i + 9];
538 + out[i] += carry;
539 + out[i] += (tmp2[i + 10] << 28) & kBottom29Bits;
540 + carry = out[i] >> 29;
541 + out[i] &= kBottom29Bits;
542 +
543 + i++;
544 + out[i] = tmp2[i + 9] >> 1;
545 + out[i] += carry;
546 + carry = out[i] >> 28;
547 + out[i] &= kBottom28Bits;
548 + }
549 +
550 + out[8] = tmp2[17];
551 + out[8] += carry;
552 + carry = out[8] >> 29;
553 + out[8] &= kBottom29Bits;
554 +
555 + felem_reduce_carry(out, carry);
556 +}
557 +
558 +/* felem_square sets out=in*in.
559 + *
560 + * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29.
561 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
562 + */
563 +static void felem_square(felem out, const felem in)
564 +{
565 + u64 tmp[17];
566 +
567 + tmp[0] = ((u64) in[0]) * in[0];
568 + tmp[1] = ((u64) in[0]) * (in[1] << 1);
569 + tmp[2] = ((u64) in[0]) * (in[2] << 1) +
570 + ((u64) in[1]) * (in[1] << 1);
571 + tmp[3] = ((u64) in[0]) * (in[3] << 1) +
572 + ((u64) in[1]) * (in[2] << 1);
573 + tmp[4] = ((u64) in[0]) * (in[4] << 1) +
574 + ((u64) in[1]) * (in[3] << 2) +
575 + ((u64) in[2]) * in[2];
576 + tmp[5] = ((u64) in[0]) * (in[5] << 1) +
577 + ((u64) in[1]) * (in[4] << 1) +
578 + ((u64) in[2]) * (in[3] << 1);
579 + tmp[6] = ((u64) in[0]) * (in[6] << 1) +
580 + ((u64) in[1]) * (in[5] << 2) +
581 + ((u64) in[2]) * (in[4] << 1) +
582 + ((u64) in[3]) * (in[3] << 1);
583 + tmp[7] = ((u64) in[0]) * (in[7] << 1) +
584 + ((u64) in[1]) * (in[6] << 1) +
585 + ((u64) in[2]) * (in[5] << 1) +
586 + ((u64) in[3]) * (in[4] << 1);
587 + /* tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60,
588 + * which is < 2**64 as required.
589 + */
590 + tmp[8] = ((u64) in[0]) * (in[8] << 1) +
591 + ((u64) in[1]) * (in[7] << 2) +
592 + ((u64) in[2]) * (in[6] << 1) +
593 + ((u64) in[3]) * (in[5] << 2) +
594 + ((u64) in[4]) * in[4];
595 + tmp[9] = ((u64) in[1]) * (in[8] << 1) +
596 + ((u64) in[2]) * (in[7] << 1) +
597 + ((u64) in[3]) * (in[6] << 1) +
598 + ((u64) in[4]) * (in[5] << 1);
599 + tmp[10] = ((u64) in[2]) * (in[8] << 1) +
600 + ((u64) in[3]) * (in[7] << 2) +
601 + ((u64) in[4]) * (in[6] << 1) +
602 + ((u64) in[5]) * (in[5] << 1);
603 + tmp[11] = ((u64) in[3]) * (in[8] << 1) +
604 + ((u64) in[4]) * (in[7] << 1) +
605 + ((u64) in[5]) * (in[6] << 1);
606 + tmp[12] = ((u64) in[4]) * (in[8] << 1) +
607 + ((u64) in[5]) * (in[7] << 2) +
608 + ((u64) in[6]) * in[6];
609 + tmp[13] = ((u64) in[5]) * (in[8] << 1) +
610 + ((u64) in[6]) * (in[7] << 1);
611 + tmp[14] = ((u64) in[6]) * (in[8] << 1) +
612 + ((u64) in[7]) * (in[7] << 1);
613 + tmp[15] = ((u64) in[7]) * (in[8] << 1);
614 + tmp[16] = ((u64) in[8]) * in[8];
615 +
616 + felem_reduce_degree(out, tmp);
617 +}
618 +
619 +/* felem_mul sets out=in*in2.
620 + *
621 + * On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
622 + * in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
623 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
624 + */
625 +static void felem_mul(felem out, const felem in, const felem in2)
626 +{
627 + u64 tmp[17];
628 +
629 + tmp[0] = ((u64) in[0]) * in2[0];
630 + tmp[1] = ((u64) in[0]) * (in2[1] << 0) +
631 + ((u64) in[1]) * (in2[0] << 0);
632 + tmp[2] = ((u64) in[0]) * (in2[2] << 0) +
633 + ((u64) in[1]) * (in2[1] << 1) +
634 + ((u64) in[2]) * (in2[0] << 0);
635 + tmp[3] = ((u64) in[0]) * (in2[3] << 0) +
636 + ((u64) in[1]) * (in2[2] << 0) +
637 + ((u64) in[2]) * (in2[1] << 0) +
638 + ((u64) in[3]) * (in2[0] << 0);
639 + tmp[4] = ((u64) in[0]) * (in2[4] << 0) +
640 + ((u64) in[1]) * (in2[3] << 1) +
641 + ((u64) in[2]) * (in2[2] << 0) +
642 + ((u64) in[3]) * (in2[1] << 1) +
643 + ((u64) in[4]) * (in2[0] << 0);
644 + tmp[5] = ((u64) in[0]) * (in2[5] << 0) +
645 + ((u64) in[1]) * (in2[4] << 0) +
646 + ((u64) in[2]) * (in2[3] << 0) +
647 + ((u64) in[3]) * (in2[2] << 0) +
648 + ((u64) in[4]) * (in2[1] << 0) +
649 + ((u64) in[5]) * (in2[0] << 0);
650 + tmp[6] = ((u64) in[0]) * (in2[6] << 0) +
651 + ((u64) in[1]) * (in2[5] << 1) +
652 + ((u64) in[2]) * (in2[4] << 0) +
653 + ((u64) in[3]) * (in2[3] << 1) +
654 + ((u64) in[4]) * (in2[2] << 0) +
655 + ((u64) in[5]) * (in2[1] << 1) +
656 + ((u64) in[6]) * (in2[0] << 0);
657 + tmp[7] = ((u64) in[0]) * (in2[7] << 0) +
658 + ((u64) in[1]) * (in2[6] << 0) +
659 + ((u64) in[2]) * (in2[5] << 0) +
660 + ((u64) in[3]) * (in2[4] << 0) +
661 + ((u64) in[4]) * (in2[3] << 0) +
662 + ((u64) in[5]) * (in2[2] << 0) +
663 + ((u64) in[6]) * (in2[1] << 0) +
664 + ((u64) in[7]) * (in2[0] << 0);
665 + /* tmp[8] has the greatest value but doesn't overflow. See logic in
666 + * felem_square.
667 + */
668 + tmp[8] = ((u64) in[0]) * (in2[8] << 0) +
669 + ((u64) in[1]) * (in2[7] << 1) +
670 + ((u64) in[2]) * (in2[6] << 0) +
671 + ((u64) in[3]) * (in2[5] << 1) +
672 + ((u64) in[4]) * (in2[4] << 0) +
673 + ((u64) in[5]) * (in2[3] << 1) +
674 + ((u64) in[6]) * (in2[2] << 0) +
675 + ((u64) in[7]) * (in2[1] << 1) +
676 + ((u64) in[8]) * (in2[0] << 0);
677 + tmp[9] = ((u64) in[1]) * (in2[8] << 0) +
678 + ((u64) in[2]) * (in2[7] << 0) +
679 + ((u64) in[3]) * (in2[6] << 0) +
680 + ((u64) in[4]) * (in2[5] << 0) +
681 + ((u64) in[5]) * (in2[4] << 0) +
682 + ((u64) in[6]) * (in2[3] << 0) +
683 + ((u64) in[7]) * (in2[2] << 0) +
684 + ((u64) in[8]) * (in2[1] << 0);
685 + tmp[10] = ((u64) in[2]) * (in2[8] << 0) +
686 + ((u64) in[3]) * (in2[7] << 1) +
687 + ((u64) in[4]) * (in2[6] << 0) +
688 + ((u64) in[5]) * (in2[5] << 1) +
689 + ((u64) in[6]) * (in2[4] << 0) +
690 + ((u64) in[7]) * (in2[3] << 1) +
691 + ((u64) in[8]) * (in2[2] << 0);
692 + tmp[11] = ((u64) in[3]) * (in2[8] << 0) +
693 + ((u64) in[4]) * (in2[7] << 0) +
694 + ((u64) in[5]) * (in2[6] << 0) +
695 + ((u64) in[6]) * (in2[5] << 0) +
696 + ((u64) in[7]) * (in2[4] << 0) +
697 + ((u64) in[8]) * (in2[3] << 0);
698 + tmp[12] = ((u64) in[4]) * (in2[8] << 0) +
699 + ((u64) in[5]) * (in2[7] << 1) +
700 + ((u64) in[6]) * (in2[6] << 0) +
701 + ((u64) in[7]) * (in2[5] << 1) +
702 + ((u64) in[8]) * (in2[4] << 0);
703 + tmp[13] = ((u64) in[5]) * (in2[8] << 0) +
704 + ((u64) in[6]) * (in2[7] << 0) +
705 + ((u64) in[7]) * (in2[6] << 0) +
706 + ((u64) in[8]) * (in2[5] << 0);
707 + tmp[14] = ((u64) in[6]) * (in2[8] << 0) +
708 + ((u64) in[7]) * (in2[7] << 1) +
709 + ((u64) in[8]) * (in2[6] << 0);
710 + tmp[15] = ((u64) in[7]) * (in2[8] << 0) +
711 + ((u64) in[8]) * (in2[7] << 0);
712 + tmp[16] = ((u64) in[8]) * (in2[8] << 0);
713 +
714 + felem_reduce_degree(out, tmp);
715 +}
716 +
717 +static void felem_assign(felem out, const felem in)
718 +{
719 + memcpy(out, in, sizeof(felem));
720 +}
721 +
722 +/* felem_inv calculates |out| = |in|^{-1}
723 + *
724 + * Based on Fermat's Little Theorem:
725 + * a^p = a (mod p)
726 + * a^{p-1} = 1 (mod p)
727 + * a^{p-2} = a^{-1} (mod p)
728 + */
729 +static void felem_inv(felem out, const felem in)
730 +{
731 + felem ftmp, ftmp2;
732 + /* each e_I will hold |in|^{2^I - 1} */
733 + felem e2, e4, e8, e16, e32, e64;
734 + unsigned int i;
735 +
736 + felem_square(ftmp, in); /* 2^1 */
737 + felem_mul(ftmp, in, ftmp); /* 2^2 - 2^0 */
738 + felem_assign(e2, ftmp);
739 + felem_square(ftmp, ftmp); /* 2^3 - 2^1 */
740 + felem_square(ftmp, ftmp); /* 2^4 - 2^2 */
741 + felem_mul(ftmp, ftmp, e2); /* 2^4 - 2^0 */
742 + felem_assign(e4, ftmp);
743 + felem_square(ftmp, ftmp); /* 2^5 - 2^1 */
744 + felem_square(ftmp, ftmp); /* 2^6 - 2^2 */
745 + felem_square(ftmp, ftmp); /* 2^7 - 2^3 */
746 + felem_square(ftmp, ftmp); /* 2^8 - 2^4 */
747 + felem_mul(ftmp, ftmp, e4); /* 2^8 - 2^0 */
748 + felem_assign(e8, ftmp);
749 + for (i = 0; i < 8; i++) {
750 + felem_square(ftmp, ftmp);
751 + } /* 2^16 - 2^8 */
752 + felem_mul(ftmp, ftmp, e8); /* 2^16 - 2^0 */
753 + felem_assign(e16, ftmp);
754 + for (i = 0; i < 16; i++) {
755 + felem_square(ftmp, ftmp);
756 + } /* 2^32 - 2^16 */
757 + felem_mul(ftmp, ftmp, e16); /* 2^32 - 2^0 */
758 + felem_assign(e32, ftmp);
759 + for (i = 0; i < 32; i++) {
760 + felem_square(ftmp, ftmp);
761 + } /* 2^64 - 2^32 */
762 + felem_assign(e64, ftmp);
763 + felem_mul(ftmp, ftmp, in); /* 2^64 - 2^32 + 2^0 */
764 + for (i = 0; i < 192; i++) {
765 + felem_square(ftmp, ftmp);
766 + } /* 2^256 - 2^224 + 2^192 */
767 +
768 + felem_mul(ftmp2, e64, e32); /* 2^64 - 2^0 */
769 + for (i = 0; i < 16; i++) {
770 + felem_square(ftmp2, ftmp2);
771 + } /* 2^80 - 2^16 */
772 + felem_mul(ftmp2, ftmp2, e16); /* 2^80 - 2^0 */
773 + for (i = 0; i < 8; i++) {
774 + felem_square(ftmp2, ftmp2);
775 + } /* 2^88 - 2^8 */
776 + felem_mul(ftmp2, ftmp2, e8); /* 2^88 - 2^0 */
777 + for (i = 0; i < 4; i++) {
778 + felem_square(ftmp2, ftmp2);
779 + } /* 2^92 - 2^4 */
780 + felem_mul(ftmp2, ftmp2, e4); /* 2^92 - 2^0 */
781 + felem_square(ftmp2, ftmp2); /* 2^93 - 2^1 */
782 + felem_square(ftmp2, ftmp2); /* 2^94 - 2^2 */
783 + felem_mul(ftmp2, ftmp2, e2); /* 2^94 - 2^0 */
784 + felem_square(ftmp2, ftmp2); /* 2^95 - 2^1 */
785 + felem_square(ftmp2, ftmp2); /* 2^96 - 2^2 */
786 + felem_mul(ftmp2, ftmp2, in); /* 2^96 - 3 */
787 +
788 + felem_mul(out, ftmp2, ftmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
789 +}
790 +
791 +/* felem_scalar_3 sets out=3*out.
792 + *
793 + * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
794 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
795 + */
796 +static void felem_scalar_3(felem out)
797 +{
798 + limb carry = 0;
799 + unsigned int i;
800 +
801 + for (i = 0;; i++) {
802 + out[i] *= 3;
803 + out[i] += carry;
804 + carry = out[i] >> 29;
805 + out[i] &= kBottom29Bits;
806 +
807 + i++;
808 + if (i == NLIMBS)
809 + break;
810 +
811 + out[i] *= 3;
812 + out[i] += carry;
813 + carry = out[i] >> 28;
814 + out[i] &= kBottom28Bits;
815 + }
816 +
817 + felem_reduce_carry(out, carry);
818 +}
819 +
820 +/* felem_scalar_4 sets out=4*out.
821 + *
822 + * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
823 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
824 + */
825 +static void felem_scalar_4(felem out)
826 +{
827 + limb carry = 0, next_carry;
828 + unsigned int i;
829 +
830 + for (i = 0;; i++) {
831 + next_carry = out[i] >> 27;
832 + out[i] <<= 2;
833 + out[i] &= kBottom29Bits;
834 + out[i] += carry;
835 + carry = next_carry + (out[i] >> 29);
836 + out[i] &= kBottom29Bits;
837 +
838 + i++;
839 + if (i == NLIMBS)
840 + break;
841 + next_carry = out[i] >> 26;
842 + out[i] <<= 2;
843 + out[i] &= kBottom28Bits;
844 + out[i] += carry;
845 + carry = next_carry + (out[i] >> 28);
846 + out[i] &= kBottom28Bits;
847 + }
848 +
849 + felem_reduce_carry(out, carry);
850 +}
851 +
852 +/* felem_scalar_8 sets out=8*out.
853 + *
854 + * On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
855 + * On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
856 + */
857 +static void felem_scalar_8(felem out)
858 +{
859 + limb carry = 0, next_carry;
860 + unsigned int i;
861 +
862 + for (i = 0;; i++) {
863 + next_carry = out[i] >> 26;
864 + out[i] <<= 3;
865 + out[i] &= kBottom29Bits;
866 + out[i] += carry;
867 + carry = next_carry + (out[i] >> 29);
868 + out[i] &= kBottom29Bits;
869 +
870 + i++;
871 + if (i == NLIMBS)
872 + break;
873 + next_carry = out[i] >> 25;
874 + out[i] <<= 3;
875 + out[i] &= kBottom28Bits;
876 + out[i] += carry;
877 + carry = next_carry + (out[i] >> 28);
878 + out[i] &= kBottom28Bits;
879 + }
880 +
881 + felem_reduce_carry(out, carry);
882 +}
883 +
884 +/* felem_is_zero_vartime returns 1 iff |in| == 0. It takes a variable amount of
885 + * time depending on the value of |in|.
886 + */
887 +static char felem_is_zero_vartime(const felem in)
888 +{
889 + limb carry;
890 + int i;
891 + limb tmp[NLIMBS];
892 + felem_assign(tmp, in);
893 +
894 + /* First, reduce tmp to a minimal form.
895 + */
896 + do {
897 + carry = 0;
898 + for (i = 0;; i++) {
899 + tmp[i] += carry;
900 + carry = tmp[i] >> 29;
901 + tmp[i] &= kBottom29Bits;
902 +
903 + i++;
904 + if (i == NLIMBS)
905 + break;
906 +
907 + tmp[i] += carry;
908 + carry = tmp[i] >> 28;
909 + tmp[i] &= kBottom28Bits;
910 + }
911 +
912 + felem_reduce_carry(tmp, carry);
913 + } while (carry);
914 +
915 + /* tmp < 2**257, so the only possible zero values are 0, p and 2p.
916 + */
917 + return memcmp(tmp, kZero, sizeof(tmp)) == 0 ||
918 + memcmp(tmp, kP, sizeof(tmp)) == 0 ||
919 + memcmp(tmp, k2P, sizeof(tmp)) == 0;
920 +}
921 +
922 +/* Group operations:
923 + *
924 + * Elements of the elliptic curve group are represented in Jacobian
925 + * coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in
926 + * Jacobian form.
927 + */
928 +
929 +/* point_double sets {x_out,y_out,z_out} = 2*{x,y,z}.
930 + *
931 + * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doublin g-dbl-2009-l
932 + */
933 +static void point_double(felem x_out, felem y_out, felem z_out,
934 + const felem x, const felem y, const felem z)
935 +{
936 + felem delta, gamma, alpha, beta, tmp, tmp2;
937 +
938 + felem_square(delta, z);
939 + felem_square(gamma, y);
940 + felem_mul(beta, x, gamma);
941 +
942 + felem_sum(tmp, x, delta);
943 + felem_diff(tmp2, x, delta);
944 + felem_mul(alpha, tmp, tmp2);
945 + felem_scalar_3(alpha);
946 +
947 + felem_sum(tmp, y, z);
948 + felem_square(tmp, tmp);
949 + felem_diff(tmp, tmp, gamma);
950 + felem_diff(z_out, tmp, delta);
951 +
952 + felem_scalar_4(beta);
953 + felem_square(x_out, alpha);
954 + felem_diff(x_out, x_out, beta);
955 + felem_diff(x_out, x_out, beta);
956 +
957 + felem_diff(tmp, beta, x_out);
958 + felem_mul(tmp, alpha, tmp);
959 + felem_square(tmp2, gamma);
960 + felem_scalar_8(tmp2);
961 + felem_diff(y_out, tmp, tmp2);
962 +}
963 +
964 +/* point_add_mixed sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,1}.
965 + * (i.e. the second point is affine.)
966 + *
967 + * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#additio n-add-2007-bl
968 + *
969 + * Note that this function does not handle P+P, infinity+P nor P+infinity
970 + * correctly.
971 + */
972 +static void point_add_mixed(felem x_out, felem y_out, felem z_out,
973 + const felem x1, const felem y1, const felem z1,
974 + const felem x2, const felem y2)
975 +{
976 + felem z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp;
977 +
978 + felem_square(z1z1, z1);
979 + felem_sum(tmp, z1, z1);
980 +
981 + felem_mul(u2, x2, z1z1);
982 + felem_mul(z1z1z1, z1, z1z1);
983 + felem_mul(s2, y2, z1z1z1);
984 + felem_diff(h, u2, x1);
985 + felem_sum(i, h, h);
986 + felem_square(i, i);
987 + felem_mul(j, h, i);
988 + felem_diff(r, s2, y1);
989 + felem_sum(r, r, r);
990 + felem_mul(v, x1, i);
991 +
992 + felem_mul(z_out, tmp, h);
993 + felem_square(rr, r);
994 + felem_diff(x_out, rr, j);
995 + felem_diff(x_out, x_out, v);
996 + felem_diff(x_out, x_out, v);
997 +
998 + felem_diff(tmp, v, x_out);
999 + felem_mul(y_out, tmp, r);
1000 + felem_mul(tmp, y1, j);
1001 + felem_diff(y_out, y_out, tmp);
1002 + felem_diff(y_out, y_out, tmp);
1003 +}
1004 +
1005 +/* point_add sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,z2}.
1006 + *
1007 + * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#additio n-add-2007-bl
1008 + *
1009 + * Note that this function does not handle P+P, infinity+P nor P+infinity
1010 + * correctly.
1011 + */
1012 +static void point_add(felem x_out, felem y_out, felem z_out,
1013 + const felem x1, const felem y1, const felem z1,
1014 + const felem x2, const felem y2, const felem z2)
1015 +{
1016 + felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp;
1017 +
1018 + felem_square(z1z1, z1);
1019 + felem_square(z2z2, z2);
1020 + felem_mul(u1, x1, z2z2);
1021 +
1022 + felem_sum(tmp, z1, z2);
1023 + felem_square(tmp, tmp);
1024 + felem_diff(tmp, tmp, z1z1);
1025 + felem_diff(tmp, tmp, z2z2);
1026 +
1027 + felem_mul(z2z2z2, z2, z2z2);
1028 + felem_mul(s1, y1, z2z2z2);
1029 +
1030 + felem_mul(u2, x2, z1z1);
1031 + felem_mul(z1z1z1, z1, z1z1);
1032 + felem_mul(s2, y2, z1z1z1);
1033 + felem_diff(h, u2, u1);
1034 + felem_sum(i, h, h);
1035 + felem_square(i, i);
1036 + felem_mul(j, h, i);
1037 + felem_diff(r, s2, s1);
1038 + felem_sum(r, r, r);
1039 + felem_mul(v, u1, i);
1040 +
1041 + felem_mul(z_out, tmp, h);
1042 + felem_square(rr, r);
1043 + felem_diff(x_out, rr, j);
1044 + felem_diff(x_out, x_out, v);
1045 + felem_diff(x_out, x_out, v);
1046 +
1047 + felem_diff(tmp, v, x_out);
1048 + felem_mul(y_out, tmp, r);
1049 + felem_mul(tmp, s1, j);
1050 + felem_diff(y_out, y_out, tmp);
1051 + felem_diff(y_out, y_out, tmp);
1052 +}
1053 +
1054 +/* point_add_or_double_vartime sets {x_out,y_out,z_out} = {x1,y1,z1} +
1055 + * {x2,y2,z2}.
1056 + *
1057 + * See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#additio n-add-2007-bl
1058 + *
1059 + * This function handles the case where {x1,y1,z1}={x2,y2,z2}.
1060 + */
1061 +static void point_add_or_double_vartime(
1062 + felem x_out, felem y_out, felem z_out,
1063 + const felem x1, const felem y1, const felem z1,
1064 + const felem x2, const felem y2, const felem z2)
1065 +{
1066 + felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp;
1067 + char x_equal, y_equal;
1068 +
1069 + felem_square(z1z1, z1);
1070 + felem_square(z2z2, z2);
1071 + felem_mul(u1, x1, z2z2);
1072 +
1073 + felem_sum(tmp, z1, z2);
1074 + felem_square(tmp, tmp);
1075 + felem_diff(tmp, tmp, z1z1);
1076 + felem_diff(tmp, tmp, z2z2);
1077 +
1078 + felem_mul(z2z2z2, z2, z2z2);
1079 + felem_mul(s1, y1, z2z2z2);
1080 +
1081 + felem_mul(u2, x2, z1z1);
1082 + felem_mul(z1z1z1, z1, z1z1);
1083 + felem_mul(s2, y2, z1z1z1);
1084 + felem_diff(h, u2, u1);
1085 + x_equal = felem_is_zero_vartime(h);
1086 + felem_sum(i, h, h);
1087 + felem_square(i, i);
1088 + felem_mul(j, h, i);
1089 + felem_diff(r, s2, s1);
1090 + y_equal = felem_is_zero_vartime(r);
1091 + if (x_equal && y_equal) {
1092 + point_double(x_out, y_out, z_out, x1, y1, z1);
1093 + return;
1094 + }
1095 + felem_sum(r, r, r);
1096 + felem_mul(v, u1, i);
1097 +
1098 + felem_mul(z_out, tmp, h);
1099 + felem_square(rr, r);
1100 + felem_diff(x_out, rr, j);
1101 + felem_diff(x_out, x_out, v);
1102 + felem_diff(x_out, x_out, v);
1103 +
1104 + felem_diff(tmp, v, x_out);
1105 + felem_mul(y_out, tmp, r);
1106 + felem_mul(tmp, s1, j);
1107 + felem_diff(y_out, y_out, tmp);
1108 + felem_diff(y_out, y_out, tmp);
1109 +}
1110 +
1111 +/* copy_conditional sets out=in if mask = 0xffffffff in constant time.
1112 + *
1113 + * On entry: mask is either 0 or 0xffffffff.
1114 + */
1115 +static void copy_conditional(felem out, const felem in, limb mask)
1116 +{
1117 + int i;
1118 +
1119 + for (i = 0; i < NLIMBS; i++) {
1120 + const limb tmp = mask & (in[i] ^ out[i]);
1121 + out[i] ^= tmp;
1122 + }
1123 +}
1124 +
1125 +/* select_affine_point sets {out_x,out_y} to the index'th entry of table.
1126 + * On entry: index < 16, table[0] must be zero.
1127 + */
1128 +static void select_affine_point(felem out_x, felem out_y,
1129 + const limb *table, limb index)
1130 +{
1131 + limb i, j;
1132 +
1133 + memset(out_x, 0, sizeof(felem));
1134 + memset(out_y, 0, sizeof(felem));
1135 +
1136 + for (i = 1; i < 16; i++) {
1137 + limb mask = i ^ index;
1138 + mask |= mask >> 2;
1139 + mask |= mask >> 1;
1140 + mask &= 1;
1141 + mask--;
1142 + for (j = 0; j < NLIMBS; j++, table++) {
1143 + out_x[j] |= *table & mask;
1144 + }
1145 + for (j = 0; j < NLIMBS; j++, table++) {
1146 + out_y[j] |= *table & mask;
1147 + }
1148 + }
1149 +}
1150 +
1151 +/* select_jacobian_point sets {out_x,out_y,out_z} to the index'th entry of
1152 + * table. On entry: index < 16, table[0] must be zero.
1153 + */
1154 +static void select_jacobian_point(felem out_x, felem out_y, felem out_z,
1155 + const limb *table, limb index)
1156 +{
1157 + limb i, j;
1158 +
1159 + memset(out_x, 0, sizeof(felem));
1160 + memset(out_y, 0, sizeof(felem));
1161 + memset(out_z, 0, sizeof(felem));
1162 +
1163 + /* The implicit value at index 0 is all zero. We don't need to perform that
1164 + * iteration of the loop because we already set out_* to zero.
1165 + */
1166 + table += 3*NLIMBS;
1167 +
1168 + for (i = 1; i < 16; i++) {
1169 + limb mask = i ^ index;
1170 + mask |= mask >> 2;
1171 + mask |= mask >> 1;
1172 + mask &= 1;
1173 + mask--;
1174 + for (j = 0; j < NLIMBS; j++, table++) {
1175 + out_x[j] |= *table & mask;
1176 + }
1177 + for (j = 0; j < NLIMBS; j++, table++) {
1178 + out_y[j] |= *table & mask;
1179 + }
1180 + for (j = 0; j < NLIMBS; j++, table++) {
1181 + out_z[j] |= *table & mask;
1182 + }
1183 + }
1184 +}
1185 +
1186 +/* get_bit returns the bit'th bit of scalar. */
1187 +static char get_bit(const u8 scalar[32], int bit)
1188 +{
1189 + return ((scalar[bit >> 3]) >> (bit & 7)) & 1;
1190 +}
1191 +
1192 +/* scalar_base_mult sets {nx,ny,nz} = scalar*G where scalar is a little-endian
1193 + * number. Note that the value of scalar must be less than the order of the
1194 + * group.
1195 + */
1196 +static void scalar_base_mult(felem nx, felem ny, felem nz, const u8 scalar[32])
1197 +{
1198 + int i, j;
1199 + limb n_is_infinity_mask = -1, p_is_noninfinite_mask, mask;
1200 + u32 table_offset;
1201 +
1202 + felem px, py;
1203 + felem tx, ty, tz;
1204 +
1205 + memset(nx, 0, sizeof(felem));
1206 + memset(ny, 0, sizeof(felem));
1207 + memset(nz, 0, sizeof(felem));
1208 +
1209 + /* The loop adds bits at positions 0, 64, 128 and 192, followed by
1210 + * positions 32,96,160 and 224 and does this 32 times.
1211 + */
1212 + for (i = 0; i < 32; i++) {
1213 + if (i) {
1214 + point_double(nx, ny, nz, nx, ny, nz);
1215 + }
1216 + for (j = 0; j <= 32; j += 32) {
1217 + char bit0 = get_bit(scalar, 31 - i + j);
1218 + char bit1 = get_bit(scalar, 95 - i + j);
1219 + char bit2 = get_bit(scalar, 159 - i + j);
1220 + char bit3 = get_bit(scalar, 223 - i + j);
1221 + limb index = bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3);
1222 +
1223 + table_offset = ((((s32)j) << (32-6)) >> 31) & (30*NLIMBS);
1224 + select_affine_point(px, py, kPrecomputed + table_offset, index);
1225 +
1226 + /* Since scalar is less than the order of the group, we know that
1227 + * {nx,ny,nz} != {px,py,1}, unless both are zero, which we handle
1228 + * below.
1229 + */
1230 + point_add_mixed(tx, ty, tz, nx, ny, nz, px, py);
1231 + /* The result of point_add_mixed is incorrect if {nx,ny,nz} is zero
1232 + * (a.k.a. the point at infinity). We handle that situation by
1233 + * copying the point from the table.
1234 + */
1235 + copy_conditional(nx, px, n_is_infinity_mask);
1236 + copy_conditional(ny, py, n_is_infinity_mask);
1237 + copy_conditional(nz, kOne, n_is_infinity_mask);
1238 +
1239 + /* Equally, the result is also wrong if the point from the table is
1240 + * zero, which happens when the index is zero. We handle that by
1241 + * only copying from {tx,ty,tz} to {nx,ny,nz} if index != 0.
1242 + */
1243 + p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index);
1244 + mask = p_is_noninfinite_mask & ~n_is_infinity_mask;
1245 + copy_conditional(nx, tx, mask);
1246 + copy_conditional(ny, ty, mask);
1247 + copy_conditional(nz, tz, mask);
1248 + /* If p was not zero, then n is now non-zero. */
1249 + n_is_infinity_mask &= ~p_is_noninfinite_mask;
1250 + }
1251 + }
1252 +}
1253 +
1254 +/* point_to_affine converts a Jacobian point to an affine point. If the input
1255 + * is the point at infinity then it returns (0, 0) in constant time.
1256 + */
1257 +static void point_to_affine(felem x_out, felem y_out,
1258 + const felem nx, const felem ny, const felem nz) {
1259 + felem z_inv, z_inv_sq;
1260 + felem_inv(z_inv, nz);
1261 + felem_square(z_inv_sq, z_inv);
1262 + felem_mul(x_out, nx, z_inv_sq);
1263 + felem_mul(z_inv, z_inv, z_inv_sq);
1264 + felem_mul(y_out, ny, z_inv);
1265 +}
1266 +
1267 +/* scalar_mult sets {nx,ny,nz} = scalar*{x,y}. */
1268 +static void scalar_mult(felem nx, felem ny, felem nz,
1269 + const felem x, const felem y, const u8 scalar[32])
1270 +{
1271 + int i;
1272 + felem px, py, pz, tx, ty, tz;
1273 + felem precomp[16][3];
1274 + limb n_is_infinity_mask, index, p_is_noninfinite_mask, mask;
1275 +
1276 + /* We precompute 0,1,2,... times {x,y}. */
1277 + memset(precomp, 0, sizeof(felem) * 3);
1278 + memcpy(&precomp[1][0], x, sizeof(felem));
1279 + memcpy(&precomp[1][1], y, sizeof(felem));
1280 + memcpy(&precomp[1][2], kOne, sizeof(felem));
1281 +
1282 + for (i = 2; i < 16; i += 2) {
1283 + point_double(precomp[i][0], precomp[i][1], precomp[i][2],
1284 + precomp[i / 2][0], precomp[i / 2][1], precomp[i / 2][2]);
1285 +
1286 + point_add_mixed(precomp[i + 1][0], precomp[i + 1][1], precomp[i + 1][2],
1287 + precomp[i][0], precomp[i][1], precomp[i][2], x, y);
1288 + }
1289 +
1290 + memset(nx, 0, sizeof(felem));
1291 + memset(ny, 0, sizeof(felem));
1292 + memset(nz, 0, sizeof(felem));
1293 + n_is_infinity_mask = -1;
1294 +
1295 + /* We add in a window of four bits each iteration and do this 64 times. */
1296 + for (i = 0; i < 64; i++) {
1297 + if (i) {
1298 + point_double(nx, ny, nz, nx, ny, nz);
1299 + point_double(nx, ny, nz, nx, ny, nz);
1300 + point_double(nx, ny, nz, nx, ny, nz);
1301 + point_double(nx, ny, nz, nx, ny, nz);
1302 + }
1303 +
1304 + index = scalar[31 - i / 2];
1305 + if ((i & 1) == 1) {
1306 + index &= 15;
1307 + } else {
1308 + index >>= 4;
1309 + }
1310 +
1311 + /* See the comments in scalar_base_mult about handling infinities. */
1312 + select_jacobian_point(px, py, pz, (limb *) precomp, index);
1313 + point_add(tx, ty, tz, nx, ny, nz, px, py, pz);
1314 + copy_conditional(nx, px, n_is_infinity_mask);
1315 + copy_conditional(ny, py, n_is_infinity_mask);
1316 + copy_conditional(nz, pz, n_is_infinity_mask);
1317 +
1318 + p_is_noninfinite_mask = ((s32) ~ (index - 1)) >> 31;
1319 + mask = p_is_noninfinite_mask & ~n_is_infinity_mask;
1320 + copy_conditional(nx, tx, mask);
1321 + copy_conditional(ny, ty, mask);
1322 + copy_conditional(nz, tz, mask);
1323 + n_is_infinity_mask &= ~p_is_noninfinite_mask;
1324 + }
1325 +}
1326 +
1327 +/* Interface with Freebl: */
1328 +
1329 +#ifdef IS_BIG_ENDIAN
1330 +#error "This code needs a little-endian processor"
1331 +#endif
1332 +
1333 +static const u32 kRInvDigits[8] = {
1334 + 0x80000000, 1, 0xffffffff, 0,
1335 + 0x80000001, 0xfffffffe, 1, 0x7fffffff
1336 +};
1337 +#define MP_DIGITS_IN_256_BITS (32/sizeof(mp_digit))
1338 +static const mp_int kRInv = {
1339 + MP_ZPOS,
1340 + MP_DIGITS_IN_256_BITS,
1341 + MP_DIGITS_IN_256_BITS,
1342 + /* Because we are running on a little-endian processor, this cast works for
1343 + * both 32 and 64-bit processors.
1344 + */
1345 + (mp_digit*) kRInvDigits
1346 +};
1347 +
1348 +static const limb kTwo28 = 0x10000000;
1349 +static const limb kTwo29 = 0x20000000;
1350 +
1351 +/* to_montgomery sets out = R*in. */
1352 +static mp_err to_montgomery(felem out, const mp_int *in, const ECGroup *group)
1353 +{
1354 + /* There are no MPI functions for bitshift operations and we wish to shift
1355 + * in 257 bits left so we move the digits 256-bits left and then multiply
1356 + * by two.
1357 + */
1358 + mp_int in_shifted;
1359 + int i;
1360 + mp_err res;
1361 +
1362 + mp_init(&in_shifted);
1363 + s_mp_pad(&in_shifted, MP_USED(in) + MP_DIGITS_IN_256_BITS);
1364 + memcpy(&MP_DIGIT(&in_shifted, MP_DIGITS_IN_256_BITS),
1365 + MP_DIGITS(in),
1366 + MP_USED(in)*sizeof(mp_digit));
1367 + mp_mul_2(&in_shifted, &in_shifted);
1368 + MP_CHECKOK(group->meth->field_mod(&in_shifted, &in_shifted, group->meth));
1369 +
1370 + for (i = 0;; i++) {
1371 + out[i] = MP_DIGIT(&in_shifted, 0) & kBottom29Bits;
1372 + mp_div_d(&in_shifted, kTwo29, &in_shifted, NULL);
1373 +
1374 + i++;
1375 + if (i == NLIMBS)
1376 + break;
1377 + out[i] = MP_DIGIT(&in_shifted, 0) & kBottom28Bits;
1378 + mp_div_d(&in_shifted, kTwo28, &in_shifted, NULL);
1379 + }
1380 +
1381 +CLEANUP:
1382 + mp_clear(&in_shifted);
1383 + return res;
1384 +}
1385 +
1386 +/* from_montgomery sets out=in/R. */
1387 +static mp_err from_montgomery(mp_int *out, const felem in,
1388 + const ECGroup *group)
1389 +{
1390 + mp_int result, tmp;
1391 + mp_err res;
1392 + int i;
1393 +
1394 + mp_init(&result);
1395 + mp_init(&tmp);
1396 +
1397 + MP_CHECKOK(mp_add_d(&tmp, in[NLIMBS-1], &result));
1398 + for (i = NLIMBS-2; i >= 0; i--) {
1399 + if ((i & 1) == 0) {
1400 + MP_CHECKOK(mp_mul_d(&result, kTwo29, &tmp));
1401 + } else {
1402 + MP_CHECKOK(mp_mul_d(&result, kTwo28, &tmp));
1403 + }
1404 + MP_CHECKOK(mp_add_d(&tmp, in[i], &result));
1405 + }
1406 +
1407 + MP_CHECKOK(mp_mul(&result, &kRInv, out));
1408 + MP_CHECKOK(group->meth->field_mod(out, out, group->meth));
1409 +
1410 +CLEANUP:
1411 + mp_clear(&result);
1412 + mp_clear(&tmp);
1413 + return res;
1414 +}
1415 +
1416 +/* scalar_from_mp_int sets out_scalar=n, where n < the group order. */
1417 +static void scalar_from_mp_int(u8 out_scalar[32], const mp_int *n)
1418 +{
1419 + /* We require that |n| is less than the order of the group and therefore it
1420 + * will fit into |scalar|. However, these is a timing side-channel here tha t
1421 + * we cannot avoid: if |n| is sufficiently small it may be one or more word s
1422 + * too short and we'll copy less data.
1423 + */
1424 + memset(out_scalar, 0, 32);
1425 + memcpy(out_scalar, MP_DIGITS(n), MP_USED(n) * sizeof(mp_digit));
1426 +}
1427 +
1428 +/* ec_GFp_nistp256_base_point_mul sets {out_x,out_y} = nG, where n is < the
1429 + * order of the group.
1430 + */
1431 +static mp_err ec_GFp_nistp256_base_point_mul(const mp_int *n,
1432 + mp_int *out_x, mp_int *out_y,
1433 + const ECGroup *group)
1434 +{
1435 + u8 scalar[32];
1436 + felem x, y, z, x_affine, y_affine;
1437 + mp_err res;
1438 +
1439 + /* FIXME(agl): test that n < order. */
1440 +
1441 + scalar_from_mp_int(scalar, n);
1442 + scalar_base_mult(x, y, z, scalar);
1443 + point_to_affine(x_affine, y_affine, x, y, z);
1444 + MP_CHECKOK(from_montgomery(out_x, x_affine, group));
1445 + MP_CHECKOK(from_montgomery(out_y, y_affine, group));
1446 +
1447 +CLEANUP:
1448 + return res;
1449 +}
1450 +
1451 +/* ec_GFp_nistp256_point_mul sets {out_x,out_y} = n*{in_x,in_y}, where n is <
1452 + * the order of the group.
1453 + */
1454 +static mp_err ec_GFp_nistp256_point_mul(const mp_int *n,
1455 + const mp_int *in_x, const mp_int *in_y,
1456 + mp_int *out_x, mp_int *out_y,
1457 + const ECGroup *group)
1458 +{
1459 + u8 scalar[32];
1460 + felem x, y, z, x_affine, y_affine, px, py;
1461 + mp_err res;
1462 +
1463 + scalar_from_mp_int(scalar, n);
1464 +
1465 + MP_CHECKOK(to_montgomery(px, in_x, group));
1466 + MP_CHECKOK(to_montgomery(py, in_y, group));
1467 +
1468 + scalar_mult(x, y, z, px, py, scalar);
1469 + point_to_affine(x_affine, y_affine, x, y, z);
1470 + MP_CHECKOK(from_montgomery(out_x, x_affine, group));
1471 + MP_CHECKOK(from_montgomery(out_y, y_affine, group));
1472 +
1473 +CLEANUP:
1474 + return res;
1475 +}
1476 +
1477 +/* ec_GFp_nistp256_point_mul_vartime sets {out_x,out_y} = n1*G +
1478 + * n2*{in_x,in_y}, where n1 and n2 are < the order of the group.
1479 + *
1480 + * As indicated by the name, this function operates in variable time. This
1481 + * is safe because it's used for signature validation which doesn't deal
1482 + * with secrets.
1483 + */
1484 +static mp_err ec_GFp_nistp256_points_mul_vartime(
1485 + const mp_int *n1, const mp_int *n2,
1486 + const mp_int *in_x, const mp_int *in_y,
1487 + mp_int *out_x, mp_int *out_y,
1488 + const ECGroup *group)
1489 +{
1490 + u8 scalar1[32], scalar2[32];
1491 + felem x1, y1, z1, x2, y2, z2, x_affine, y_affine, px, py;
1492 + mp_err res = MP_OKAY;
1493 +
1494 + /* If n2 == NULL, this is just a base-point multiplication. */
1495 + if (n2 == NULL) {
1496 + return ec_GFp_nistp256_base_point_mul(n1, out_x, out_y, group);
1497 + }
1498 +
1499 + /* If n1 == nULL, this is just an arbitary-point multiplication. */
1500 + if (n1 == NULL) {
1501 + return ec_GFp_nistp256_point_mul(n2, in_x, in_y, out_x, out_y, group);
1502 + }
1503 +
1504 + /* If both scalars are zero, then the result is the point at infinity. */
1505 + if (mp_cmp_z(n1) == 0 && mp_cmp_z(n2) == 0) {
1506 + mp_zero(out_x);
1507 + mp_zero(out_y);
1508 + return res;
1509 + }
1510 +
1511 + scalar_from_mp_int(scalar1, n1);
1512 + scalar_from_mp_int(scalar2, n2);
1513 +
1514 + MP_CHECKOK(to_montgomery(px, in_x, group));
1515 + MP_CHECKOK(to_montgomery(py, in_y, group));
1516 + scalar_base_mult(x1, y1, z1, scalar1);
1517 + scalar_mult(x2, y2, z2, px, py, scalar2);
1518 +
1519 + if (mp_cmp_z(n2) == 0) {
1520 + /* If n2 == 0, then {x2,y2,z2} is zero and the result is just
1521 + * {x1,y1,z1}. */
1522 + } else if (mp_cmp_z(n1) == 0) {
1523 + /* If n1 == 0, then {x1,y1,z1} is zero and the result is just
1524 + * {x2,y2,z2}. */
1525 + memcpy(x1, x2, sizeof(x2));
1526 + memcpy(y1, y2, sizeof(y2));
1527 + memcpy(z1, z2, sizeof(z2));
1528 + } else {
1529 + /* This function handles the case where {x1,y1,z1} == {x2,y2,z2}. */
1530 + point_add_or_double_vartime(x1, y1, z1, x1, y1, z1, x2, y2, z2);
1531 + }
1532 +
1533 + point_to_affine(x_affine, y_affine, x1, y1, z1);
1534 + MP_CHECKOK(from_montgomery(out_x, x_affine, group));
1535 + MP_CHECKOK(from_montgomery(out_y, y_affine, group));
1536 +
1537 +CLEANUP:
1538 + return res;
1539 +}
1540 +
1541 +/* Wire in fast point multiplication for named curves. */
1542 +mp_err ec_group_set_gfp256_32(ECGroup *group, ECCurveName name)
1543 +{
1544 + if (name == ECCurve_NIST_P256) {
1545 + group->base_point_mul = &ec_GFp_nistp256_base_point_mul;
1546 + group->point_mul = &ec_GFp_nistp256_point_mul;
1547 + group->points_mul = &ec_GFp_nistp256_points_mul_vartime;
1548 + }
1549 + return MP_OKAY;
1550 +}
OLDNEW
« no previous file with comments | « mozilla/security/nss/lib/freebl/ecl/ecp_256_32.c ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698