| Index: webrtc/modules/remote_bitrate_estimator/test/estimators/nada_unittest.cc
|
| diff --git a/webrtc/modules/remote_bitrate_estimator/test/estimators/nada_unittest.cc b/webrtc/modules/remote_bitrate_estimator/test/estimators/nada_unittest.cc
|
| index 967c2b2b5e47c3cda41a935e3a2b13ba44f07af7..80768966b5bad08032d0aab1188bb37140ad89b2 100644
|
| --- a/webrtc/modules/remote_bitrate_estimator/test/estimators/nada_unittest.cc
|
| +++ b/webrtc/modules/remote_bitrate_estimator/test/estimators/nada_unittest.cc
|
| @@ -14,6 +14,7 @@
|
| #include <numeric>
|
|
|
| #include "webrtc/base/common.h"
|
| +#include "webrtc/base/scoped_ptr.h"
|
| #include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_framework.h"
|
| #include "webrtc/modules/remote_bitrate_estimator/test/packet.h"
|
| #include "testing/gtest/include/gtest/gtest.h"
|
| @@ -112,11 +113,12 @@ class NadaSenderSideTest : public ::testing::Test {
|
| };
|
|
|
| class NadaReceiverSideTest : public ::testing::Test {
|
| - protected:
|
| + public:
|
| NadaReceiverSideTest() : nada_receiver_(kFlowId) {}
|
| ~NadaReceiverSideTest() {}
|
|
|
| - const int kFlowId = 0;
|
| + protected:
|
| + const int kFlowId = 1; // Arbitrary.
|
| NadaBweReceiver nada_receiver_;
|
| };
|
|
|
| @@ -165,9 +167,9 @@ class NadaFbGenerator {
|
|
|
| // Verify if AcceleratedRampUp is called and that bitrate increases.
|
| TEST_F(NadaSenderSideTest, AcceleratedRampUp) {
|
| - const int64_t kRefSignalMs = 3;
|
| + const int64_t kRefSignalMs = 1;
|
| const int64_t kOneWayDelayMs = 50;
|
| - int original_bitrate = 2 * NadaBweSender::kMinRefRateKbps;
|
| + int original_bitrate = 2 * kMinBitrateKbps;
|
| size_t receiving_rate = static_cast<size_t>(original_bitrate);
|
| int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs;
|
|
|
| @@ -199,7 +201,7 @@ TEST_F(NadaSenderSideTest, AcceleratedRampUp) {
|
| // Verify if AcceleratedRampDown is called and if bitrate decreases.
|
| TEST_F(NadaSenderSideTest, AcceleratedRampDown) {
|
| const int64_t kOneWayDelayMs = 50;
|
| - int original_bitrate = 3 * NadaBweSender::kMinRefRateKbps;
|
| + int original_bitrate = 3 * kMinBitrateKbps;
|
| size_t receiving_rate = static_cast<size_t>(original_bitrate);
|
| int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs;
|
|
|
| @@ -216,8 +218,7 @@ TEST_F(NadaSenderSideTest, AcceleratedRampDown) {
|
| // Updates the bitrate according to the receiving rate and other constant
|
| // parameters.
|
| nada_sender_.AcceleratedRampDown(congested_fb);
|
| - int bitrate_2_kbps =
|
| - std::max(nada_sender_.bitrate_kbps(), NadaBweSender::kMinRefRateKbps);
|
| + int bitrate_2_kbps = std::max(nada_sender_.bitrate_kbps(), kMinBitrateKbps);
|
| EXPECT_EQ(bitrate_2_kbps, bitrate_1_kbps);
|
| }
|
|
|
| @@ -225,7 +226,7 @@ TEST_F(NadaSenderSideTest, GradualRateUpdate) {
|
| const int64_t kDeltaSMs = 20;
|
| const int64_t kRefSignalMs = 20;
|
| const int64_t kOneWayDelayMs = 50;
|
| - int original_bitrate = 2 * NadaBweSender::kMinRefRateKbps;
|
| + int original_bitrate = 2 * kMinBitrateKbps;
|
| size_t receiving_rate = static_cast<size_t>(original_bitrate);
|
| int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs;
|
|
|
| @@ -251,8 +252,8 @@ TEST_F(NadaSenderSideTest, GradualRateUpdate) {
|
| // Sending bitrate should decrease and reach its Min bound.
|
| TEST_F(NadaSenderSideTest, VeryLowBandwith) {
|
| const int64_t kOneWayDelayMs = 50;
|
| - const int kMin = NadaBweSender::kMinRefRateKbps;
|
| - size_t receiving_rate = static_cast<size_t>(kMin);
|
| +
|
| + size_t receiving_rate = static_cast<size_t>(kMinBitrateKbps);
|
| int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs;
|
|
|
| NadaFeedback extremely_congested_fb =
|
| @@ -260,7 +261,7 @@ TEST_F(NadaSenderSideTest, VeryLowBandwith) {
|
| NadaFeedback congested_fb =
|
| NadaFbGenerator::CongestedFb(receiving_rate, send_time_ms);
|
|
|
| - nada_sender_.set_bitrate_kbps(5 * kMin);
|
| + nada_sender_.set_bitrate_kbps(5 * kMinBitrateKbps);
|
| nada_sender_.set_original_operating_mode(true);
|
| for (int i = 0; i < 100; ++i) {
|
| // Trigger GradualRateUpdate mode.
|
| @@ -268,26 +269,25 @@ TEST_F(NadaSenderSideTest, VeryLowBandwith) {
|
| }
|
| // The original implementation doesn't allow the bitrate to stay at kMin,
|
| // even if the congestion signal is very high.
|
| - EXPECT_GE(nada_sender_.bitrate_kbps(), kMin);
|
| + EXPECT_GE(nada_sender_.bitrate_kbps(), kMinBitrateKbps);
|
|
|
| nada_sender_.set_original_operating_mode(false);
|
| - nada_sender_.set_bitrate_kbps(5 * kMin);
|
| + nada_sender_.set_bitrate_kbps(5 * kMinBitrateKbps);
|
|
|
| - for (int i = 0; i < 100; ++i) {
|
| + for (int i = 0; i < 1000; ++i) {
|
| int previous_bitrate = nada_sender_.bitrate_kbps();
|
| // Trigger AcceleratedRampDown mode.
|
| nada_sender_.GiveFeedback(congested_fb);
|
| EXPECT_LE(nada_sender_.bitrate_kbps(), previous_bitrate);
|
| }
|
| - EXPECT_EQ(nada_sender_.bitrate_kbps(), kMin);
|
| + EXPECT_EQ(nada_sender_.bitrate_kbps(), kMinBitrateKbps);
|
| }
|
|
|
| // Sending bitrate should increase and reach its Max bound.
|
| TEST_F(NadaSenderSideTest, VeryHighBandwith) {
|
| const int64_t kOneWayDelayMs = 50;
|
| - const int kMax = NadaBweSender::kMaxRefRateKbps;
|
| - const size_t kRecentReceivingRate = static_cast<size_t>(kMax);
|
| - const int64_t kRefSignalMs = 5;
|
| + const size_t kRecentReceivingRate = static_cast<size_t>(kMaxBitrateKbps);
|
| + const int64_t kRefSignalMs = 1;
|
| int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs;
|
|
|
| NadaFeedback not_congested_fb = NadaFbGenerator::NotCongestedFb(
|
| @@ -299,280 +299,164 @@ TEST_F(NadaSenderSideTest, VeryHighBandwith) {
|
| nada_sender_.GiveFeedback(not_congested_fb);
|
| EXPECT_GE(nada_sender_.bitrate_kbps(), previous_bitrate);
|
| }
|
| - EXPECT_EQ(nada_sender_.bitrate_kbps(), kMax);
|
| + EXPECT_EQ(nada_sender_.bitrate_kbps(), kMaxBitrateKbps);
|
|
|
| nada_sender_.set_original_operating_mode(false);
|
| - nada_sender_.set_bitrate_kbps(NadaBweSender::kMinRefRateKbps);
|
| + nada_sender_.set_bitrate_kbps(kMinBitrateKbps);
|
|
|
| for (int i = 0; i < 100; ++i) {
|
| int previous_bitrate = nada_sender_.bitrate_kbps();
|
| nada_sender_.GiveFeedback(not_congested_fb);
|
| EXPECT_GE(nada_sender_.bitrate_kbps(), previous_bitrate);
|
| }
|
| - EXPECT_EQ(nada_sender_.bitrate_kbps(), kMax);
|
| + EXPECT_EQ(nada_sender_.bitrate_kbps(), kMaxBitrateKbps);
|
| }
|
|
|
| -TEST_F(NadaReceiverSideTest, ReceivingRateNoPackets) {
|
| - EXPECT_EQ(nada_receiver_.RecentReceivingRate(), static_cast<size_t>(0));
|
| +TEST_F(NadaReceiverSideTest, FeedbackInitialCases) {
|
| + rtc::scoped_ptr<NadaFeedback> nada_feedback(
|
| + static_cast<NadaFeedback*>(nada_receiver_.GetFeedback(0)));
|
| + EXPECT_EQ(nada_feedback, nullptr);
|
| +
|
| + nada_feedback.reset(
|
| + static_cast<NadaFeedback*>(nada_receiver_.GetFeedback(100)));
|
| + EXPECT_EQ(nada_feedback->exp_smoothed_delay_ms(), -1);
|
| + EXPECT_EQ(nada_feedback->est_queuing_delay_signal_ms(), 0L);
|
| + EXPECT_EQ(nada_feedback->congestion_signal(), 0L);
|
| + EXPECT_EQ(nada_feedback->derivative(), 0.0f);
|
| + EXPECT_EQ(nada_feedback->receiving_rate(), 0.0f);
|
| }
|
|
|
| -TEST_F(NadaReceiverSideTest, ReceivingRateSinglePacket) {
|
| - const size_t kPayloadSizeBytes = 500 * 1000;
|
| - const int64_t kSendTimeUs = 300 * 1000;
|
| - const int64_t kArrivalTimeMs = kSendTimeUs / 1000 + 100;
|
| - const uint16_t kSequenceNumber = 1;
|
| - const int64_t kTimeWindowMs = NadaBweReceiver::kReceivingRateTimeWindowMs;
|
| -
|
| - const MediaPacket media_packet(kFlowId, kSendTimeUs, kPayloadSizeBytes,
|
| - kSequenceNumber);
|
| - nada_receiver_.ReceivePacket(kArrivalTimeMs, media_packet);
|
| -
|
| - const size_t kReceivingRateKbps = 8 * kPayloadSizeBytes / kTimeWindowMs;
|
| -
|
| - EXPECT_EQ(nada_receiver_.RecentReceivingRate(), kReceivingRateKbps);
|
| -}
|
| -
|
| -TEST_F(NadaReceiverSideTest, ReceivingRateLargePackets) {
|
| - const size_t kPayloadSizeBytes = 3000 * 1000;
|
| - const int64_t kTimeGapMs = 3000; // Between each packet.
|
| - const int64_t kOneWayDelayMs = 1000;
|
| -
|
| - for (int i = 1; i < 5; ++i) {
|
| - int64_t send_time_us = i * kTimeGapMs * 1000;
|
| - int64_t arrival_time_ms = send_time_us / 1000 + kOneWayDelayMs;
|
| - uint16_t sequence_number = i;
|
| - const MediaPacket media_packet(kFlowId, send_time_us, kPayloadSizeBytes,
|
| - sequence_number);
|
| - nada_receiver_.ReceivePacket(arrival_time_ms, media_packet);
|
| - }
|
| -
|
| - const size_t kReceivingRateKbps = 8 * kPayloadSizeBytes / kTimeGapMs;
|
| - EXPECT_EQ(nada_receiver_.RecentReceivingRate(), kReceivingRateKbps);
|
| -}
|
| -
|
| -TEST_F(NadaReceiverSideTest, ReceivingRateSmallPackets) {
|
| - const size_t kPayloadSizeBytes = 100 * 1000;
|
| +TEST_F(NadaReceiverSideTest, FeedbackEmptyQueues) {
|
| const int64_t kTimeGapMs = 50; // Between each packet.
|
| const int64_t kOneWayDelayMs = 50;
|
|
|
| - for (int i = 1; i < 50; ++i) {
|
| + // No added latency, delay = kOneWayDelayMs.
|
| + for (int i = 1; i < 10; ++i) {
|
| int64_t send_time_us = i * kTimeGapMs * 1000;
|
| int64_t arrival_time_ms = send_time_us / 1000 + kOneWayDelayMs;
|
| - uint16_t sequence_number = i;
|
| - const MediaPacket media_packet(kFlowId, send_time_us, kPayloadSizeBytes,
|
| - sequence_number);
|
| - nada_receiver_.ReceivePacket(arrival_time_ms, media_packet);
|
| - }
|
| -
|
| - const size_t kReceivingRateKbps = 8 * kPayloadSizeBytes / kTimeGapMs;
|
| - EXPECT_EQ(nada_receiver_.RecentReceivingRate(), kReceivingRateKbps);
|
| -}
|
| -
|
| -TEST_F(NadaReceiverSideTest, ReceivingRateIntermittentPackets) {
|
| - const size_t kPayloadSizeBytes = 100 * 1000;
|
| - const int64_t kTimeGapMs = 50; // Between each packet.
|
| - const int64_t kFirstSendTimeMs = 0;
|
| - const int64_t kOneWayDelayMs = 50;
|
| -
|
| - // Gap between first and other packets
|
| - const MediaPacket media_packet(kFlowId, kFirstSendTimeMs, kPayloadSizeBytes,
|
| - 1);
|
| - nada_receiver_.ReceivePacket(kFirstSendTimeMs + kOneWayDelayMs, media_packet);
|
| -
|
| - const int64_t kDelayAfterFirstPacketMs = 1000;
|
| - const int kNumPackets = 5; // Small enough so that all packets are covered.
|
| - EXPECT_LT((kNumPackets - 2) * kTimeGapMs,
|
| - NadaBweReceiver::kReceivingRateTimeWindowMs);
|
| - const int64_t kTimeWindowMs =
|
| - kDelayAfterFirstPacketMs + (kNumPackets - 2) * kTimeGapMs;
|
| -
|
| - for (int i = 2; i <= kNumPackets; ++i) {
|
| - int64_t send_time_us =
|
| - ((i - 2) * kTimeGapMs + kFirstSendTimeMs + kDelayAfterFirstPacketMs) *
|
| - 1000;
|
| - int64_t arrival_time_ms = send_time_us / 1000 + kOneWayDelayMs;
|
| - uint16_t sequence_number = i;
|
| - const MediaPacket media_packet(kFlowId, send_time_us, kPayloadSizeBytes,
|
| - sequence_number);
|
| + uint16_t sequence_number = static_cast<uint16_t>(i);
|
| + // Payload sizes are not important here.
|
| + const MediaPacket media_packet(kFlowId, send_time_us, 0, sequence_number);
|
| nada_receiver_.ReceivePacket(arrival_time_ms, media_packet);
|
| }
|
|
|
| - const size_t kTotalReceivedKb = 8 * kNumPackets * kPayloadSizeBytes;
|
| - const int64_t kCorrectedTimeWindowMs =
|
| - (kTimeWindowMs * kNumPackets) / (kNumPackets - 1);
|
| - EXPECT_EQ(nada_receiver_.RecentReceivingRate(),
|
| - kTotalReceivedKb / kCorrectedTimeWindowMs);
|
| -}
|
| -
|
| -TEST_F(NadaReceiverSideTest, ReceivingRateDuplicatedPackets) {
|
| - const size_t kPayloadSizeBytes = 500 * 1000;
|
| - const int64_t kSendTimeUs = 300 * 1000;
|
| - const int64_t kArrivalTimeMs = kSendTimeUs / 1000 + 100;
|
| - const uint16_t kSequenceNumber = 1;
|
| - const int64_t kTimeWindowMs = NadaBweReceiver::kReceivingRateTimeWindowMs;
|
| -
|
| - // Insert the same packet twice.
|
| - for (int i = 0; i < 2; ++i) {
|
| - const MediaPacket media_packet(kFlowId, kSendTimeUs + 50 * i,
|
| - kPayloadSizeBytes, kSequenceNumber);
|
| - nada_receiver_.ReceivePacket(kArrivalTimeMs + 50 * i, media_packet);
|
| - }
|
| - // Should be counted only once.
|
| - const size_t kReceivingRateKbps = 8 * kPayloadSizeBytes / kTimeWindowMs;
|
| -
|
| - EXPECT_EQ(nada_receiver_.RecentReceivingRate(), kReceivingRateKbps);
|
| + // Baseline delay will be equal kOneWayDelayMs.
|
| + rtc::scoped_ptr<NadaFeedback> nada_feedback(
|
| + static_cast<NadaFeedback*>(nada_receiver_.GetFeedback(500)));
|
| + EXPECT_EQ(nada_feedback->exp_smoothed_delay_ms(), 0L);
|
| + EXPECT_EQ(nada_feedback->est_queuing_delay_signal_ms(), 0L);
|
| + EXPECT_EQ(nada_feedback->congestion_signal(), 0L);
|
| + EXPECT_EQ(nada_feedback->derivative(), 0.0f);
|
| }
|
|
|
| -TEST_F(NadaReceiverSideTest, PacketLossNoPackets) {
|
| - EXPECT_EQ(nada_receiver_.RecentPacketLossRatio(), 0.0f);
|
| -}
|
| +TEST_F(NadaReceiverSideTest, FeedbackIncreasingDelay) {
|
| + // Since packets are 100ms apart, each one corresponds to a feedback.
|
| + const int64_t kTimeGapMs = 100; // Between each packet.
|
|
|
| -TEST_F(NadaReceiverSideTest, PacketLossSinglePacket) {
|
| - const MediaPacket media_packet(kFlowId, 0, 0, 0);
|
| - nada_receiver_.ReceivePacket(0, media_packet);
|
| - EXPECT_EQ(nada_receiver_.RecentPacketLossRatio(), 0.0f);
|
| -}
|
| + // Raw delays are = [10 20 30 40 50 60 70 80] ms.
|
| + // Baseline delay will be 50 ms.
|
| + // Delay signals should be: [0 10 20 30 40 50 60 70] ms.
|
| + const int64_t kMedianFilteredDelaysMs[] = {0, 10, 10, 20, 20, 30, 40, 50};
|
| + const int kNumPackets = ARRAY_SIZE(kMedianFilteredDelaysMs);
|
| + const float kAlpha = 0.1f; // Used for exponential smoothing.
|
|
|
| -TEST_F(NadaReceiverSideTest, PacketLossContiguousPackets) {
|
| - const int64_t kTimeWindowMs = NadaBweReceiver::kPacketLossTimeWindowMs;
|
| - size_t set_capacity = nada_receiver_.GetSetCapacity();
|
| + int64_t exp_smoothed_delays_ms[kNumPackets];
|
| + exp_smoothed_delays_ms[0] = kMedianFilteredDelaysMs[0];
|
|
|
| - for (int i = 0; i < 10; ++i) {
|
| - uint16_t sequence_number = static_cast<uint16_t>(i);
|
| - // Sequence_number and flow_id are the only members that matter here.
|
| - const MediaPacket media_packet(kFlowId, 0, 0, sequence_number);
|
| - // Arrival time = 0, all packets will be considered.
|
| - nada_receiver_.ReceivePacket(0, media_packet);
|
| + for (int i = 1; i < kNumPackets; ++i) {
|
| + exp_smoothed_delays_ms[i] = static_cast<int64_t>(
|
| + kAlpha * kMedianFilteredDelaysMs[i] +
|
| + (1.0f - kAlpha) * exp_smoothed_delays_ms[i - 1] + 0.5f);
|
| }
|
| - EXPECT_EQ(nada_receiver_.RecentPacketLossRatio(), 0.0f);
|
|
|
| - for (int i = 30; i > 20; i--) {
|
| - uint16_t sequence_number = static_cast<uint16_t>(i);
|
| - // Sequence_number and flow_id are the only members that matter here.
|
| - const MediaPacket media_packet(kFlowId, 0, 0, sequence_number);
|
| - // Only the packets sent in this for loop will be considered.
|
| - nada_receiver_.ReceivePacket(2 * kTimeWindowMs, media_packet);
|
| - }
|
| - EXPECT_EQ(nada_receiver_.RecentPacketLossRatio(), 0.0f);
|
| -
|
| - // Should handle uint16_t overflow.
|
| - for (int i = 0xFFFF - 10; i < 0xFFFF + 10; ++i) {
|
| - uint16_t sequence_number = static_cast<uint16_t>(i);
|
| - const MediaPacket media_packet(kFlowId, 0, 0, sequence_number);
|
| - // Only the packets sent in this for loop will be considered.
|
| - nada_receiver_.ReceivePacket(4 * kTimeWindowMs, media_packet);
|
| - }
|
| - EXPECT_EQ(nada_receiver_.RecentPacketLossRatio(), 0.0f);
|
| -
|
| - // Should handle set overflow.
|
| - for (int i = 0; i < set_capacity * 1.5; ++i) {
|
| - uint16_t sequence_number = static_cast<uint16_t>(i);
|
| - const MediaPacket media_packet(kFlowId, 0, 0, sequence_number);
|
| - // Only the packets sent in this for loop will be considered.
|
| - nada_receiver_.ReceivePacket(6 * kTimeWindowMs, media_packet);
|
| - }
|
| - EXPECT_EQ(nada_receiver_.RecentPacketLossRatio(), 0.0f);
|
| -}
|
| -
|
| -// Should handle duplicates.
|
| -TEST_F(NadaReceiverSideTest, PacketLossDuplicatedPackets) {
|
| - const int64_t kTimeWindowMs = NadaBweReceiver::kPacketLossTimeWindowMs;
|
| -
|
| - for (int i = 0; i < 10; ++i) {
|
| - const MediaPacket media_packet(kFlowId, 0, 0, 0);
|
| - // Arrival time = 0, all packets will be considered.
|
| - nada_receiver_.ReceivePacket(0, media_packet);
|
| - }
|
| - EXPECT_EQ(nada_receiver_.RecentPacketLossRatio(), 0.0f);
|
| -
|
| - // Missing the element 5.
|
| - const uint16_t kSequenceNumbers[] = {1, 2, 3, 4, 6, 7, 8};
|
| - const int kNumPackets = ARRAY_SIZE(kSequenceNumbers);
|
| -
|
| - // Insert each sequence number twice.
|
| - for (int i = 0; i < 2; ++i) {
|
| - for (int j = 0; j < kNumPackets; j++) {
|
| - const MediaPacket media_packet(kFlowId, 0, 0, kSequenceNumbers[j]);
|
| - // Only the packets sent in this for loop will be considered.
|
| - nada_receiver_.ReceivePacket(2 * kTimeWindowMs, media_packet);
|
| - }
|
| - }
|
| -
|
| - EXPECT_NEAR(nada_receiver_.RecentPacketLossRatio(), 1.0f / (kNumPackets + 1),
|
| - 0.1f / (kNumPackets + 1));
|
| -}
|
| + for (int i = 0; i < kNumPackets; ++i) {
|
| + int64_t send_time_us = (i + 1) * kTimeGapMs * 1000;
|
| + int64_t arrival_time_ms = send_time_us / 1000 + 10 * (i + 1);
|
| + uint16_t sequence_number = static_cast<uint16_t>(i + 1);
|
| + // Payload sizes are not important here.
|
| + const MediaPacket media_packet(kFlowId, send_time_us, 0, sequence_number);
|
| + nada_receiver_.ReceivePacket(arrival_time_ms, media_packet);
|
|
|
| -TEST_F(NadaReceiverSideTest, PacketLossLakingPackets) {
|
| - size_t set_capacity = nada_receiver_.GetSetCapacity();
|
| - EXPECT_LT(set_capacity, static_cast<size_t>(0xFFFF));
|
| -
|
| - // Missing every other packet.
|
| - for (size_t i = 0; i < set_capacity; ++i) {
|
| - if ((i & 1) == 0) { // Only even sequence numbers.
|
| - uint16_t sequence_number = static_cast<uint16_t>(i);
|
| - const MediaPacket media_packet(kFlowId, 0, 0, sequence_number);
|
| - // Arrival time = 0, all packets will be considered.
|
| - nada_receiver_.ReceivePacket(0, media_packet);
|
| + rtc::scoped_ptr<NadaFeedback> nada_feedback(static_cast<NadaFeedback*>(
|
| + nada_receiver_.GetFeedback(arrival_time_ms)));
|
| + EXPECT_EQ(nada_feedback->exp_smoothed_delay_ms(),
|
| + exp_smoothed_delays_ms[i]);
|
| + // Since delay signals are lower than 50ms, they will not be non-linearly
|
| + // warped.
|
| + EXPECT_EQ(nada_feedback->est_queuing_delay_signal_ms(),
|
| + exp_smoothed_delays_ms[i]);
|
| + // Zero loss, congestion signal = queuing_delay
|
| + EXPECT_EQ(nada_feedback->congestion_signal(), exp_smoothed_delays_ms[i]);
|
| + if (i == 0) {
|
| + EXPECT_NEAR(nada_feedback->derivative(),
|
| + static_cast<float>(exp_smoothed_delays_ms[i]) / kTimeGapMs,
|
| + 0.005f);
|
| + } else {
|
| + EXPECT_NEAR(nada_feedback->derivative(),
|
| + static_cast<float>(exp_smoothed_delays_ms[i] -
|
| + exp_smoothed_delays_ms[i - 1]) /
|
| + kTimeGapMs,
|
| + 0.005f);
|
| }
|
| }
|
| - EXPECT_NEAR(nada_receiver_.RecentPacketLossRatio(), 0.5f, 0.01f);
|
| }
|
|
|
| -TEST_F(NadaReceiverSideTest, PacketLossLakingFewPackets) {
|
| - size_t set_capacity = nada_receiver_.GetSetCapacity();
|
| - EXPECT_LT(set_capacity, static_cast<size_t>(0xFFFF));
|
| -
|
| - const int kPeriod = 100;
|
| - // Missing one for each kPeriod packets.
|
| - for (size_t i = 0; i < set_capacity; ++i) {
|
| - if ((i % kPeriod) != 0) {
|
| - uint16_t sequence_number = static_cast<uint16_t>(i);
|
| - const MediaPacket media_packet(kFlowId, 0, 0, sequence_number);
|
| - // Arrival time = 0, all packets will be considered.
|
| - nada_receiver_.ReceivePacket(0, media_packet);
|
| - }
|
| +int64_t Warp(int64_t input) {
|
| + const int64_t kMinThreshold = 50; // Referred as d_th.
|
| + const int64_t kMaxThreshold = 400; // Referred as d_max.
|
| + if (input < kMinThreshold) {
|
| + return input;
|
| + } else if (input < kMaxThreshold) {
|
| + return static_cast<int64_t>(
|
| + pow((static_cast<double>(kMaxThreshold - input)) /
|
| + (kMaxThreshold - kMinThreshold),
|
| + 4.0) *
|
| + kMinThreshold);
|
| + } else {
|
| + return 0L;
|
| }
|
| - EXPECT_NEAR(nada_receiver_.RecentPacketLossRatio(), 1.0f / kPeriod,
|
| - 0.1f / kPeriod);
|
| -}
|
| -
|
| -// Packet's sequence numbers greatly apart, expect high loss.
|
| -TEST_F(NadaReceiverSideTest, PacketLossWideGap) {
|
| - const int64_t kTimeWindowMs = NadaBweReceiver::kPacketLossTimeWindowMs;
|
| -
|
| - const MediaPacket media_packet1(0, 0, 0, 1);
|
| - const MediaPacket media_packet2(0, 0, 0, 1000);
|
| - // Only these two packets will be considered.
|
| - nada_receiver_.ReceivePacket(0, media_packet1);
|
| - nada_receiver_.ReceivePacket(0, media_packet2);
|
| - EXPECT_NEAR(nada_receiver_.RecentPacketLossRatio(), 0.998f, 0.0001f);
|
| -
|
| - const MediaPacket media_packet3(0, 0, 0, 0);
|
| - const MediaPacket media_packet4(0, 0, 0, 0x8000);
|
| - // Only these two packets will be considered.
|
| - nada_receiver_.ReceivePacket(2 * kTimeWindowMs, media_packet3);
|
| - nada_receiver_.ReceivePacket(2 * kTimeWindowMs, media_packet4);
|
| - EXPECT_NEAR(nada_receiver_.RecentPacketLossRatio(), 0.99994f, 0.00001f);
|
| }
|
|
|
| -// Packets arriving unordered should not be counted as losted.
|
| -TEST_F(NadaReceiverSideTest, PacketLossUnorderedPackets) {
|
| - size_t num_packets = nada_receiver_.GetSetCapacity() / 2;
|
| - std::vector<uint16_t> sequence_numbers;
|
| -
|
| - for (size_t i = 0; i < num_packets; ++i) {
|
| - sequence_numbers.push_back(static_cast<uint16_t>(i + 1));
|
| +TEST_F(NadaReceiverSideTest, FeedbackWarpedDelay) {
|
| + // Since packets are 100ms apart, each one corresponds to a feedback.
|
| + const int64_t kTimeGapMs = 100; // Between each packet.
|
| +
|
| + // Raw delays are = [50 250 450 650 850 1050 1250 1450] ms.
|
| + // Baseline delay will be 50 ms.
|
| + // Delay signals should be: [0 200 400 600 800 1000 1200 1400] ms.
|
| + const int64_t kMedianFilteredDelaysMs[] = {
|
| + 0, 200, 200, 400, 400, 600, 800, 1000};
|
| + const int kNumPackets = ARRAY_SIZE(kMedianFilteredDelaysMs);
|
| + const float kAlpha = 0.1f; // Used for exponential smoothing.
|
| +
|
| + int64_t exp_smoothed_delays_ms[kNumPackets];
|
| + exp_smoothed_delays_ms[0] = kMedianFilteredDelaysMs[0];
|
| +
|
| + for (int i = 1; i < kNumPackets; ++i) {
|
| + exp_smoothed_delays_ms[i] = static_cast<int64_t>(
|
| + kAlpha * kMedianFilteredDelaysMs[i] +
|
| + (1.0f - kAlpha) * exp_smoothed_delays_ms[i - 1] + 0.5f);
|
| }
|
|
|
| - random_shuffle(sequence_numbers.begin(), sequence_numbers.end());
|
| + for (int i = 0; i < kNumPackets; ++i) {
|
| + int64_t send_time_us = (i + 1) * kTimeGapMs * 1000;
|
| + int64_t arrival_time_ms = send_time_us / 1000 + 50 + 200 * i;
|
| + uint16_t sequence_number = static_cast<uint16_t>(i + 1);
|
| + // Payload sizes are not important here.
|
| + const MediaPacket media_packet(kFlowId, send_time_us, 0, sequence_number);
|
| + nada_receiver_.ReceivePacket(arrival_time_ms, media_packet);
|
|
|
| - for (size_t i = 0; i < num_packets; ++i) {
|
| - const MediaPacket media_packet(kFlowId, 0, 0, sequence_numbers[i]);
|
| - // Arrival time = 0, all packets will be considered.
|
| - nada_receiver_.ReceivePacket(0, media_packet);
|
| + rtc::scoped_ptr<NadaFeedback> nada_feedback(static_cast<NadaFeedback*>(
|
| + nada_receiver_.GetFeedback(arrival_time_ms)));
|
| + EXPECT_EQ(nada_feedback->exp_smoothed_delay_ms(),
|
| + exp_smoothed_delays_ms[i]);
|
| + // Delays can be non-linearly warped.
|
| + EXPECT_EQ(nada_feedback->est_queuing_delay_signal_ms(),
|
| + Warp(exp_smoothed_delays_ms[i]));
|
| + // Zero loss, congestion signal = queuing_delay
|
| + EXPECT_EQ(nada_feedback->congestion_signal(),
|
| + Warp(exp_smoothed_delays_ms[i]));
|
| }
|
| -
|
| - EXPECT_EQ(nada_receiver_.RecentPacketLossRatio(), 0.0f);
|
| }
|
|
|
| TEST_F(FilterTest, MedianConstantArray) {
|
|
|