Index: chrome/test/data/v8_benchmark/deltablue.js |
diff --git a/chrome/test/data/v8_benchmark/deltablue.js b/chrome/test/data/v8_benchmark/deltablue.js |
deleted file mode 100644 |
index 548fd96ffbdab33d8553cbbc1465b0cd2d40a174..0000000000000000000000000000000000000000 |
--- a/chrome/test/data/v8_benchmark/deltablue.js |
+++ /dev/null |
@@ -1,880 +0,0 @@ |
-// Copyright 2008 the V8 project authors. All rights reserved. |
-// Copyright 1996 John Maloney and Mario Wolczko. |
- |
-// This program is free software; you can redistribute it and/or modify |
-// it under the terms of the GNU General Public License as published by |
-// the Free Software Foundation; either version 2 of the License, or |
-// (at your option) any later version. |
-// |
-// This program is distributed in the hope that it will be useful, |
-// but WITHOUT ANY WARRANTY; without even the implied warranty of |
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
-// GNU General Public License for more details. |
-// |
-// You should have received a copy of the GNU General Public License |
-// along with this program; if not, write to the Free Software |
-// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
- |
- |
-// This implementation of the DeltaBlue benchmark is derived |
-// from the Smalltalk implementation by John Maloney and Mario |
-// Wolczko. Some parts have been translated directly, whereas |
-// others have been modified more aggresively to make it feel |
-// more like a JavaScript program. |
- |
- |
-var DeltaBlue = new BenchmarkSuite('DeltaBlue', 66118, [ |
- new Benchmark('DeltaBlue', deltaBlue) |
-]); |
- |
- |
-/** |
- * A JavaScript implementation of the DeltaBlue constraint-solving |
- * algorithm, as described in: |
- * |
- * "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver" |
- * Bjorn N. Freeman-Benson and John Maloney |
- * January 1990 Communications of the ACM, |
- * also available as University of Washington TR 89-08-06. |
- * |
- * Beware: this benchmark is written in a grotesque style where |
- * the constraint model is built by side-effects from constructors. |
- * I've kept it this way to avoid deviating too much from the original |
- * implementation. |
- */ |
- |
- |
-/* --- O b j e c t M o d e l --- */ |
- |
-Object.prototype.inheritsFrom = function (shuper) { |
- function Inheriter() { } |
- Inheriter.prototype = shuper.prototype; |
- this.prototype = new Inheriter(); |
- this.superConstructor = shuper; |
-} |
- |
-function OrderedCollection() { |
- this.elms = new Array(); |
-} |
- |
-OrderedCollection.prototype.add = function (elm) { |
- this.elms.push(elm); |
-} |
- |
-OrderedCollection.prototype.at = function (index) { |
- return this.elms[index]; |
-} |
- |
-OrderedCollection.prototype.size = function () { |
- return this.elms.length; |
-} |
- |
-OrderedCollection.prototype.removeFirst = function () { |
- return this.elms.pop(); |
-} |
- |
-OrderedCollection.prototype.remove = function (elm) { |
- var index = 0, skipped = 0; |
- for (var i = 0; i < this.elms.length; i++) { |
- var value = this.elms[i]; |
- if (value != elm) { |
- this.elms[index] = value; |
- index++; |
- } else { |
- skipped++; |
- } |
- } |
- for (var i = 0; i < skipped; i++) |
- this.elms.pop(); |
-} |
- |
-/* --- * |
- * S t r e n g t h |
- * --- */ |
- |
-/** |
- * Strengths are used to measure the relative importance of constraints. |
- * New strengths may be inserted in the strength hierarchy without |
- * disrupting current constraints. Strengths cannot be created outside |
- * this class, so pointer comparison can be used for value comparison. |
- */ |
-function Strength(strengthValue, name) { |
- this.strengthValue = strengthValue; |
- this.name = name; |
-} |
- |
-Strength.stronger = function (s1, s2) { |
- return s1.strengthValue < s2.strengthValue; |
-} |
- |
-Strength.weaker = function (s1, s2) { |
- return s1.strengthValue > s2.strengthValue; |
-} |
- |
-Strength.weakestOf = function (s1, s2) { |
- return this.weaker(s1, s2) ? s1 : s2; |
-} |
- |
-Strength.strongest = function (s1, s2) { |
- return this.stronger(s1, s2) ? s1 : s2; |
-} |
- |
-Strength.prototype.nextWeaker = function () { |
- switch (this.strengthValue) { |
- case 0: return Strength.WEAKEST; |
- case 1: return Strength.WEAK_DEFAULT; |
- case 2: return Strength.NORMAL; |
- case 3: return Strength.STRONG_DEFAULT; |
- case 4: return Strength.PREFERRED; |
- case 5: return Strength.REQUIRED; |
- } |
-} |
- |
-// Strength constants. |
-Strength.REQUIRED = new Strength(0, "required"); |
-Strength.STONG_PREFERRED = new Strength(1, "strongPreferred"); |
-Strength.PREFERRED = new Strength(2, "preferred"); |
-Strength.STRONG_DEFAULT = new Strength(3, "strongDefault"); |
-Strength.NORMAL = new Strength(4, "normal"); |
-Strength.WEAK_DEFAULT = new Strength(5, "weakDefault"); |
-Strength.WEAKEST = new Strength(6, "weakest"); |
- |
-/* --- * |
- * C o n s t r a i n t |
- * --- */ |
- |
-/** |
- * An abstract class representing a system-maintainable relationship |
- * (or "constraint") between a set of variables. A constraint supplies |
- * a strength instance variable; concrete subclasses provide a means |
- * of storing the constrained variables and other information required |
- * to represent a constraint. |
- */ |
-function Constraint(strength) { |
- this.strength = strength; |
-} |
- |
-/** |
- * Activate this constraint and attempt to satisfy it. |
- */ |
-Constraint.prototype.addConstraint = function () { |
- this.addToGraph(); |
- planner.incrementalAdd(this); |
-} |
- |
-/** |
- * Attempt to find a way to enforce this constraint. If successful, |
- * record the solution, perhaps modifying the current dataflow |
- * graph. Answer the constraint that this constraint overrides, if |
- * there is one, or nil, if there isn't. |
- * Assume: I am not already satisfied. |
- */ |
-Constraint.prototype.satisfy = function (mark) { |
- this.chooseMethod(mark); |
- if (!this.isSatisfied()) { |
- if (this.strength == Strength.REQUIRED) |
- alert("Could not satisfy a required constraint!"); |
- return null; |
- } |
- this.markInputs(mark); |
- var out = this.output(); |
- var overridden = out.determinedBy; |
- if (overridden != null) overridden.markUnsatisfied(); |
- out.determinedBy = this; |
- if (!planner.addPropagate(this, mark)) |
- alert("Cycle encountered"); |
- out.mark = mark; |
- return overridden; |
-} |
- |
-Constraint.prototype.destroyConstraint = function () { |
- if (this.isSatisfied()) planner.incrementalRemove(this); |
- else this.removeFromGraph(); |
-} |
- |
-/** |
- * Normal constraints are not input constraints. An input constraint |
- * is one that depends on external state, such as the mouse, the |
- * keybord, a clock, or some arbitraty piece of imperative code. |
- */ |
-Constraint.prototype.isInput = function () { |
- return false; |
-} |
- |
-/* --- * |
- * U n a r y C o n s t r a i n t |
- * --- */ |
- |
-/** |
- * Abstract superclass for constraints having a single possible output |
- * variable. |
- */ |
-function UnaryConstraint(v, strength) { |
- UnaryConstraint.superConstructor.call(this, strength); |
- this.myOutput = v; |
- this.satisfied = false; |
- this.addConstraint(); |
-} |
- |
-UnaryConstraint.inheritsFrom(Constraint); |
- |
-/** |
- * Adds this constraint to the constraint graph |
- */ |
-UnaryConstraint.prototype.addToGraph = function () { |
- this.myOutput.addConstraint(this); |
- this.satisfied = false; |
-} |
- |
-/** |
- * Decides if this constraint can be satisfied and records that |
- * decision. |
- */ |
-UnaryConstraint.prototype.chooseMethod = function (mark) { |
- this.satisfied = (this.myOutput.mark != mark) |
- && Strength.stronger(this.strength, this.myOutput.walkStrength); |
-} |
- |
-/** |
- * Returns true if this constraint is satisfied in the current solution. |
- */ |
-UnaryConstraint.prototype.isSatisfied = function () { |
- return this.satisfied; |
-} |
- |
-UnaryConstraint.prototype.markInputs = function (mark) { |
- // has no inputs |
-} |
- |
-/** |
- * Returns the current output variable. |
- */ |
-UnaryConstraint.prototype.output = function () { |
- return this.myOutput; |
-} |
- |
-/** |
- * Calculate the walkabout strength, the stay flag, and, if it is |
- * 'stay', the value for the current output of this constraint. Assume |
- * this constraint is satisfied. |
- */ |
-UnaryConstraint.prototype.recalculate = function () { |
- this.myOutput.walkStrength = this.strength; |
- this.myOutput.stay = !this.isInput(); |
- if (this.myOutput.stay) this.execute(); // Stay optimization |
-} |
- |
-/** |
- * Records that this constraint is unsatisfied |
- */ |
-UnaryConstraint.prototype.markUnsatisfied = function () { |
- this.satisfied = false; |
-} |
- |
-UnaryConstraint.prototype.inputsKnown = function () { |
- return true; |
-} |
- |
-UnaryConstraint.prototype.removeFromGraph = function () { |
- if (this.myOutput != null) this.myOutput.removeConstraint(this); |
- this.satisfied = false; |
-} |
- |
-/* --- * |
- * S t a y C o n s t r a i n t |
- * --- */ |
- |
-/** |
- * Variables that should, with some level of preference, stay the same. |
- * Planners may exploit the fact that instances, if satisfied, will not |
- * change their output during plan execution. This is called "stay |
- * optimization". |
- */ |
-function StayConstraint(v, str) { |
- StayConstraint.superConstructor.call(this, v, str); |
-} |
- |
-StayConstraint.inheritsFrom(UnaryConstraint); |
- |
-StayConstraint.prototype.execute = function () { |
- // Stay constraints do nothing |
-} |
- |
-/* --- * |
- * E d i t C o n s t r a i n t |
- * --- */ |
- |
-/** |
- * A unary input constraint used to mark a variable that the client |
- * wishes to change. |
- */ |
-function EditConstraint(v, str) { |
- EditConstraint.superConstructor.call(this, v, str); |
-} |
- |
-EditConstraint.inheritsFrom(UnaryConstraint); |
- |
-/** |
- * Edits indicate that a variable is to be changed by imperative code. |
- */ |
-EditConstraint.prototype.isInput = function () { |
- return true; |
-} |
- |
-EditConstraint.prototype.execute = function () { |
- // Edit constraints do nothing |
-} |
- |
-/* --- * |
- * B i n a r y C o n s t r a i n t |
- * --- */ |
- |
-var Direction = new Object(); |
-Direction.NONE = 0; |
-Direction.FORWARD = 1; |
-Direction.BACKWARD = -1; |
- |
-/** |
- * Abstract superclass for constraints having two possible output |
- * variables. |
- */ |
-function BinaryConstraint(var1, var2, strength) { |
- BinaryConstraint.superConstructor.call(this, strength); |
- this.v1 = var1; |
- this.v2 = var2; |
- this.direction = Direction.NONE; |
- this.addConstraint(); |
-} |
- |
-BinaryConstraint.inheritsFrom(Constraint); |
- |
-/** |
- * Decides if this constraint can be satisfied and which way it |
- * should flow based on the relative strength of the variables related, |
- * and record that decision. |
- */ |
-BinaryConstraint.prototype.chooseMethod = function (mark) { |
- if (this.v1.mark == mark) { |
- this.direction = (this.v2.mark != mark && Strength.stronger(this.strength, this.v2.walkStrength)) |
- ? Direction.FORWARD |
- : Direction.NONE; |
- } |
- if (this.v2.mark == mark) { |
- this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v1.walkStrength)) |
- ? Direction.BACKWARD |
- : Direction.NONE; |
- } |
- if (Strength.weaker(this.v1.walkStrength, this.v2.walkStrength)) { |
- this.direction = Strength.stronger(this.strength, this.v1.walkStrength) |
- ? Direction.BACKWARD |
- : Direction.NONE; |
- } else { |
- this.direction = Strength.stronger(this.strength, this.v2.walkStrength) |
- ? Direction.FORWARD |
- : Direction.BACKWARD |
- } |
-} |
- |
-/** |
- * Add this constraint to the constraint graph |
- */ |
-BinaryConstraint.prototype.addToGraph = function () { |
- this.v1.addConstraint(this); |
- this.v2.addConstraint(this); |
- this.direction = Direction.NONE; |
-} |
- |
-/** |
- * Answer true if this constraint is satisfied in the current solution. |
- */ |
-BinaryConstraint.prototype.isSatisfied = function () { |
- return this.direction != Direction.NONE; |
-} |
- |
-/** |
- * Mark the input variable with the given mark. |
- */ |
-BinaryConstraint.prototype.markInputs = function (mark) { |
- this.input().mark = mark; |
-} |
- |
-/** |
- * Returns the current input variable |
- */ |
-BinaryConstraint.prototype.input = function () { |
- return (this.direction == Direction.FORWARD) ? this.v1 : this.v2; |
-} |
- |
-/** |
- * Returns the current output variable |
- */ |
-BinaryConstraint.prototype.output = function () { |
- return (this.direction == Direction.FORWARD) ? this.v2 : this.v1; |
-} |
- |
-/** |
- * Calculate the walkabout strength, the stay flag, and, if it is |
- * 'stay', the value for the current output of this |
- * constraint. Assume this constraint is satisfied. |
- */ |
-BinaryConstraint.prototype.recalculate = function () { |
- var ihn = this.input(), out = this.output(); |
- out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength); |
- out.stay = ihn.stay; |
- if (out.stay) this.execute(); |
-} |
- |
-/** |
- * Record the fact that this constraint is unsatisfied. |
- */ |
-BinaryConstraint.prototype.markUnsatisfied = function () { |
- this.direction = Direction.NONE; |
-} |
- |
-BinaryConstraint.prototype.inputsKnown = function (mark) { |
- var i = this.input(); |
- return i.mark == mark || i.stay || i.determinedBy == null; |
-} |
- |
-BinaryConstraint.prototype.removeFromGraph = function () { |
- if (this.v1 != null) this.v1.removeConstraint(this); |
- if (this.v2 != null) this.v2.removeConstraint(this); |
- this.direction = Direction.NONE; |
-} |
- |
-/* --- * |
- * S c a l e C o n s t r a i n t |
- * --- */ |
- |
-/** |
- * Relates two variables by the linear scaling relationship: "v2 = |
- * (v1 * scale) + offset". Either v1 or v2 may be changed to maintain |
- * this relationship but the scale factor and offset are considered |
- * read-only. |
- */ |
-function ScaleConstraint(src, scale, offset, dest, strength) { |
- this.direction = Direction.NONE; |
- this.scale = scale; |
- this.offset = offset; |
- ScaleConstraint.superConstructor.call(this, src, dest, strength); |
-} |
- |
-ScaleConstraint.inheritsFrom(BinaryConstraint); |
- |
-/** |
- * Adds this constraint to the constraint graph. |
- */ |
-ScaleConstraint.prototype.addToGraph = function () { |
- ScaleConstraint.superConstructor.prototype.addToGraph.call(this); |
- this.scale.addConstraint(this); |
- this.offset.addConstraint(this); |
-} |
- |
-ScaleConstraint.prototype.removeFromGraph = function () { |
- ScaleConstraint.superConstructor.prototype.removeFromGraph.call(this); |
- if (this.scale != null) this.scale.removeConstraint(this); |
- if (this.offset != null) this.offset.removeConstraint(this); |
-} |
- |
-ScaleConstraint.prototype.markInputs = function (mark) { |
- ScaleConstraint.superConstructor.prototype.markInputs.call(this, mark); |
- this.scale.mark = this.offset.mark = mark; |
-} |
- |
-/** |
- * Enforce this constraint. Assume that it is satisfied. |
- */ |
-ScaleConstraint.prototype.execute = function () { |
- if (this.direction == Direction.FORWARD) { |
- this.v2.value = this.v1.value * this.scale.value + this.offset.value; |
- } else { |
- this.v1.value = (this.v2.value - this.offset.value) / this.scale.value; |
- } |
-} |
- |
-/** |
- * Calculate the walkabout strength, the stay flag, and, if it is |
- * 'stay', the value for the current output of this constraint. Assume |
- * this constraint is satisfied. |
- */ |
-ScaleConstraint.prototype.recalculate = function () { |
- var ihn = this.input(), out = this.output(); |
- out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength); |
- out.stay = ihn.stay && this.scale.stay && this.offset.stay; |
- if (out.stay) this.execute(); |
-} |
- |
-/* --- * |
- * E q u a l i t y C o n s t r a i n t |
- * --- */ |
- |
-/** |
- * Constrains two variables to have the same value. |
- */ |
-function EqualityConstraint(var1, var2, strength) { |
- EqualityConstraint.superConstructor.call(this, var1, var2, strength); |
-} |
- |
-EqualityConstraint.inheritsFrom(BinaryConstraint); |
- |
-/** |
- * Enforce this constraint. Assume that it is satisfied. |
- */ |
-EqualityConstraint.prototype.execute = function () { |
- this.output().value = this.input().value; |
-} |
- |
-/* --- * |
- * V a r i a b l e |
- * --- */ |
- |
-/** |
- * A constrained variable. In addition to its value, it maintain the |
- * structure of the constraint graph, the current dataflow graph, and |
- * various parameters of interest to the DeltaBlue incremental |
- * constraint solver. |
- **/ |
-function Variable(name, initialValue) { |
- this.value = initialValue || 0; |
- this.constraints = new OrderedCollection(); |
- this.determinedBy = null; |
- this.mark = 0; |
- this.walkStrength = Strength.WEAKEST; |
- this.stay = true; |
- this.name = name; |
-} |
- |
-/** |
- * Add the given constraint to the set of all constraints that refer |
- * this variable. |
- */ |
-Variable.prototype.addConstraint = function (c) { |
- this.constraints.add(c); |
-} |
- |
-/** |
- * Removes all traces of c from this variable. |
- */ |
-Variable.prototype.removeConstraint = function (c) { |
- this.constraints.remove(c); |
- if (this.determinedBy == c) this.determinedBy = null; |
-} |
- |
-/* --- * |
- * P l a n n e r |
- * --- */ |
- |
-/** |
- * The DeltaBlue planner |
- */ |
-function Planner() { |
- this.currentMark = 0; |
-} |
- |
-/** |
- * Attempt to satisfy the given constraint and, if successful, |
- * incrementally update the dataflow graph. Details: If satifying |
- * the constraint is successful, it may override a weaker constraint |
- * on its output. The algorithm attempts to resatisfy that |
- * constraint using some other method. This process is repeated |
- * until either a) it reaches a variable that was not previously |
- * determined by any constraint or b) it reaches a constraint that |
- * is too weak to be satisfied using any of its methods. The |
- * variables of constraints that have been processed are marked with |
- * a unique mark value so that we know where we've been. This allows |
- * the algorithm to avoid getting into an infinite loop even if the |
- * constraint graph has an inadvertent cycle. |
- */ |
-Planner.prototype.incrementalAdd = function (c) { |
- var mark = this.newMark(); |
- var overridden = c.satisfy(mark); |
- while (overridden != null) |
- overridden = overridden.satisfy(mark); |
-} |
- |
-/** |
- * Entry point for retracting a constraint. Remove the given |
- * constraint and incrementally update the dataflow graph. |
- * Details: Retracting the given constraint may allow some currently |
- * unsatisfiable downstream constraint to be satisfied. We therefore collect |
- * a list of unsatisfied downstream constraints and attempt to |
- * satisfy each one in turn. This list is traversed by constraint |
- * strength, strongest first, as a heuristic for avoiding |
- * unnecessarily adding and then overriding weak constraints. |
- * Assume: c is satisfied. |
- */ |
-Planner.prototype.incrementalRemove = function (c) { |
- var out = c.output(); |
- c.markUnsatisfied(); |
- c.removeFromGraph(); |
- var unsatisfied = this.removePropagateFrom(out); |
- var strength = Strength.REQUIRED; |
- do { |
- for (var i = 0; i < unsatisfied.size(); i++) { |
- var u = unsatisfied.at(i); |
- if (u.strength == strength) |
- this.incrementalAdd(u); |
- } |
- strength = strength.nextWeaker(); |
- } while (strength != Strength.WEAKEST); |
-} |
- |
-/** |
- * Select a previously unused mark value. |
- */ |
-Planner.prototype.newMark = function () { |
- return ++this.currentMark; |
-} |
- |
-/** |
- * Extract a plan for resatisfaction starting from the given source |
- * constraints, usually a set of input constraints. This method |
- * assumes that stay optimization is desired; the plan will contain |
- * only constraints whose output variables are not stay. Constraints |
- * that do no computation, such as stay and edit constraints, are |
- * not included in the plan. |
- * Details: The outputs of a constraint are marked when it is added |
- * to the plan under construction. A constraint may be appended to |
- * the plan when all its input variables are known. A variable is |
- * known if either a) the variable is marked (indicating that has |
- * been computed by a constraint appearing earlier in the plan), b) |
- * the variable is 'stay' (i.e. it is a constant at plan execution |
- * time), or c) the variable is not determined by any |
- * constraint. The last provision is for past states of history |
- * variables, which are not stay but which are also not computed by |
- * any constraint. |
- * Assume: sources are all satisfied. |
- */ |
-Planner.prototype.makePlan = function (sources) { |
- var mark = this.newMark(); |
- var plan = new Plan(); |
- var todo = sources; |
- while (todo.size() > 0) { |
- var c = todo.removeFirst(); |
- if (c.output().mark != mark && c.inputsKnown(mark)) { |
- plan.addConstraint(c); |
- c.output().mark = mark; |
- this.addConstraintsConsumingTo(c.output(), todo); |
- } |
- } |
- return plan; |
-} |
- |
-/** |
- * Extract a plan for resatisfying starting from the output of the |
- * given constraints, usually a set of input constraints. |
- */ |
-Planner.prototype.extractPlanFromConstraints = function (constraints) { |
- var sources = new OrderedCollection(); |
- for (var i = 0; i < constraints.size(); i++) { |
- var c = constraints.at(i); |
- if (c.isInput() && c.isSatisfied()) |
- // not in plan already and eligible for inclusion |
- sources.add(c); |
- } |
- return this.makePlan(sources); |
-} |
- |
-/** |
- * Recompute the walkabout strengths and stay flags of all variables |
- * downstream of the given constraint and recompute the actual |
- * values of all variables whose stay flag is true. If a cycle is |
- * detected, remove the given constraint and answer |
- * false. Otherwise, answer true. |
- * Details: Cycles are detected when a marked variable is |
- * encountered downstream of the given constraint. The sender is |
- * assumed to have marked the inputs of the given constraint with |
- * the given mark. Thus, encountering a marked node downstream of |
- * the output constraint means that there is a path from the |
- * constraint's output to one of its inputs. |
- */ |
-Planner.prototype.addPropagate = function (c, mark) { |
- var todo = new OrderedCollection(); |
- todo.add(c); |
- while (todo.size() > 0) { |
- var d = todo.removeFirst(); |
- if (d.output().mark == mark) { |
- this.incrementalRemove(c); |
- return false; |
- } |
- d.recalculate(); |
- this.addConstraintsConsumingTo(d.output(), todo); |
- } |
- return true; |
-} |
- |
- |
-/** |
- * Update the walkabout strengths and stay flags of all variables |
- * downstream of the given constraint. Answer a collection of |
- * unsatisfied constraints sorted in order of decreasing strength. |
- */ |
-Planner.prototype.removePropagateFrom = function (out) { |
- out.determinedBy = null; |
- out.walkStrength = Strength.WEAKEST; |
- out.stay = true; |
- var unsatisfied = new OrderedCollection(); |
- var todo = new OrderedCollection(); |
- todo.add(out); |
- while (todo.size() > 0) { |
- var v = todo.removeFirst(); |
- for (var i = 0; i < v.constraints.size(); i++) { |
- var c = v.constraints.at(i); |
- if (!c.isSatisfied()) |
- unsatisfied.add(c); |
- } |
- var determining = v.determinedBy; |
- for (var i = 0; i < v.constraints.size(); i++) { |
- var next = v.constraints.at(i); |
- if (next != determining && next.isSatisfied()) { |
- next.recalculate(); |
- todo.add(next.output()); |
- } |
- } |
- } |
- return unsatisfied; |
-} |
- |
-Planner.prototype.addConstraintsConsumingTo = function (v, coll) { |
- var determining = v.determinedBy; |
- var cc = v.constraints; |
- for (var i = 0; i < cc.size(); i++) { |
- var c = cc.at(i); |
- if (c != determining && c.isSatisfied()) |
- coll.add(c); |
- } |
-} |
- |
-/* --- * |
- * P l a n |
- * --- */ |
- |
-/** |
- * A Plan is an ordered list of constraints to be executed in sequence |
- * to resatisfy all currently satisfiable constraints in the face of |
- * one or more changing inputs. |
- */ |
-function Plan() { |
- this.v = new OrderedCollection(); |
-} |
- |
-Plan.prototype.addConstraint = function (c) { |
- this.v.add(c); |
-} |
- |
-Plan.prototype.size = function () { |
- return this.v.size(); |
-} |
- |
-Plan.prototype.constraintAt = function (index) { |
- return this.v.at(index); |
-} |
- |
-Plan.prototype.execute = function () { |
- for (var i = 0; i < this.size(); i++) { |
- var c = this.constraintAt(i); |
- c.execute(); |
- } |
-} |
- |
-/* --- * |
- * M a i n |
- * --- */ |
- |
-/** |
- * This is the standard DeltaBlue benchmark. A long chain of equality |
- * constraints is constructed with a stay constraint on one end. An |
- * edit constraint is then added to the opposite end and the time is |
- * measured for adding and removing this constraint, and extracting |
- * and executing a constraint satisfaction plan. There are two cases. |
- * In case 1, the added constraint is stronger than the stay |
- * constraint and values must propagate down the entire length of the |
- * chain. In case 2, the added constraint is weaker than the stay |
- * constraint so it cannot be accomodated. The cost in this case is, |
- * of course, very low. Typical situations lie somewhere between these |
- * two extremes. |
- */ |
-function chainTest(n) { |
- planner = new Planner(); |
- var prev = null, first = null, last = null; |
- |
- // Build chain of n equality constraints |
- for (var i = 0; i <= n; i++) { |
- var name = "v" + i; |
- var v = new Variable(name); |
- if (prev != null) |
- new EqualityConstraint(prev, v, Strength.REQUIRED); |
- if (i == 0) first = v; |
- if (i == n) last = v; |
- prev = v; |
- } |
- |
- new StayConstraint(last, Strength.STRONG_DEFAULT); |
- var edit = new EditConstraint(first, Strength.PREFERRED); |
- var edits = new OrderedCollection(); |
- edits.add(edit); |
- var plan = planner.extractPlanFromConstraints(edits); |
- for (var i = 0; i < 100; i++) { |
- first.value = i; |
- plan.execute(); |
- if (last.value != i) |
- alert("Chain test failed."); |
- } |
-} |
- |
-/** |
- * This test constructs a two sets of variables related to each |
- * other by a simple linear transformation (scale and offset). The |
- * time is measured to change a variable on either side of the |
- * mapping and to change the scale and offset factors. |
- */ |
-function projectionTest(n) { |
- planner = new Planner(); |
- var scale = new Variable("scale", 10); |
- var offset = new Variable("offset", 1000); |
- var src = null, dst = null; |
- |
- var dests = new OrderedCollection(); |
- for (var i = 0; i < n; i++) { |
- src = new Variable("src" + i, i); |
- dst = new Variable("dst" + i, i); |
- dests.add(dst); |
- new StayConstraint(src, Strength.NORMAL); |
- new ScaleConstraint(src, scale, offset, dst, Strength.REQUIRED); |
- } |
- |
- change(src, 17); |
- if (dst.value != 1170) alert("Projection 1 failed"); |
- change(dst, 1050); |
- if (src.value != 5) alert("Projection 2 failed"); |
- change(scale, 5); |
- for (var i = 0; i < n - 1; i++) { |
- if (dests.at(i).value != i * 5 + 1000) |
- alert("Projection 3 failed"); |
- } |
- change(offset, 2000); |
- for (var i = 0; i < n - 1; i++) { |
- if (dests.at(i).value != i * 5 + 2000) |
- alert("Projection 4 failed"); |
- } |
-} |
- |
-function change(v, newValue) { |
- var edit = new EditConstraint(v, Strength.PREFERRED); |
- var edits = new OrderedCollection(); |
- edits.add(edit); |
- var plan = planner.extractPlanFromConstraints(edits); |
- for (var i = 0; i < 10; i++) { |
- v.value = newValue; |
- plan.execute(); |
- } |
- edit.destroyConstraint(); |
-} |
- |
-// Global variable holding the current planner. |
-var planner = null; |
- |
-function deltaBlue() { |
- chainTest(100); |
- projectionTest(100); |
-} |